

ENEE324. Problem set 3¹

Issued on September 29, **Date due** October 8, 2014

3.1. A Poisson r.v. X has the mean value $\mathbf{E}[X] = 3$. What is the probability $\mathbf{P}(X \leq 3)$? $\mathbf{P}(X > 0)$?

3.2. The lab counter is programmed to record one elementary particle per second. An electron appears with probability 0.2, a proton with probability 0.3, a neutrino with probability 0.4, no particles are recorded with probability 0.1. What is the probability that

- (a) the first electron appears in the 4th observation?
- (b) the first proton appears no earlier than the 5th observation?
- (c) in the first 10 seconds there are exactly 3 electrons, 2 protons, and 1 neutrino?

3.3. Let X and Y be geometric r.v.'s with $p_X(k) = p_Y(k) = p(1 - p)^{k-1}$, $k = 1, 2, \dots$, where $0 < p < 1$.

- (a) Compute the PMF $\mathbf{P}(X + Y = 10)$.
- (b) Compute the conditional PMF $\mathbf{P}(X = k|X + Y = 10)$.

3.4. Let X_1 be a Bernoulli r.v. with $p_X(1) = p_1$ and X_2 be a Bernoulli r.v. with $p_X(1) = p_2$. Write out the p.m.f. for $Z = X_1 - X_2$ and compute $\mathbf{E}(Z)$, $\text{var}(Z)$.

3.5. Let X and Y be independent r.v.'s with

$$p_X(k) = \begin{cases} 0.2 & k = 0 \\ 0.3 & k = 1 \\ 0.4 & k = 2 \\ 0.1 & k = 3 \end{cases} \quad p_Y(k) = \begin{cases} 0.7 & k = 1 \\ 0.2 & k = 3 \\ 0.1 & k = 4 \end{cases}$$

Write out the p.m.f. of the r.v. $Z = \min(X, Y)$.

3.6. Let X and Y be two Bernoulli random variables taking values 0 and 1. The joint p.m.f. p_{XY} is given by

$$p_{XY}(x, y) = \begin{cases} \frac{1}{2}(1 - p) & x = y \\ \frac{1}{2}p & x \neq y. \end{cases}$$

Compute $p_Y(0)$, $p_Y(1)$, $p_{Y|X}(0|1)$, $p_{Y|X}(0|0)$.

¹r.v. stands for “random variable,” p.m.f. stands for “probability mass function.”