ENEE626. Problem set 2. Due in class on 10/15/15.

1. Given a linear code $\mathcal{C}[n,k]$ over an alphabet of size q, define a random variable X with pmf

$$P(X = i) = \frac{A_i}{q^k}, \quad i = 0, 1, \dots, n,$$

where A_i is the coefficient of the weight distribution of C. Prove that if $d^{\perp}(C) \geq 3$ then EX = (q-1)n/q and $Var(X) = n(q-1)/q^2$.

Hint: begin with the MacWilliams equation

$$A(y) = \frac{1}{q^{n-k}} A^{\perp} (1 + (q-1)y, 1-y)$$

(note a typo on the last slide of Pt.I of the notes, now corrected).

2. Construct \mathbb{F}_{16} as a degree-2 extension of the field \mathbb{F}_4 . Namely, do the following:

Let α be the primitive element of \mathbb{F}_{16} that satisfies $\alpha^4 = \alpha + 1$.

(a) Let $\mathbb{F}_4 = \{0, 1, \omega, \bar{\omega}\}$. Using this notation, write out the multiplication and addition tables in \mathbb{F}_4 . Find *i* such that $\omega = \alpha^i$, find *j* such that $\bar{\omega} = \alpha^j$. Is the answer unique?

(b) Prove that $f(x) = x^2 + \omega x + 1$ is irreducible over \mathbb{F}_4 .

- (c) Let β be a root of f(x). What is the order of β ? Is β primitive?
- (d) Let $\beta = \alpha^i$. What is *i*?

(e) Prove that $(\beta, 1)$ form a basis of \mathbb{F}_{16} over \mathbb{F}_4 . Write out coefficients of the expansion of every element in \mathbb{F}_{16} in this basis. In other words, your task is to add a column to the table on p.10 of the lecture notes, Pt.II writing a representation of every element of \mathbb{F}_{16} as a polynomial of degree ≤ 2 over \mathbb{F}_4 .

3. (a) Determine the number of primitive elements of \mathbb{F}_{32} .

(b) Show that the polynomial $f(x) = x^5 + x^2 + 1$ is irreducible over \mathbb{F}_2 .

(c) Are there elements $\gamma \in \mathbb{F}_{32}$ of order 15?

Let α be a zero of f(x).

- (d) In the expansion $\prod_{i=0}^{4} (x \alpha^i) = x^5 + \alpha^{j_1} x^4 + \alpha^{j_2} x^3 + \alpha^{j_3} x^2 + \alpha^{j_4} x + \alpha^{j_5}$ find $j_1, j_2, j_3, j_3, j_4, j_5$.
- (e) Compute the logarithm of $\alpha^4 + \alpha^3 + \alpha$.

(f) Let $\gamma \in \mathbb{F}_{32} \setminus \mathbb{F}_2$. Show that γ is not a root of a polynomial of degree less than 5.

(g) Show that $1, \gamma, \gamma^2, \gamma^3, \gamma^4$ is a basis for \mathbb{F}_{32} as a linear space over \mathbb{F}_2 .

(h) What are the coordinates of α^8 with respect to the basis $1, \alpha, \alpha^2, \alpha^3, \alpha^4$?

4. (It is okay to use the computer, but please explain exactly what you do in each step).

(a) Prove that $\alpha = 2$ is a primitive element of $F = \mathbf{F}_{11}$.

(b) Let C be a [n = 9, k = 5] RS code over F with the defining set $\mathscr{P} = (\alpha, \alpha^2, \dots, \alpha^9)$ (in this order). Write out a parity-check matrix H of F.

(c) Reduce H to a systematic form $H' = [I_4|A]$.

(d) Write out the generator matrix of C in a systematic form $G = [I_5|B]$.

(e) Using H', find the codeword c_0 that corresponds to the message symbols (1, 2, 3, 4, 5), assuming that the encoding is systematic.