CMSC818K/ENEE729A. Home assignment 2.

Date due Oct. 22, 2020, 8:00pm.

Please submit your work as a single PDF file to ELMS/Canvas under the Assignments tab

• Papers submitted as multiple pictures of individual pages are difficult for grading and will not be accepted.

- Justification of solutions is required.
- Each problem is worth 10 points. A subset of problems will be graded.

Problem 1. (In this problem you will learn a new method of proving results that rely on random choice from finite sets)

Below we use the notation V_w for the volume of the ball in the q-ary Hamming space Q^n , $V_w = \sum_{i=0}^{w} {n \choose i} (q-1)^i$.

We a constructing a random code of size M. Let d be the target value of the code's distance. Our goal is to estimate M from below as a function of d. The GV bound suggests that there may exist codes of size $M > q^n/V_{d-1}$ (we have proved this for linear codes over fields). Let us show that even if Q is not a field, and so our codes are not linear, it is still possible to prove the GV bound by random choice (up to a constant multiplier).

Call a point in the code *good* if its distance to any other code point is $\geq d$. Call an ordered set of M points in Q^n good if all of its points are good.

(a) Estimate from above the number of bad choices for the *i*th code point if all the other M - 1 points are fixed.

(b) Estimate from above the number of choices for the remaining M - 1 points, and derive an upper bound on the number of codes of size M in which the *i*th point is bad.

(c) Estimate from above the number of bad codes of size M. If this bound is less than the total number of codes of size M, i.e., q^{nM} , there exists a good code. This gives a bound on M in terms of d, but the result is a far cry from GV (you should get for M the inequality $M(M-1)V_{d-1} < q^n$, bad.)

(d) Show that the average number of bad points in the code is $\leq M(M-1)V_{d-1}/q^n$ and argue that there is a code, denote it A, with at most than many bad points. Choose M such that the average number of bad points $\leq M/2$, and discard them from the code A. The remaining code is good, and its size $M > q^n/4V_{d-1}$. This is where we wanted to be.

Problem 2. (Exercises for finite fields; please justify all answers)

(a) How many zeros does the polynomial $x^4 + x^3 + 1$ have in \mathbb{F}_{16} ? The same question about $x^4 + x^2 + x$. Please justify your answers without substituting all the elements of \mathbb{F}_{16} into the polynomials.

(b) In the lectures we constructed \mathbb{F}_{16} using the powers $\alpha^0, \alpha^1, \ldots, \alpha^{14}$ of a root α of the polynomial $x^4 + x + 1$. Now construct the finite field \mathbb{F}_{16} by adding to \mathbb{F}_2 a root ξ of the polynomial $x^4 + x^3 + 1$, and express every nonzero element $\alpha^j, 0 \le j \le 14$ as a power of ξ .

(c) Consider the polynomial $f(x) = x^4 + x^3 + x^2 + x + 1$. Is f(x) irreducible over \mathbb{F}_2 ? Is f(x) primitive over \mathbb{F}_2 ? Add to \mathbb{F}_2 the roots of f(x) and prove that in this way we obtain the field \mathbb{F}_{16} .

Let $\xi \in \mathbb{F}_{16}$ be a root of f(x), i.e., $f(\xi) = 0$. Show that $1 + \xi$ is a primitive element in \mathbb{F}_{16} (the easiest is to express $1 + \xi$ as some power of α from part (b)).

(d) Prove that \mathbb{F}_{p^l} is a subfield of \mathbb{F}_{p^m} if and only if l divides m. Thus, \mathbb{F}_4 is a subfield of \mathbb{F}_{16} and \mathbb{F}_8 is not, but both \mathbb{F}_4 and \mathbb{F}_8 are subfields in \mathbb{F}_{64} . Take a primitive polynomial of degree 6 over \mathbb{F}_2 (google for the tables, or construct yourself) and let α be its root. Identify the elements of \mathbb{F}_4 and \mathbb{F}_8 in terms of the powers of α . In particular, you will obtain that $\mathbb{F}_4 = \{0, 1, \alpha^i, \alpha^j\}$ for some i, j. Show that $\alpha^i + \alpha^j \in \mathbb{F}_4$.

Problem 3. (Computers OK, but justification required. In each of (a),(b),(c) explain why your result is correct.)

(a) Is 2 is a primitive element of the field $F := \mathbb{F}_{13}$?

(b) Write out a parity-check matrix of the [n = 12, k = 8] RS code C over F (explain how you obtained it).

(c) Suppose that a codeword $c \in C$ was transmitted over the channel, and the received vector is

y = (2, 0, 10, 3, 10, 2, 4, 12, 0, 8, 9, 6).

Is y a codeword of the code C? Perform the steps of the Berlekamp-Welch algorithm to recover the transmitted vector c. Once you have found c, explain why this is a correct answer.

You will use some software, I advise GAP (www.gap-system.org). It knows quite a bit about finite fields and codes. Here is a little example:

```
gap> LoadPackage("guava", "2.1");
gap> x:=Indeterminate(GF(13),"x");;
gap> C:=ReedSolomonCode(12,5);
a cyclic [12,8,5]3..4 Reed-Solomon code over GF(13)
gap> GeneratorMat(C);
```

(answer not shown)

At this point GAP knows that C is a Reed-Solomon code and can compute a lot about it.

Problem 4. (Cyclic RS codes)

(a) Let $F = \mathbb{F}_q$ be a finite field with primitive element α . Let $\Omega = (\alpha^i, i = 0, 1, \dots, q - 2)$ be the set of nonzero elements of F. Define an [n = q - 1, k] RS code C as a set of evaluations of the polynomials $f(x) \in F[x]$ of degree $\leq k - 1$. Prove directly that the code is cyclic, i.e., that if $c = (c_0, c_1, \dots, c_{n-1}) \in C$ is a codeword, then any cyclic shift of c, e.g., $(c_{n-1}, c_0, c_1, \dots, c_{n-2})$ is also a codeword in C.

(b) (using the notation from part (a)). We will think of the codewords of an [n = q - 1, k] code as polynomials of the form

$$c(x) = \sum_{i=0}^{n-1} c_i x^i$$
, where $c_i \in F$.

Consider the polynomial $g(x) = (x - \alpha)(x - \alpha^2) \cdots (x - \alpha^{d-1})$. Let us form a code

$$D = \{a(x)g(x) \mod (x^n - 1), \ 0 \le \deg(a(x)) \le k - 1\},\$$

where a(x) runs over all the polynomials over F with degrees from 0 to k - 1. What are the dimension and distance of the code D? (If this looks difficult, read Roth's book [R] Sec. 8.1).

(c) Show that all the coefficients of the polynomial g(x) are nonzero (do *not* attempt to multiply out!).

(d) Now let $F = \mathbb{F}_{16}$ and let d = 13. What are the parameters [n, k] of the code D constructed as in part (b)? Write out a generator matrix of the code.