

ENEE324. Problem set 6

Date due: November 26, 2014

1. (The Chernov bound, pp.284-286).

(a) Let $X \sim \mathcal{N}(0, 1)$. Use the Chernoff bound to show that $P(X \geq c) \leq e^{-c^2/2}$. Then take $c = 2$ and compare the this estimate with the true value (please give the numbers for both ways of finding $P(X \geq 2)$).

(b) Now let $X \sim \text{Poisson}(\lambda)$ (p.78 in the textbook). Use the Chernoff bound to estimate $P(X \geq c)$. For which c does your calculation produce a trivial upper bound $P(X \geq c) \leq 1$?

2. A fair coin is tossed 6 times, yielding a sequence of Heads and Tails. Let X be the parity of the number of Heads (the remainder of the division of the number of heads by 2) and let Y be the remainder of the division of the number of Tails by 3.

(a) Find the PMFs $p_X(k)$, $p_Y(k)$.

(b) Are X and Y correlated? Are they independent?

3. Consider two continuous r.v.'s X and Y that are uniformly distributed in the region $\{|x + y| \leq 1, |x - y| \leq 1/2\}$ of the (x, y) plane.

(a) Find $f_{Y|X}(y|x)$ and $f_{X|Y}(x|y)$ for all x and y .

(b) Find $\mathbf{E}[X|Y]$, $\mathbf{E}[X]$.

4. Packets arrive at the server with an exponential wait time, so that the k th packet arrives after $X_1 + X_2 + \dots + X_k$ minutes, where $X_k, k = 1, 2, \dots$ are exponential random variables with $EX_k = 2$ for all k . Find the probability P that the third packet arrives no earlier than 20 minutes after the start of the experiment. Estimate P using the Markov inequality.

5. Let X_1, X_2, \dots , be i.i.d. RVs with $EX = 2$, $\text{Var}(X) = 9$. Define $Y_i = X_i/2^i$ for all i . Finally let $T_n = \sum_{i=1}^n Y_i$ and $A_n = T_n/n$.

(a) Find E and Var for Y_n, T_n, A_n .

(b) Do the RVs Y_n, T_n, A_n converge in probability to a number, and if yes, what are the limiting values?