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Error Correcting Codes
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Euclidean division algorithm
Multiplicative inverse mod p
Irreducible polynomials

ENEE626 Lecture 10: Finite fields

In the first part of the course we have studied the main properties
of linear codes such as their structure, error correction, decoding,
important examples
Here we will prepare way for a detailed study of practical, algebraic
families of codes such as Reed-Solomon codes
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Example

Roughly speaking, a field is a “number system” with two operations, + and x
Let us look at F7 ( =Z/(7Z) )
The multiplication table is given by
x   1  2  3  4  5  6  

1 1  2  3  4  5  6                 Notation: F7
*=F7\{0}

2 2  4  6  1  3  5
3 3  6  2  5  1  4                 For every a∈F7

* there is b s.t. ab=1; so a=b-1

4 4  1  5  2  6  2
5 5  3  1  6  4  2
6 6  5  4  3  2  1 

Properties: a.b mod 7 and a+b mod 7 stay in F7
∀ a≠0 ∃ b such that ab=1
∀ a ∃ b such that a-b=0

Note that 3,32=2,33=6,34=4,35=5, 36=1 exhaust all of F7.
In such situation we say that 3 is a primitive root mod 7

3



Definition 10.1: A field F is a set of elements closed under two binary
operations, called addition and multiplication

Addition has the following properties
a+b=b+a              (commutative)
a+(b+c)=(a+b)+c (associative)
∃ e: a+e=a (called zero)
for any a there is an inverse b: a-b=0

Similarly, multiplication is commutative, associative, 
distributive: a(b + c)=ab + ac
any nonzero element a∈ F has an inverse, b=a-1, s.t. ab=1 

Our next goal is to prove that for any prime number, any number r, 0<r<p,
has a unique mult. inverse mod p
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Euclidean division algorithm (EDA)

Lemma 10.1. Let r, s ∈ Z and let g=GCD(r,s) be their greatest common
divisor. There exist integer numbers a and b such that ar+bs=g.

Division with a remainder: For any c, d ≠ 0 there exists s, 0 ≤ s < |d| such
that c = dQ+s. Here Q is called a quotient, s a remainder.

Euclidean division algorithm: Given s,r∈Z, r<s, find GCD(s,r)
Do the following:

s=Q1r+r1
r=Q2 r1+r2
r1=Q3 r2+r3

…
rn-2=Qn rn-1+rn
rn-1=Qn+1rn

The remainder will become 0 in some step, say in step n+1 because
r>r1>r2>…>rn-1>rn>0
Clearly, rn=GCD(s,r) because is rn|r, rn|s, and any divisor of s,r
also divides rn.
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Euclidean division algorithm (EDA)

This system of equations can be solved for rn because from the equation
before the last one, rn=-Qn rn-1 +rn-2, then from the equation before that one,
rn-3=Qn-1 rn-2+rn-1, so 

rn=-Qn rn-1 +rn-2
=-Qn (-Qn-1 rn-2+rn-3)+ rn-2= (QnQn-1+1) rn-2 -Qn rn-3
=(QnQn-1+1)(-Qn-2 rn-3+rn-4)- Qn rn-3 =…

Here each step i=1,2,… removes rn-i, so after n steps we get to r0=r and s

Example: s=Q1 r+r1 Solving, we get
r=Q2 r1+r2 r2=-Q2r1+r=-Q2(-Q1 r+s)+r=r(Q2Q1+1)-Q2s

r1=Q3 r2

36=2.15+6                                                GCD(18,7)=1      
15=2.6+3           3=15(2.2+1) – 2.36          1=2.18-5.7
6=2.3                 =5.15 – 2.36                          or

1=2.4 (mod 7)

Corollary 10.2: Let p be a prime and 0<r<p. Then there exists a, 0< a<p
such that a.r=1 mod p.
Indeed, GCD(r,p)=1, so ar+bp=1 for some a, b. Reducing this mod p,
we get a.r=1 mod p. 6



Let us extend EDA to polynomials over a field F.
A polynomial f(x)∈ F[x] is called irreducible if the equality

f(x)=g(x)h(x),       g,h∈ F[x]
implies that either g or h is a constant polynomial. Irreducible polynomials
play the role similar to prime numbers.

Example: f(x)=x2+x+1 is irreducible both over R and F2

Division with a remainder for polynomials: Let c(x),d(x)∈ Z[x],
deg c > deg d. Then there exists a polynomial s(x), 0 ≤ deg s < deg d, s.t.

c(x) = d(x)Q(x) + s(x)

s(x) can be found by long division. The same is true for polynomials
over Fp, i.e., with coefficients 0 ,1,…,p-1 and operations mod p.

Euclidean division algorithm can be extended to polynomials.
Example. Let f=x4+x2+x+1, g=x3+1 ∈ F2[x]. Find GCD(f,g)

Of course, x3+1=(x+1)(x2+x+1)
x4+x2+x+1=(x+1)(x3+x2+1), so GCD(f,g)=x+1

We will use EDA 7



x4 + x2 +x +1 = x (x3+1) + x2+1   (found by long division)
x3+1              = x(x2+1)+ x+1
x2+1              =(x+1)(x+1)

GCD(x4 + x2 +x +1, x3+1) = x+1 = x3+1+ x(x2+1)
= x3+1 + x(x4+x2+x+1) + x(x3+1))
= (x+1) g(x) + x f(x)

Irreducible polynomials over F2

x, x+1, x2+x+1, x3+x+1, x3+x2+1, x4+x+1,…

Lemma 10.3: Let f(x) ∈ Fp[x] be irreducible over Fp. 
Then every g(x) ≠ 0 has a unique multiplicative inverse modulo f, 
i.e., there exists an h such that deg h ≤ deg f -1 and gh = 1 (mod f).

Proved similarly to the case of numbers.

Example: Find inverse of x mod x4+x+1 ∈ F2[x]. We need
that x g(x)=1=x4+x, so g(x)=x3+1 8



Algebraic extensions of fields

Complex numbers C are constructed from R by adjoining to R
a root of the polynomial x2+1, denoted i, and considering all linear
combinations a+bi where a,b ∈ R

In this situation we say that C is an algebraic extension of R of degree 2,
denoted [C : R]=2

Complex numbers are added as vectors (a+bi)+(c+di)=(a+c)+(b+d)i
and multiplied as polynomials in i: (a+bi)(c+di)=ac-bd + (ad+bc)i

The set of complex numbers forms a 2-dimensional vector space over R

Let us construct F16 as a 4th degree extension of F2 using
the irreducible polynomial f(x)=x4+x+1. Let α be a root of f(x),
α4+α+1=0 or α4+α=1
Exercise: what are the other 3 roots of f(x)?
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Table of the field

vector        polynomial         power of α logarithm

0000                0                         ?                 -∞
0001                1                       α0=1               0
0010                x                         α 1
0100                x2 α2 2
1000                x3 α3 3
0011              x+1                       α4 4                x4=x+1 mod f   
0110              x2+x                      α5 5     α5=α4α=(α+1)α=α2+α
1100              x3+x2 α6 6
1011              x3+x+1                  α7 7
0101              x2+1                      α8 8
1010              x3+x                      α9 9
0111              x2+x+1                  α10 10
1110              x3+x2+x                 α11 11
1111              x3+x2+x+1             α12 12
1101              x3+x2+1                 α13 13
1001              x3+1                      α14 14

α15=1: x(x3+1)=x4+x=(x+1)+x=1

We have proved that these 16 elements form a field (check the axioms) 10



Basic properties of finite fields
Existence of primitive elements

ENEE626 Lecture 11: Finite fields
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We have constructed F16 as a degree-4 extension of F2
Let us prove that this construction is universal: for any prime p and an
irreducible polynomial of degree m over Fp it is possible to construct
a finite field of pm elements

Let F be a finite field. In the sequence of elements
1+1+1+…+1 (t ≥ 1) times 

there will be repeated elements (because F is finite). Then for some
t1, t2, we will have t1.1=t2.1, or (t2-t1).1=0

Definition 11.1: The smallest number p such that p.1=0 is called the characteristic
of F, denoted char F.

p is always prime. Indeed, if not, then we would have p.1=(p1.1)(p2.1)=0,
which means that one of the two products is 0, contradicting the fact that
p is smallest.
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Consider a maximal set B = {b1,b2,…,bm} of elements of F which are linearly 
independent over Fp. It is clear that F contains all pm linear combinations 

λ1 b1+…+λm bm,     λi∈ Fp, i=1,..,m
and no other elements because otherwise there would be an element
linearly independent of b1,b2,…,bm
Thus |F|=pm for any finite field F

The set B is called a basis of F over Fp

Let a∈ Fq. Consider the set {a,a2,a3,a4,…}.  Clearly at some point we will encounter 
repeated elements ai=aj, or aj-i=1

Definition 11.2: Let a∈ Fq. The smallest s such that as=1 is called the order of a, 
denoted ord(a). An element of order q-1 is called a primitive element of Fq
An irreducible polynomial whose root is a primitive element is called a
primitive polynomial (Exercise: give example of an irreducible, non-prim. polynomial)

Example: In F16, ord(α)=ord(α2)=ord(α4)=15 (primitive elements); ord(α3)=5

From the table (next page), the elements 1,α,α2,α3 are linearly independent 
over F2, i.e., form a basis. This justifies representation of F16 as a 4-dim. 
vector space over F2
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Table of the field F24

vector        polynomial         power of α logarithm

0000                0                         ?                 -∞
0001                1                       α0=1               0
0010                x                         α 1
0100                x2 α2 2
1000                x3 α3 3
0011              x+1                       α4 4                x4=x+1 mod f (x)  
0110              x2+x                      α5 5     α5=α4α=(α+1)α=α2+α
1100              x3+x2 α6 6
1011              x3+x+1                  α7 7
0101              x2+1                      α8 8
1010              x3+x                      α9 9
0111              x2+x+1                  α10 10
1110              x3+x2+x                 α11 11
1111              x3+x2+x+1             α12 12
1101              x3+x2+1                 α13 13
1001              x3+1                      α14 14

α15=1: x(x3+1)=x4+x=(x+1)+x=1
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Theorem 11.1: The finite field FPm contains a primitive element, i.e., an 
element of order pm-1.  Thus, the set of nonzero elements of Fpm, denoted 
(Fpm )*, forms a cyclic group.

Reminder: A commutative group G is a set of elements with a binary operation, called 
multiplication, that satisfies the following properties:

(i) for any g1,g2∈G,  g1.g2∈G and g1.g2=g2.g1

(ii) there exists an element e∈G such that g.e=g for any g∈ G

(iii) for any g∈G there exists h∈ G such that g.h=1 (mult. inverse)

(iv) for any g1,g2,g3,    (g1.g2)g3=g1(g2.g3)

A finite group G is called cyclic if there exists an element g such that any h∈ G is some 
power of g:

G={g0,g1,…g|G|-1}
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We begin with:

Lemma 11.2: Let a,b in Fpm, let ord(a)=r,ord(b)=s, (r,s)=1. Then ord(ab)=rs.

Proof. (a) Let us first prove that aj=1 if and only if r | j. We have ar=1.
It is easy to see that if j=rk then aj=(ar)k=1
Assume that j=(rh+g), g<r then aj=arh+g=ag=1 but by
assumption g<r, and this contradicts the definition of the order.
Therefore, g=0 and r | j is established.

b) Now prove the lemma. We have (ab)rs=1. Hence by part (a), ord(ab) | rs. 
Assume that ord(ab)=l1l2 and l1| r, l2| s.

1=(ab)l1l2=arl2brl2=brl2

Thus s|rl2 but s and r are relatively prime, therefore s | l2. 
Together with l2|s this implies that s=l2. 
Similarly r=l1. and hence we have proved that ord (a,b)=rs.
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Theorem 11.3: Fpm*=Fpm\{0} is a cyclic multiplicative group of order pm-1

Proof: (a) Let r = max ord(z) over all z ≠ 0, let a satisfy ord(a)=r.

Let us first prove that every b ∈ Fpm* satisfies xr-1 =0.  

To show this, it suffices to prove that ∀ b ≠ 0, ord(b)|r. 

Let ord(b)=l and suppose that ξ is a prime such that l=ξil' and ξ does not divide l (for instance, 
if l is prime then ξ=l). Similarly let r=ξjr' where ξ does not divide r'. Since (ξ,l')=1, we conclude 
that ord(bl')=ξi. Likewise, ord(aξj)=r'.  Since ξj and l’ are relatively prime, Lemma 11.2 above 
implies that ord(aξj bl')=r'ξi . 

Since r is the maximum value of the order in our field, r'ξi≤ r=r'ξj implying that i≤ j.

Since the above argument is true for every prime factor of l, we conclude that l|r. Therefore, 
br=1, which proves part (a).

Since every b ≠ 0 satisfies xr-1=0, we obtain

∏b ≠ 0(x-b) | (xr-1). 

Since deg(∏b ≠ 0(x-b))=pm-1, also r≥ pm-1.

On the other hand, r≤ pm-1 because that's the total number of nonzero elements in the field.

By definition of r, we then get r=pm-1. The powers of a are all distinct and exhaust Fpm∗, which 
proves that it is a cyclic group.
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Basic facts about finite fields:

1. The characteristic of any finite field F is a prime number p. 
Any finite field F consists of pm elements for some prime p and m ≥ 1.
F contains Fp as its subfield. 

2. Given an irreducible polynomial of degree m over Fp, it is possible to 
construct an mth degree extension of F, namely Fpm.  The nonzero 
elements of Fpm satisfy the equation xpm-1 = 1

3. Over Fp, p prime, there exists an  irreducible polynomial of any degree 
m≥1. Therefore, for any prime p and any m≥ 1 there exists a finite field 
Fpm

4. The finite field F of size pm is unique, isomorphic to FPm (finite fields of 
equal size are isomorphic)

5. The finite field FPm contains a primitive element, i.e., an element of order 
pm-1. Thus, the set of nonzero elements of Fpm, denoted Fpm*, forms a 
cyclic group
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Definition of RS codes
Main properties of MDS codes
Weight distribution of MDS codes
Extended RS codes

ENEE626 Lecture 12: MDS and Reed-Solomon
Codes
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Reed-Solomon codes

Let q=ps, let Fq={α0=0,α1,…,αq-1} be a finite field, let n ≤ q-1 (typically q=n+1)

Let f(x)∈ Fq[x] be a polynomial and let P =(α1,…,αn) ⊂ Fq
Define the evaluation map eval(f(x)) that maps f  to a vector c ∈ (Fq)n

f a c=(c1,c2,…,cn) where ci=f(αi), i=1,2,…,n  
Definition 12.1: An [n,k] q-ary RS code 

C={eval(f), 0 ≤ deg f ≤ k-1} 

The set P will be called a defining set of points of C.

Example: F7={0,1,2,3,4,5,6}.  Take α=3 to be the primitive element,

Let P={1,α,α2,…,α5}             f(x)=2x+1        c=eval(f)=(3,0,5,6,2,4)
={1,3,2,6,4,5}                f(x)=3x2+x+2   c=eval(f)=(6,4,2,4,5,5)

C is a linear code: Let c1=eval(f1) and c2=eval(f2) where both
f1(x) and f2(x) are of degrees k-1. Then 

α c1+β c2=eval (g), 
where g(x)=α f1(x)+β f2(x), and hence deg g ≤ k-1, so eval (g)∈ C.
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Proposition 12.1: The distance of the RS code C d=n-k+1.
Proof:  A polynomial of degree ≤ k-1 can have at most k-1 zeros.

Theorem 12.2 (Singleton bound) The distance of any code C ⊂ Fq
n

with |C|=M satisfies
(1)                            M ≤ qn-d+1

In particular, if the code is linear, and M=qk, then
(2)                             d ≤ n-k+1

Proof: Consider the n x M code matrix. Upon deleting any d-1 columns all
the rows will be different. Hence (1). (2) follows from (1).
Alternatively, (2) is proved directly since, denoting by H the parity-check matrix
of C, we have

d-1≤rk(H)≤n-k.

Codes that meet the Singleton bound are called Maximum Distance Separable
(MDS). In particular, RS codes are MDS.

Remark: The length of RS codes satisfies n ≤ q-1. It is also possible to 
construct extended RS codes of length n=q+1.

RS codes are examples of evaluation codes. They can be generalized
to an important class of algebraic geometry codes.
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General properties of MDS codes

Theorem 12.3: Let C be an [n,k,d] code with generator matrix G and p.-c. 
matrix H.The following claims are equivalent.
(i) C is MDS
(ii) Every k columns of G are linearly independent
(iii) Every n-k columns of H are linearly independent
(iv) The dual code C⊥ ={y∈ Fq

n : ∀ (c∈ C) (y,c)=0} is MDS
(v) If G=[Ik|A] then every square submatrix of A has full rank
(vi) The weight distribution of the code C is given by

Proof: (i) ⇒ (iii) dist(C)=d, so every d-1=n-k columns of H are l.i. 

(iii) ⇒ (ii) Every n-k columns of H can be reduced to a diagonal
matrix In-k, so these n-k positions can be taken as the positions of check
symbols. Hence, the remaining k positions form an information set.
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(ii) ⇒ (iv) Viewing G as parity-check matrix of C⊥, we observe
that the distance d(C⊥) ≥ k+1=n-dim(C⊥)+1. Thus, C⊥ satisfies
the Singleton bound. 

(iv) ⇒ (i) By exchanging the roles of C and C⊥

(ii) ⇔ (v) Consider any square submatrix B of A. 

G=

BIk

A

If B is k x k then the claim follows from (ii). Otherwise, let B be of order b≤
k-1 and consider the “complementary” submatrix D of Ik with k-b columns as 
shown. The k x k matrix

D

0

0 B
D EM=

satisfies 0 ≠ det M=det B, as required.

k

E
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(vi) ⇒ (i) – obvious

(i) ⇒ (vi) - omitted

Note that the error probability of decoding up to half the distance for MDS 
codes (for instance, for Reed-Solomon codes, to be introduced) is easy to 
compute exactly. 

Fact: The only binary MDS codes are the [n,n-1,2], [n,1,n], [n,n,1] codes. 

N
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Theorem 12.4. Let C be an RS code of length n | q-1 and let β∈ Fq be an 
element of order n. Suppose the defining set of points for the code C is         
P =(1,β,…,βn-1). Then the parity-check and generator matrices of C are

Proof: Let f(x)=f0+f1x+…+fk-1xk-1 and let c=eval(f)=(f(1),f(β),…,f(βn-1)) ∈ C
ci=f(βi), so c= (f0,f1,…,fk-1) G, i.e. G is a generator matrix

(GHT)i,r=∑ (βj-1)i-1 (βj-1)r = ∑j β(i+r-1)(j-1)

Since i+r-1 ≤ n-1, γ:=βi+r-1 ≠ 1. Then
(GHT)i,r = ∑j γj-1=(γn-1)/(γ-1)=0           since ord (γ) | n.

The definition of RS codes above is slightly more general than the conventional
definition, which is given in the following  

j=1

n
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Observe that as we defined it, the length of an RS code n ≤ q-1.

We can construct extended RS codes of length n=q,q+1,
and in some (very few, exceptional) cases n=q+2

Extended RS codes, maximum    
length of MDS codes

For more on the MDS conjecture see R. Roth’s book, pp. 342-346.

It is conjectured that no nontrivial MDS codes longer than these parameters
exist (this is called the MDS conjecture and is considered a very difficult
problem).
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Generalized Reed-Solomon codes

Let f(x)∈ Fq[x] be a polynomial, let P =(α1,…,αn) ⊂ Fq and let v1,v2,…,vn be 
nonzero elements of Fq

Definition 12.2: An [n,k] q-ary GRS code 
C={(v1f(α1),v2f(α2),…,vnf(αn), 0 ≤ deg f ≤ k-1}

In other words, every coordinate in the code is scaled by a fixed nonzero 
element of Fq.

Theorem 12.5: The generator matrix of a GRS code C can be written in the 
form 

Exercise: prove this theorem, find a parity-check matrix of C.

GRS codes form a rather general class of MDS codes; in some cases, there
are no other MDS codes.
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ENEE626 Lecture 13: Decoding RS codes
Berlekamp-Welch and Peterson’s algorithms

RS codes are optimal with respect to error correction properties
They correct any combination of  [(n-k)/2] errors and many error patterns
of larger weights

There is a variety of polynomial-time decoding algorithms:

Unique decoding algorithms:
Peterson-Gorenstein-Zierler (1960, 61) 
Berlekamp-Massey (1968-69); many versions, most used 
Berlekamp-Welch (1984)

List decoding algorithms:
Sudan (1997) 
Guruswami-Sudan (1999)
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Erasure correction with RS codes

Recall the erasure channel from lecture 1.
Theorem 13.1: An [n,k,d] linear code corrects any combination of t 
errors and s erasures as long as 2t+s ≤ d-1.
Proof: obvious.

Consider correction of erasures only (t=0) with RS codes
C[n,k,d] RS code. Suppose that c ∈ C was transmitted and a vector r
was received. Let E⊂{1,2,…,n}, |E|=s be a set of erased positions. 
ci=ri for i∈ Ec.
Since s ≤ n-k, the remaining ≥ k positions contain an information set. 
Thus there is exactly one c∈ C s.t. projEc  c= projEc r
c can be found by solving a system of linear equations.
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Example: Consider a [7,4,4] RS code over F8. Let α be a primitive 7th degree root of 
unity, α is a root of f(x)=x3+x+1
Suppose that m(x)=x+α x2+α x3 is the message to be encoded.

Let c=eval(m)=(1α5α1α5α6α5), r=(1α5α1**α5)
h1 h2 h3 h4 h5 h6 h7

1  α α2 α3  α4 α5 α6                             Use the first two equations to correct erased
H= 1  α2 α4 α6 α α3 α5                                  c5α

4 + c6 α5=1 + α6 + α4=α (*)
1 α3 α6 α2 α5 α α4                                   c5 α + c6 α3=1                       (**)

r = 1 α5 α 1   *    *   α5

unknowns c5 c6

Alternatively, assume that we know that coordinates r4 and r5 are in error but do not 
know the values of the errors. Then compute the syndrome 
H.rT = (S1 S2)T by adding r5α4+r6α5 to right side of (*) and r5α+r6α3 to right side of (**), 
then solve the system

e5α
4 + e6 α5=S1

e5 α + e6 α3=S2

for the unknowns e5=r5-c5, e6=r6-c6

F8: α3=α+1
000   0
001   1
010   α
100   α2

011   α3

110   α4

111   α5

101   α6

Conclude: correcting errors with known locations is the same as correcting
erasures.

H.rT=h1+α5 h2+α h3
+h4+h5c5+h6c6+α5 h7=0
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State a general result from the previous example. 
Let n|q-1, β∈ Fq,ord(β)=n

Suppose that we are given the locations of errors but not their values.

We have ci+ei=ri, ei ≠ 0 only for i∈{error locations}

Sj= H rT =∑i∈{error locations} hi ei (hi is the ith col. of H)

Theorem 13.2: Let i1,…,iν be the error locations. The error values
e1,…,eν can be found from the system
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Berlekamp-Welch decoding algorithm for 
error correction with RS codes

C[n,k,d] RS code with defining set P=(α1,α2,…,αn)
received vector r=c+e, e∈ Fq

n is the error vector, wt(e)≤ τ=[(n-k)/2]

Lert Q(x,y)=Q0(x)+yQ1(x)∈ Fq[x,y] be a nonzero polynomial such that

Q(αi,ri)=0, i=1,2,…,n
deg Q0 ≤ n-1-τ
deg Q1 ≤ n-1-τ-(k-1)

A nonzero polynomial with these properties exists. Indeed, the number of 
unknown coefficients is 
#{(Q0,0,…,Q0,n-1-τ),(Q1,0,…,Qn-1-τ-(k-1)} = 2n-2τ-k+1 ≥ 2n-n+k-k+1=n+1
These coefficients satisfy n homogeneous equations, so a nonzero solution 
exists.

Theorem 13.3: If wt(e)≤ τ and c=eval (f) then f=-Q0/Q1.
Proof. deg(Q(x,f(x)))≤ max(n-1-τ,k-1+n-1-τ-(k-1))=n-1-τ.
Q(αi,f(αi))=0 if ci=ri, so Q(x,f(x)) has ≥ n-τ zeros. Then Q≡ 0, or Q0+f Q1=0. N 34



Algorithm BW: Given r=(r1,…,rn), l0=n-1-τ, l1=n-1-τ-(k-1)

1. Find any nonzero solution of the system

1   α1 α1
2 … α1

l0 r1 r1α1 r1α1
2 …  r1α1

l1

1   α2 α2
2 … α2

l0 r2 r2α2 r2α2
2 …  r2α2

l1

M M M M M M M M M M QT =0
1   αn αn

2 … αn
l0 rn rnαn rnαn

2 …  rnαn
l1

where  Q=((Q0,0,Q0,1,…,Q0,l0
),(Q1,0,Q1,1,…,Q1,l1

))

(complexity O(n3))

2. Find f(x)=-∑i=0
l0 Q0,ixi / ∑i=0

l1 Q1,ixi

3. If found f(x) ∈ Fq[x], decode as c=eval(f)

Overall complexity is O(n3); faster implementations are possible
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Remarks.
1.

Hence Q1(αi)=0 if ei≠ 0. Thus the roots of Q1 locate errors in r, so Q1 is the 
error locator polynomial.

2. Given a set of points (αi,ri), i=1,…,n in the (x,y) plane over Fq,
we need to find a polynomial f(x) of degree ≤ k-1 that passes through
at least n-τ≥(n+k)/2 of these points. This task is called interpolation or 
curve fitting. RS decoding ≡ interpolation.
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Example (artist’s impression): Given a set of 12 points

find a curve of degree ≤ 4 that passes through 10 or more points.
Answer: the curve is y+0.1x4-0.2x3-3x2+x+8=0, there are 2 “errors”
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Let n|(q-1), P =(1,β,…,βn-1), where ord(β)=n
Let C be a q-ary RS code of length n with defining set P
Let r=(r1,r2,…,rn) be the received vector (a code vector + τ or fewer errors)
Parity-check matrix

1  β ….   βn-1

1  β2 …   β2(n-1)

H=     M M O M
1 βn-k…   β(n-k)(n-1)

Compute the syndrome H rT=(S1 S2 … Sn-k)T, where 
Si=∑j=1

n rj βi(j-1)=r(βi)   and r(x)=r1+r2x+…+rn xn-1

Theorem 11.4: S1 S2 …   Sl1+1 Q1,0
S2 S3 …   Sl1+2 Q1,1
M M O M M
Sl1 Sl1+1 …   S2l1

Q1,l1

Another version of Berlekamp-Welch
(the Peterson-Gorenstein-Zierler algorithm)

=0
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Q0=(Q0,0,Q0,1,…,Q0,l0
), Q1=(Q1,0,Q1,1,…,Q1,l1

)

Proof: Let 

Then the system in the BW algorithm has the form 

AQ0
T+BQ1

T=0                   (1)
Take

Note that DA=0, so the system (1) can be written as

DBQ1=0                         (2)

Compute the (i,j)th element of the matrix DB, 1 ≤ i≤ l1 ,1 ≤ j ≤ l1+1 : it is 

∑s=1
n βi(s-1)rsβ(s-1)(j-1)=∑

s
r
s
β(s-1)(i+j-1)=r(βi+j-1)= Si+j-1                          N
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Algorithm of Peterson-Gorenstein-Zierler for RS decoding.

Given r=(r1,r2,…,rn).
1. Compute the syndromes S1,S2,…, Sn-k
2. Solve the system

S1 S2 …   Sl1+1 Q1,0
S2 S3 …   Sl1+2 Q1,1
M M O M M

Sl1 Sl1+1 …   S2l1
Q1, l1

for the smallest l1≤ b(n-k)/2c that gives a nonzero solution.

=0

3. Find the error locations as the roots of the polynomial 
Q1(x)=Q1,0+Q1,1x+…+Q1,l1

xl1.
This is done by trying all the elements {1,β,…,βn-1} in P.
4. Once the error locations have been found to be i1,i2,…,iν, solve the
system of linear equations to recover the error values
(recall the example earlier in this lecture)

Decode as c=r-e, where e has the values e1,e2,..,eν in locations i1,i2,…,iν.
Complexity of the algorithm O(n3) (naive implementation)
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List decoding

C[n,k,d] a linear code
Any t=(d-1)/2 or fewer errors will be corrected

Let y be the received vector. Any sphere of radius t contains ≤ 1 codeword.
Some spheres of greater radius contain 2 or more codewords

ENEE626 Lecture 14: List Decoding of Codes.
Sudan’s algorithm
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Definition 14.1: A code C is said to correct r errors under decoding into
a list of size l if every sphere of radius r in Fq

n contains ≤ l codewords.

Intuition: The decoder makes a list of all codewords within radius r of the 
received word. The list is guaranteed to be of size ≤ l. The case l =1 
corresponds to conventional decoding. 

Later on, the decoder can select the most plausible codeword from the list 
(i.e., perform the max-likelihood procedure within the list) at the 
complexity expense of O(nl) operations. 

A code C is said to correct r errors under decoding into a polynomial-size list 
if every sphere of radius r in Fq

n contains O(p(n)) codewords, where p(n) is 
some polynomial. 

Note that in some situations both the unique decoding algorithms and list 
decoding algorithms will find no codewords within their designated error 
correcting radius (unless the list decoding radius is very large, but this often 
makes list decoding impractical, reducing it to ML decoding). 
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C[n,k,d] RS code with defining set P=(α1,α2,…,αn)
received vector r=c+e, e ∈ Fq

n is the error vector, wt(e)≤ τ (some number)

Let Q(x,y)=Q0(x)+Q1(x)y+Q2(x)y2+…+Ql(x)yl be such that

Q(αi,ri)=0 i=1,…,n (a)
Remarks:deg(Qj(x)) ≤ n-τ-1-j(k-1), j=0,1,…,l
1. l is (an upper bound
on) the size of the list

Lemma 14.1: If c=eval(f) and wt(e) ≤ τ then 2. Sometimes one uses
notation

(y-f(x)) | Q(x,y) deg1,k-1 f(x,y)

=degx f+(k-1) degy f
Proof: deg Q(x,f(x)) ≤ n-τ -1 So deg1,k-1 Q ≤ n-τ -1

Since #{i: ri ≠ f(αi)} ≤ τ, Q(αi,f(αi)) =0 for ≥ n-τ values of i. Hence
Q(x,f(x))≡ 0, or f(x) is a y-root of Q, i.e., (y-f(x)) | Q(x,y) N

Since degy Q ≤ l, there are at most l codewords on the list
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Under which conditions does the system (a) have a nonzero solution?

# of coefficients in the polynomial Q

(l+1)(n-τ) - ∑j=1
l j(k-1) = (n-τ)(l+1) - (k-1)l(l+1)/2

Thus if (n-τ)(l+1) - (k-1)l(l+1)/2 > n, we can always find a nonzero solution Q

This gives a sufficient condition

(1)

At the same time we also need deg Qj(x)=n-τ -1-j(k-1), j=0,…,l to
be nonnegative. This implies

n-τ > l (k-1) (2)

The analysis of Sudan’s algorithm is performed by juxtaposing (1) and (2)

44



Sudan’s algorithm

Given P=(αi, i=1,…,n), r=(r1,…,rn), τ∈ N

1. 

2. 

3.  For every f left after step 2, verify if
d(eval(f), r) ≤ τ

If yes, output c=eval(f)
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Special cases:

l=1. From (1), τ< (n-k+1)/2 BW decoding

l=2. l < (2n/3)-k+1 and τ < n-2(k-1)
Suppose that n-2(k-1) > (2n/3)-k+1 ⇔ k/n < (1/3) + 1/n
Thus if k/n < (1/3) + 1/n, the error correction radius τ < (2n/3) -k +1     

τ/n < -(k/n) + (2/3) +1/n 

On the other hand, if k/n > (1/3) + 1/n, then the condition (2) τ < n-2(k-1) 
is more restrictive. Indeed, it is τ < d-k+1, Compare this to (d/2):

(d/2) - (d-k+1)= (n-k)/2 -d+k-1 = (1/2)(-n+3k-4) > 0, 
so τ < d/2, the algorithm does not even reach the d/2 radius 
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Generally, given l, the number of correctable errors satisfies

For small R=k/n the first term is more restrictive (R<2/(l(l+1))
The improvement occurs if the number of correctable errors >(n-k)/2.
The first term satisfies this condition for R<R1(l), 1/(l+1) 

the second for                                  R<R2(l), 1/(2l-1)

R1(2)=R2(2) and R1(l)>R2(l) for l>2

All claims are verified by direct calculations. For instance, let us compute R1(l):
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1. l=1 (BW decoding) τ/n < (n-k)/(2n)=(1/2)-k/2n,for all k/n
2. l=2 τ/n < -k/n + 2/3, for k/n < 1/3

3. l=3 τ/n < -1.5 k/n + 3/4, for k/n < 1/4

4. l=4 τ/n < -2k/n + 4/5, for k/n < 1/5

1 Note: the segment for list of size l gives a valid bounds for
k/n=R<2/(l(l+1))

(this is when (1) is more restricive than (2), so the equation
τ/n < -(l/2)(k/n) + l/(l+1)

can be used.
The value R=2/(l(l+1)) is also the intersection point of

-(l/2)R+l/l+1) and –((l-1)/2)R+(l-1)/l
(the red dots in the plot)

0.8 l=∞
3/4

2/3
0.6

1/2

0.4

0.2

1/5 1/4 1/3
0.1 0.2 0.3 0.4 0.5 0.6

τ/n

l=4

l=3

l=2

l=1

k/n
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Asymptotic analysis of Sudan’s algorithm

Theorem 14.3: Let n→∞, l→∞, 2n<l2(k-1); k/n=R. The algorithm
corrects τ errors under algebraic decoding into a list of size l as
long as

Proof:

¥

The choice τ=τ0 fulfils condition (2). To prove that it also fulfils (1), substitute τ0 in (1)

Hence if 2n<l2(k-1), (1) is satisfied, too. Now, l(k-1)>√2n(k-1) , so from (3)

Let
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ENEE626 Lectures 15-16: List Decoding of Codes.
The Guruswami-Sudan algorithm
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Goal: to correct τ >d/2 errors for all rates 0<R<1, not just for R<1/3.

Idea: Relax the solvability condition (1) of Sudan’s algorithm by creating 
more than n independent linear conditions.

Technical tools:

1. Multiplicity of points

f(x)=x2-4x+3=-2(x-1)+(x-1)2 has a zero at x0=1
f(x)=(x-1)3 has zero of multiplicity 3 at x0=1 since f(x0)=f’(x0)=f’’(x0)=0
f(x)=2x3-9x2+12x-5=-3(x-1)2+2(x-1)3 has zero of mult. s=2 at x0=1

df/dx|x=1=(6x2-18x+12)|x=1=0

Definition 15.1: A function 
f(x)=f(x0)+f’(x0)(x-x0)+(1/2)f’’(x0)(x-x0)2+…+ (1/(m-1)!) f(m-1)(x0)(x-x0)m-1+…

is said to have a zero of multiplicity m at x=x0 if the first m terms of its
power series in the neighborhood of x0 vanish.
A function f(x,y) is said to pass through a point (a,b) with multiplicity s if
in the Taylor expansion of f(x,y) in the neighborhood of (a,b) all the
monomials xiyj with i+j<s vanish. 51



2. How does this work in finite characteristic?

Let Q(x,y)=∑i,j Qijxi yj ∈ Fq[x,y]

Definition 15.2: A point (a,b) is called a zero of Q(x,y) of multiplicity s if 
all the monomials of degree 0≤ α+β <s in the expression Q(x+a,y+b) 
are equal to 0.

The quantity

is called a Hasse derivative of Q(x,y): ∂α+βQ(x,y)/∂αx ∂βy (of order α on x and β on y).52



Example: Let Q(x,y)=x2 y+x2+y+1∈ F2[x]. Since Q(x+1,y+1)=x2y,
the polynomial Q(x,y) has a zero of multiplicity 3 at the point (x=1,y=1).

Idea: Let P=(α1,…,αn) be the defining set of an RS code, let r be the 
received vector.
Let us find a polynomial Q(x,y) such that it passes through the points 
(αi,ri), i=1,..,n with multiplicity s.

Thus, let Q(x,y)=∑j Qj(x) yj be a polynomial such that

(i) (αi,ri) is its zero of multiplicity s
(ii) deg (Qj(x)) ≤ s(n-τ)-1-j(k-1),    j=0,1,…,l

Lemma 15.1: Let c=eval(f), deg f≤ k-1. Let Q be chosen to satisfy (i)-(ii).
Then (y-f(x)) | Q(x,y)

Proof: 
(a) First show that if i is such that f(αi)=ri then (x-αi)s | Q(x,f(x)).   Let p(x) = f(x+αi)-ri, 
then p(0)=0 or x | p(x).  Consider P(x) = Q (x+αi, p(x)+ri). By definition of Q,  0 is its zero 
of multiplicity s, or xs | P(x), or (x-αi)s | P(x-αi) = Q(x,f(x)).

(b) deg(Q(x,f(x)) ≤ s(n-τ)-1.  On the other hand, (x-αi)s | Q(x,f(x))  for ≥ n-τ values of i. 
The number of zeros (counted with multiplicities) is greater than the degree, therefore, 
Q(x,f(x)) ≡ 0. 
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2. #{coeffs of Q} =(l+1)s(n-τ)-(k-1)l(l+1)/2
The monomials of degree α+β< s in Q(x+αi,y+ri) are 0, and there

are s(s+1)/2 of them. This gives n s(s+1)/2 linear conditions.

Thus if

or

the system Q(αi,ri)=0 has a nonzero solution.

Conditions for decoding.

1.   s(n-τ)=l(k-1)+1            (deg(Qj) >0)

(1)

Our decoding will make sense if the right-hand side of (1) 
≥ (1/2n)(n-k+1)
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Lemma 15.2: Assume that s<l. For any k such that
k/n < s/(l+1) + (1/n)

then the upper bound on τ in (1) is greater than d/2

Proof: 

use the condition on k:

=0  N

Next slide: analyze some special cases
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1/3 1/2

l=4; s=3: (-2/3)R+(6/10);  s=2: -R+(7/10);  s=1: -2R+(8/10)
R ∈ [0.3,0.6]             R ∈ [0.1,0.3]        R ∈ [0,0.1]

l=3; s=2: -(3/4)R+(5/8)     s=1: -(3/2)R+(3/4)
R ∈ [1/6,1/2]             R ∈ [0,1/6]

l=2; s=1: -R+(2/3),     0 ≤ R ≤ 1/3

1-√R  (s,l→∞)(1-R)/2

Error correction radius of the Guruswami-Sudan algorithm

l – size of the list, s - multiplicity

R=k/n

τ/n

3/5

1/2

1

1 56



Algorithm: Let r be the received word. Choose l and find the maximum τ
and s that satisfy

1. Solve the following system for Qσ,ρ

for all α≥0, β≥ 0, α+β < s, i=1,…,n

2. Form the polynomial
Q(x,y)=∑j=0

l (∑i=1
lj Qi,jxi)yj

3. Find all y-roots f(x) of Q(x,y)

4. Output the codewords c=eval f that satisfy d(c,r) ≤ τ.

Can be implemented with complexity O(n2s4) 57



Proof of consistency

Lemma 15.3: If (n-τ)2 > n(k-1), s is chosen as above and l is taken to fulfill
s(n-τ) = l(k-1) + 1, 

then

Proof: If

then  s satisfies

Since (k-1)l=(n-τ)s-1, this implies that 

The left-hand side of this inequality is less than

N
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ENEE626 Lecture 17: Structure of finite fields

Plan:
Minimal polynomials
Uniqueness of Fq
Cyclotomic cosets and conjugate elements
Factorization of xpm-x

The purpose of this lecture is to prepare way for the study of BCH codes
(an important class of cyclic codes)
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Definition 17.1. A polynomial is called monic if its leading coefficient =1.

Definition 17.2. The minimal polynomial of β∈ Fpm over Fp is the lowest-
degree  monic polynomial m(x) such that m(β)=0

Let α be a root of x4+x+1 ∈ F2. The minimal polynomial of α3 over F2 is       
x4+x3+x2+x+1

Consider F4⊂ F16, It is formed of the elements 0,1,ω,ω2, where ω is an 
element of order 3 in F16. The minimal polynomial of α over F4 is 

x2+x+ω
(indeed, taking ω=α5, we observe α2+α+α5=0)

In this lecture we will establish the following result.

Theorem 17.1: The polynomial xpm-x factors over Fp as follows:

xpm-x=∏s ms(x)

where the polynomials ms(x) exhaust all the minimal polynomials 
over Fp of degree d|m 
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Properties of minimal polynomials over Fp
let q=pm

1. m(x) is irreducible
2. Let m(x) be the minimal polynomial of β. If f(β)=0 then m(x)|f(x)
3. m(x)|(xpm-x)
4. deg (m(x)) ≤ m
5, The minimal polynomial of a primitive element (an element of order

q-1) has degree m.

Proof. 2. For suppose not. Then let f(x)=q(x) m(x)+r(x), deg r < deg m.
Substitution of β shows that r(β)=0, contradiction.

3. For any a∈ Fq
*, apm-1-1=0, or a is a root of xpm-x. Now use 2.

4. For any β, the elements 1,β,β2,…,βm are 
linearly dependent over Fp. Let f0+f1β+…+fmβm=0,where some fi ≠ 0. 
Then f(β)=0, so either deg (m(x))=m or deg(m(x))|m.

5. By definition since Fpm is an mth degree extension of Fp

Recall the following important fact:

a∈ Fq ⇔ aq=a
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Theorem 17.2: The finite field Fpm is unique up to isomorphism.

Proof: Let F be a finite field, α primitive element, m(x) its minimal 
polynomial. |F|=pm; m(x)|(xpm-x).

Suppose there is another f.f. G, |G|=pm, with primitive element γ.
Find j such that γj is a root of m(x). This is possible because the powers 
of γ exhaust the set of roots of xpm-x.
Now put φ(α)=γj. Clearly, properties (I) are satisfied.

Definition 17.3: Two finite fields F and G are called isomorphic if there exists
a one-to-one mapping φ: F→ G that satisfies

φ(ab)=φ(a)φ(b), φ(a+b)=φ(a)+φ(b)                  ∀ a,b∈ F      (I)

Example: F=F23, m(x)=x3+x+1, m(α)=0.
Now let G be a finite field of 8 elements with primitive element γ
that satisfies γ3=γ2 + 1. Find j such that m(γj)=0.

j=3 does the job since (γ3)3+γ3+1=γ2+(γ2+1)+1=0. Then put φ(α)=γ3
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Definition 17.4: A subfield G⊂F is a subset of F which itself is a field.

Examples: Q is a subfield of R; F9 is a subfield of F81, but not of F27
The elements (0,1,α5,α10) form a subfield of F16, which by the previous thm is F

4

Theorem 17.3: Fps⊂Fpm if and only if s|m

Lemma: (xs-1)|(xm-1) (over any field) if and only if s|m.
Proof. If m=rs, we can write
xm-1=(xs-1)(xm-s+xm-2s+…+xm-(r-1)s+1)
Conversely, assuming (xs-1)|(xm-1), divide xm-1 by xs-1 and argue that s|m N

So in particular, ns-1|nm-1 if and only if s|m. (n∈ N)

Proof of Theorem: If s|m then ps-1|pm-1, so (xps-1-1)|(xpm-1-1)
This means that elements of Fps are contained in Fpm

Conversely, if Fps⊂Fpm then any element a∈ Fps is a root of xpm-1-1,
and at the same time of xps-1-1, so ps-1|pm-1 and s|m. N
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Cyclotimic cosets

Lemma 17.4: Over Fp

(x+y)pm=xpm+ypm,     m≥ 1

Proof: Induction on m. For m=1, all the binomial coefficients p choose i
are 0 mod p except for i=0,p. For the induction step, compute ((x+y)pm-1)p

Theorem 17.5: If β∈ Fpm then β and βp have the same minimal 
polynomial

Example: α, α2,α4,α8 ∈ F16 have the minimal polynomial over  F2
m1(x)=(x-α)(x-α2)(x-α4)(x-α8)

=x4+x+1
Elements β and βpi, i≥ 0 are called conjugate over Fp

Definition 17.5: Cyclotomic coset Cs is the set of exponents of all the
elements conjugate with αs. It is clear that |Cs| divides m.

C0={0}                   m0=x+1
C1={1,2,4,8}          m1=m2=m4=m8=x4+x+1
C3={3,6,9,12}        m3=m6=m9=m12=x4+x3+x2+x+1
C5={5,10}              m5=m10=x2+x+1
C7={7,11,13,14}    m7=x4+x3+1=m11=m13=m14
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Theorem 17.6: The coefficients of m(x) are in Fp.

Proof: Let 
m(x)=(x-αs)(x-αsp)…(x-αspms-1)=μ0+μ1x+…+μms

xms

where ms=deg(m(x)).
μms-j=σj(αs,αsp,…αspms-1), 

where 
σj(z1,z2,…,zr)=∑1≤ i1<i2<…<ij≤ ms

zi1
zi2

…zij

is the jth elementary symmetric function, μ0=1.

Let us check that μj
p=μj. Indeed, raising the coefficient μj to the pth

power just permutes the exponents:

However, σj includes all the monomials of this form (each exactly once),
so raising μj to power p does not change it                             N

Example: m(x)=(x-α)(x-α2)(x-α4)(x-α8).
For instance, compute the coeff of x2

μ2=α4+8+α2+8+α1+8+α2+4+α1+4+α1+2

μ2
2=α8+1+α4+1+α2+1+α4+8+α2+8+α2+4=μ2
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Now compute g(x)=∏s ms(x), where s goes over all representatives of
cyclotomic cosets (a representative is the smallest exponent in the coset).
g(x) is a monic polynomial of degree pm that divides xpm-x, so g(x)= xpm-x.
Also deg(ms(x))=|Cs| divides m.
This proves the Theorem announced in the beginning of the lecture.
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ENEE626 Lecture 18-19: Introduction to cyclic codes

Plan:
Cyclic representation of Hamming codes
BCH codes
Factorization of xn-1 over Fq
BCH and RS codes, subfield subcodes
Nonbinary Hamming code
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Motivating Example: Consider the [7,4,3] Hamming code H3
Its parity-check matrix is formed of all the 7 nonzero 3-columns hi.

Let α be a primitive element of F8 that satisfies α3=α+1.

Let us order the columns of H in the order of increasing powers of α
using the basis (1,α,α2) to represent the elements of F8

1  α α2 α3 α4 α5 α6

0  0  1   0  1  1   1
H’=  0  1  0  1  1   1   0

1   0  0  1  0  1   1

Now let c=(c0,c1,…,c6) ∈ H3 be a codeword, where the order of the coordinates 
is consistent with H’.  Write c(x)=∑i=0

6 ci xi.

Main observation: H’cT=0   ⇔ c(α)=0

Note that if c(x)∈ H3 then xc(x) mod(x7-1)∈ H3. Computing xc(x) corresponds to
a right cyclic shift of c(x) by one. We have obtained a cyclic representation of 
the Hamming code.

This example is generalized to any n=2m-1, giving a cyclic Hamming code
Hm[n,n-m,3] 68



Let us extend the previous construction to correcting 2 errors.
We will construct a subcode of Hm by isolating only those codewords of
it that satisfy some additional parity checks,

Try α2. However c(α)=0 implies that c(α2)=c(α)2=0.
A set of independent checks is given by requiring that 

c(α3)=c0+c1α3+c2α2.3+…+cn-1α(2m-2).3=0

Thus, let us add a row 1,α3,α2.3,…,α(2m-2).3 to H’.
Denote this code BCHm(2) (after Bose and Ray-Chaudhuri; and Hocquenghem)

1960                                     1959
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Proof that the distance of the code is 5. Our proof will be constructive in the 
sense that we show that any 2 errors are correctable.
Number the coordinates of the code by the nonzero elements of F2m.
Let y(x)=c(x)+e(x), where e(x) has 2 nonzero coefficients in locations

X1=αi, X2=αj

X1 and X2 are called the error locators. Let y(α)=S1, y(α3)=S3 be the syndromes. 

S1=X1+X2
S3=X1

3+X2
3

Compute                       S1
3+S3=X1X2(X1+X2)

Thus                                  X1+X2=S1
X1X2=(S1

3+S3)/S1

We have the following cases:
(a) S1=S3=0, no errors
(b) S1≠ 0, S3=S1

3: one error in location X1
(c) S1≠ 0,S3≠ 0, the system has a solution for X1,X2: correct the 2 bits
(d) If there are no solutions (this happens when S1=0, S3≠ 0 and in some

other cases), we declare that there are more than 2 errors.

Remark:
X1,X2 satisfy the equation

z2+S1z+(S1
3+S3)S1

-1=0

70



The parity-check matrix of BCHm(2) can be written symbolically as

1,α,α2,…,α2m-2

1,α3,α3.2 ,…,α3.(2m-2)

where each entry is written as a binary column of m bits.
Thus, the parameters of the code are [n=2m-1,k=n-2m,d=5].
Since every codeword c(x) satisfies c(α)=c(α3)=0, we say that α, α3

are zeros of the code.

This generalizes as follows.
Definition 18.1: A primitive BCH code C over Fq is a cyclic code of  
length n=qm-1 with zeros αb,αb+1,…,αb+δ-2, where b≥ 1,δ≥ 2.

Theorem 18.1: The parameters of C are [n=qm-1, k ≥ n-m(δ−1),d ≥ δ].
Proof: Let α be primitive in Fqm. The parity-check matrix of C has the form
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Let D be a submatrix of H formed of columns that start with exponents
i1b , i2b,..., iδ-1b.  d(C)≥δ⇔ det(D)≠ 0

since α is a primitive element, all the αj’s are different.
Hence, the Vandermonde determinant is nonzero.

The number of rows in the matrix (after expanding the entries into m-vectors 
over Fq) has m(δ-1) rows. Hence, dim(C) ≥ n-m(δ-1).                                   N

Terminology: Fq is called the symbol field of the code; Fqm is called
the locator field of the code. δ is called the designed (BCH) distance of the
code.
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Theorem 18.2: A BCH code whose locator field and symbol field coincide, is
an [n=q-1,k,d] Reed-Solomon code over Fq.

Proof: Take m=1. The parity-check matrix of the BCH code C has the same
form as the RS parity-check matrix of lecture 10. N
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Factorization of xn-1 over Fq

We can construct q-ary BCH-like codes not just for n=q-1, but also for
any n|(q-1).  Hereafter we will assume that (n,q)=1.

To make this work, we need to find the locator field, i.e., a finite field that
contains zeros of xn-1. Clearly, this is the smallest field Fqm such
that (xn-1)| (xqm-1-1). Therefore, find m such that n|(qm-1).

Note: this is always possible.

Example: Factor x9-1 over F2. m=6: 9|26-1. 
The zeros of x9-1 are called 9th degree roots of unity. They lie in F64
Let α ∈ F64 be a primitive element. 
θ=α7 is a primitive 9th degree root of unity: θ,θ2,…θ8=α56 are all different, θ9=1
Cyclotomic cosets mod 9: {0}, {1,2,4,8,7,5}, {3,6}

Theorem 18.3: xn-1=∏s ms(x),  product of all minimal polynomials. 

In the example, x9-1=m0m1m3, where m0=x+1,
m1(x)=(x-θ)(x-θ2)(x-θ4)(x-θ8)(x-θ7)(x-θ5)=x6+x3+1
m3(x):=(x-θ3)(x-θ6)=x2+x+1
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gap> a:=Z(64);;x:=Indeterminate(GF(64),"x");;t:=a^7;;
gap> (x-t)*(x-t^2)*(x-t^4)*(x-t^8)*(x-t^7)*(x-t^5);
x^6+x^3+Z(2)^0
gap> (x-t^3)*(x-t^6);
x^2+x+Z(2)^0
gap>

More examples

gap> C:=ReedSolomonCode(15,5);
a cyclic [15,11,5]3..4 Reed-Solomon code over GF(16)
gap> GeneratorPol(C);
x_1^4+Z(2^4)^13*x_1^3+Z(2^4)^6*x_1^2+Z(2^4)^3*x_1+Z(2^2)^2
gap> IsCyclicCode(C);
true

Calculations in finite fields can be done using GAP
http://www.gap-system.org/
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Cyclic codes

Definition 18.2: A code is called cyclic if (c0,c1,…,cn-2,cn-1)∈ C implies
that (cn-1,c0,c1,…,cn-2)∈ C

We use a polynomial representation of codewords, writing
c(x)=∑i=0

n-1 cixi

The property of being cyclic can be written as follows:
c(x)∈ C     implies that      xc(x)mod(xn-1) ∈ C

We will number the coordinates of the code from 0 to n-1.

Theorem 18.3: Let C be cyclic code. 
(i) It contains a unique monic polynomial g(x) such that every c(x)∈ C is 
a multiple of g(x) (generator polynomial of C). deg(g(x))=n-k
(ii) g(x)|(xn-1)
(iii) Generator matrix of C
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Proof: Take g(x)≠0 a monic polynomial of the smallest degree in C.
Any c(x) is divisible by g because otherwise, the remainder would be of
degree smaller than g:

c(x)=q(x)g(x)+r(x),          r ≠ 0;deg(r)<deg(g)
Then r(x) is a nonzero codeword of degree less than g, contradiction.
Further, the polynomials 

g(x), xg(x), x2g(x),…,xn-deg(g)-1g(x)                            (B)
are linearly independent. So dim C≥n-deg(g).
Next, every codeword has the form a(x)g(x) for some a, 0≤deg a≤n-deg(g)-1.
It can be represented as a linear combination of the polynomials in B, so 
dim C¸ n-deg(g).                                     N

Example: H3[7,4,3] the Hamming code m1(x)=x3+x+1=(x-α)(x-α2)(x-α4) 
c(x)∈H3 iff c(α)=0. Since c(α)=0, also c(α2)=c(α4)=0, m1|c(x)
Thus g(x)=m1,

1101000
0110100

G=   0011010
0001101

Proposition 18.4: The (cyclic) binary Hamming code Hm[2m-1,n-m,3] is a cyclic
code with generator polynomial m1.
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We write C=hg(x)i to refer to the fact that a cyclic code C has generator
polynomial g(x).

Definition 18.3: The check polynomial h(x):=(xn-1)/g(x). deg(h(x))=dim(C).

For every codeword c(x),  h(x)c(x)=0 mod xn-1
(Indeed, let c(x)=a(x)g(x), then h(x)c(x)=a(x)g(x)h(x)=0 mod xn-1)

Examples:
1.The check polynomial of the Hamming code Hm is      

h(x)=∏s≠1 ms=m0m3…

2. Binary BCH codes: g(x)=m1m3…m2t-1
Sometimes we may need fewer minimal polynomials:

n=63       g(x)                δBCH true dist   dimension
{1,2,4,8,16,32}             BCH(1) m1                  3                  3         57
{3,6,12,24,48,33}         BCH(2) m1m3 5                  5         51
{5,10,20,40,17,34}       BCH(3) m1m3m5 7                  7         45
{7,14,28,56,49,35}       BCH(4) m1m3m5m7                 9                  9         39
{9,18,36}                      BCH(5) m1m3m5m7m9 11                11        36
{11,22,33,25,50,37}     BCH(6) m1m3m5m7m9m11 13               13        30
{13,26,52,41,19,38}     BCH(7) m1…m13             15               15        24
{15,30,60,57,51,39}     BCH(9) m1…m15 21               21       18                    
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Let C be an [n,k] cyclic code with zeros α1,α2,…,αs, gen.pol.g(x)
and check polynomial h(x).

0=g(x)h(x)=(g0+g1x+…+xn-k)(h0+h1x+…+hkxk)
=…+ xn-j(gn-k-jhk+gn-k-j+1hk-1+…+gn-jh0)+…

The parity-check matrix of C is 
00…0hkhk-1… h1h0
00…hkhk-1…h1h00                             

……………….
hkhk-1…h1h00…00

Hence, the dual code C⊥ is generated by
h*(x)=xkh(1/x).

The zeros of h* are the inverse elements of the zeros of h(x):
αj1

-1,αj2
-1,…,αjr

-1, where {j1,…,jr} are the nonzeros of C

Fact: Zeros of C⊥ are reciprocal of the nonzeros of the code C

Example: x7-1=m0m1m3; m-1=m3; m-3=m1
C[7,4,3] g(x)=m1=x3+x+1, h(x)=m0m3=(x+1)(x3+x2+1); zeros of C (1,2,4); nonzeros {0,3,6,5}
C⊥[7,3,4] Zeros: {0, (-3,-6,-5)=C-3};  C-j=cyclotomic coset that contains α-j

g(x)=h*(x) =m0m-3 =(x+1)(x3+x+1) =x4+x3+x2+1
Cyclic simplex code is a code with check polynomial m-1(x)

[7,4,3]   h(x)=x4+x2+x+1
0010111

H = 0101110
1011100
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Cyclic codes of length n|(q-1) over Fp. Subfield subcodes

xn-1=∏s=1
r ms where r is the number of distinct irreducible factors

Any polynomial g(x)=mi1
mi2

…mij
generates a cyclic code

There are 2r different cyclic codes of length n
We can construct cyclic codes of length n=q-1 over Fq or any subfield of it
Example: n=15, q=16. 
q-ary cyclic code C1 of length n with zeros α,α2 is an RS [15,13,3] code
Binary cyclic code C2 of length n with zeros α,α2 must also have all the 
conjugate zeros: α4,α8. Thus, it is a [15,11,3] BCH(1) code generated by m1(x)

Clearly, C2⊂ C1.
Definition 18.4: Let q=pm. A p-ary subfield subcode of a q-ary code C1 is a
linear code C2={c∈ C1: ∀ i∈ [1,…,n], ci∈ Fp} 

Proposition 18.4: Let m be the smallest number such that n|pm-1.
A t-error correcting p-ary BCH code C2 is a subfield subcode of the
pm-ary RS code with zeros α,α2,…,α2t.
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q-ary Hamming code

Let q=pm. Consider the code Hq,m with the parity-check matrix formed
of all the columns with first entry 1.

0 0 0 0 1 1 1 1 1 1 1 1 1
H=  0 1 1 1 0 0 0 1 1 1 2 2 2         Code H3,3

1 0 1 2 0 1 2 0 1 2 0 1 2

The parameters are n=(qm-1)/(q-1),k=n-m,d=3.

Cyclic representation? Not always possible! 
Take β, βn=1 be a primitive nth degree root of unity in Fqm

H’=[1,β,β2,…,βn-1]

H’ is not (a permutation of) H because not every power of β expands with
the first nonzero =1.
Fact: No two columns of H’ are proportional if and only if (n,q-1)=1.
If (n,q-1)>1 as with q=4,m=3, n=21, the distance of the code with the p.-c.
matrix H’ is 2. No q-ary cyclic Hamming code.
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Recap: Cyclic, BCH and RS codes

An q-ary [n,k,d] cyclic code C of length n|(qm-1) is formed of all the multiples of
a polynomial g(x), deg(g)=n-k:

C={c(x)=a(x)g(x) mod xn-1: a(x)=a0+a1x+…+ak-1xk-1∈ Fq[x] }
where the multiplication is over Fq

Fq is called the symbol field, F
q{m} is called the locator field.

The generator polynomial of C is g(x)=m
i1
(x)…m

it
(x). Check pol.: h(x)=xn-1/g(x)

If the indices i1,…,it are consecutive, then C is called a BCH code.
Or, a cyclic code is called BCH if its distance is estimated using the BCH bound.

If m=1, C is called an RS code. Thus, RS codes form a subclass of BCH codes.

The dimension of BCH codes is k≥ n-2mt. If q=2, k≥ n-mt
The true distance can exceed the designed (BCH) distance.

BCH codes can be decoded up to the designed distance using any of the 
decoding algorithms discussed. For instance, we can decode a q-ary BCH code 
C by decoding the qm-ary RS code of which C is a subfield subcode, and then 
keep only the codewords whose symbols are in Fq.
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