CMSC818K/ENEE729A. Home assignment 3.

Date due November 29, 8:00pm.

Please submit your work as a single PDF file to ELMS/Canvas under the Assignments tab

- Papers submitted as multiple pictures of individual pages are difficult for grading and will not be accepted.
- Justification of solutions is required.
- Each problem is worth 10 points. A subset of problems will be graded.

Problem 1. In this problem you will prove that random concatenated codes of rate $R(C) \in (0, 1)$ attain the GV bound.

Consider the ensemble \mathcal{A} of binary concatenated codes with an outer RS[N, K, D] Reed-Solomon code over \mathbb{F}_{2^k} and [n, k = rn] linear inner codes $B_i, i = 1, ..., N$ chosen independently from the generator matrix ensemble (HW2). Let $G = (G_1, ..., G_N)$ be the N-tuple of the inner codes' generator matrices of dimension $k \times n$. Let $C \in \mathcal{A}$ be a concatenated code from this ensemble.

(a) Argue that $P(\dim(C) = kK) \to 1$ as $n \to \infty$.

(b) Given an RS codeword u, we map each symbol $u_i \in \mathbb{F}_{2^k}$ to a binary k-vector and multiply this vector by G_i to obtain a codeword of the inner code $B_i, i = 1, ..., N$. This results in a codeword of the code C, and we use a shorthand notation uG for this operation. Let u be an RS codeword of weight w. Show that for any vector $y \in \mathbb{F}_2^{nN}$ with w nonzero columns

$$\Pr(uG = y) = 2^{-nw}.$$

(c) Let u be an RS codeword, $wt(u) = w \ge D$, and consider the vectors of the code C of the form uG. Prove that the expected number $EA_m(w)$ of vectors of weight $m = \mu n$ among them is bounded above as

$$EA_m(w) = \binom{nw}{m} 2^{-nw} B_w^{(\mathrm{RS})}$$

where $B_w^{(RS)}$ is the number of vectors of weight w in the RS code.

(d) Let $m = \mu \cdot nN$ and $w = \omega N$. Prove that

(1)
$$EA_m(w) \le 2^{Nn[\omega(r-1)+\omega h(\mu/\omega)-r(1-R)](1+o(1))},$$

where $h(\cdot)$ is the binary entropy function (use the fact that $B_w^{(\text{RS})} \leq {N \choose w} 2^{k(w-D+1)}$ for $w \geq D$).

(e) Which value ω_0 gives the maximum on ω in (1)? Using the computed value of ω_0 , find the exponent of the expression for $EA_{\mu nN}(C)$. Note that our optimization is constrained by the condition $\omega_0 \leq 1$, and this gives rise to two cases depending on the relation between μ and r.

(f) Wrap up the argument, showing that the ensemble of concatenated codes contains codes that attain the GV bound for all rates $R(C) \in (0, 1)$. The sufficient condition for this will come out to be $R(C) \leq 1 - h(1 - 2^{r-1})$; argue that for any 0 < R(C) < 1 there exists the value of r that satisfies this condition.

You will also note that the vectors of minimum weight in the concatenated codes are obtained from RS codewords of weight N (and not of weight D as could be our first guess).

Problem 2. In Lecture 20 we argued that a linear code that achieves capacity of a BSC(p) is equivalent to a procedure of compressing a memoryless Bernoulli source X(p) to the rate h(p). Provide a detailed proof of the equivalence, formalizing the intuition given in the lecture (see notes for Lec. 20 (ECC Lec. 20.pdf) on Canvas).

Problem 3. (a) Let β be a primitive element of \mathbb{F}_{11} and let $\Omega = \{\beta^i, i = 0, \dots, 9\}$ be the set of nonzero elements of the field. Consider the [10, 7] RS code with evaluation points given by Ω (in this order). A

transposition error in a codeword $x = (x_1, x_2, ..., x_{10})$ occurs when exactly one pair of coordinates gets interchanged, e.g.,

$$(x_1, x_2, x_3, x_4, \dots, x_{10}) \longrightarrow (x_3, x_2, x_1, x_4, \dots, x_{10}).$$

Prove that the RS code defined above corrects any one transposition error (hint: consider the parity-check equations; write the values of the syndromes in terms of the locations of the transpositions; argue that the locations can be found from these equations).

(b) Does the claim in (a) generalize? Given an RS code of length n = q - 1, what are the sufficient conditions for the code to correct a single transposition error?

Problem 4. (a) Write a program to construct a binary polar code of length N = 64 and dimension K = 22 for the BSC(0.11) channel. As your answer please identify which rows of the matrix $H_2^{\otimes 6}$ you will use to transmit the information, with a justification.

(b) What are the parameters of the RM(6,2) binary Reed-Muller code? Which rows out of the matrix $H_2^{\otimes 6}$ does it use to transmit the information? How does your answer in this part compare with the answer in part (a) of this problem?