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Abstract—We develop the concept of hierarchical fingerprint-
ing introduced in our recent work (ISIT2009). The object of
two-level fingerprinting is content protection against coalitions
of t pirates in such a manner that one of the pirates can be
identified exactly if t ≤ t2 or localized to within a small group
if t2 < t ≤ t1, where t1 and t2 are parameters of the system.
In this work, we require the additional property that in the
latter case no innocent users are accused of belonging to the
pirate coalition. We construct two-level fingerprinting codes with
polynomial complexity of identification that satisfy the strong
definition of hierarchical fingerprinting described above.

I. INTRODUCTION

In [1] we introduced the concept of hierarchical finger-
printing under which the content distributor is capable of
identifying pirates exactly if the pirate coalition is of a small
size t ≤ t2 or localizing them within a small group of
users for coalitions of larger size, namely t2 < t ≤ t1,
where t1 and t2 are parameters of the system. However,
the construction in [1] gave no guarantee with respect to
accusing individual users for large coalitions (i.e., together
with the correct group, the decoder could in principle accuse
an innocent user). This shortcoming is addressed in the present
work where we consider a stronger definition of hierarchical
fingerprinting which provides an additional guarantee for the
case of large coalitions: if t2 < t ≤ t1, then the identifying
algorithm locates the correct group of users and either outputs
no individual users, or otherwise they are (with high prob-
ability) members of the pirate coalition. The main purpose
of this paper is to introduce the strong version of two-level
fingerprinting that accounts for this requirement. To justify
the new definition, we develop ideas from our earlier work
to characterize achievable rates for two-level fingerprinting
codes. In addition, we also construct two-level fingerprinting
codes with polynomial complexity of identification.

II. PROBLEM STATEMENT

Consider a distributor in possession of copyrighted content.
Suppose a copy of the content needs to be distributed to M1

groups of licensed users with each group containing M2 users.
A user u is identified by a pair of indices u ≡ (u1, u2) ∈
[M1]× [M2], where the notation [N ] stands for {1, . . . , N}.

The distributor’s objective is to ensure that the content
is protected against unauthorized distribution. In order to
differentiate the distributed copies, in each copy the distributor

embeds a string of symbols called a fingerprint. The finger-
print symbols are hidden over the entire content in locations
unknown to the users. The fingerprint locations, however, are
the same for all users. We are assuming that the fingerprints
are represented by strings of length n over a finite alphabet
Q = {0, . . . , q − 1}. The distributor assigns fingerprints
according to an encoding mapping

C : [M1]× [M2]→ Qn. (1)

A collusion attack occurs when a subset, or coalition U
of users attempt to create an unregistered fingerprint y from
their assigned fingerprints C(U) = {x1, . . . ,xt} as well as
from public information about the system. We assume that
the set of all possible forgeries y generated by the coalition
in this manner is given by

E(x1, . . . ,xt) =
{
y ∈ Qn

∣∣yi ∈ {x1i, . . . , xti},∀i ∈ [n]
}
.
(2)

Given a forged fingerprint y from an illegal copy, the
distributor attempts to trace one of the pirates. In general, the
distributor’s decoding objective is as follows: If the coalition
size is less than a certain threshold t2, then one of the guilty
users must be recovered. If the coalition size is larger than
t2 but at most t1 (where t1 > t2), then the group index of
a guilty user must be recovered, while also ensuring that an
innocent user is not accused. Note however that the distributor
has no information about the actual size of the coalition that
is in effect. The decoding (tracing) algorithm is defined by the
following mapping:

D : Qn → ([M1] ∪ {⊥})× ([M2] ∪ {⊥}). (3)

A ⊥ output from the decoding algorithm will signify a
decoding failure for the corresponding index. For convenience,
we write D1(y) and D2(y) to represent the first and second
components respectively of D(y). For a user u ≡ (u1, u2),
we also write G(u) := u1 to denote the group index of u.

The pair of mappings (C,D), defined by (1) and (3), is
called an (n,M1,M2)q two-level code. The rate pair of an
(n,M1,M2)q two-level code is defined as

(R1, R2) :=
(
(1/n) logqM1, (1/n) logqM2

)
.

We assume that the code (C,D) is available publicly and that
this knowledge can be exploited by the coalition in designing
forgeries.



A. Traceability codes

Let dH(x,y) denote the Hamming distance between the
vectors x,y ∈ Qn and let sH(x,y) := n − dH(x,y). We
denote the Hamming weight of x by wH(x). Recall that for
one-level codes, the traceability property [4] assumes decoding
of y to the user whose fingerprint is the closest to y by the
Hamming distance. In this section we extend the notion of
traceability to two-level codes. For any code C of length n,
any coalition U of size at most t and any y ∈ E(C(U)), clearly
there exists some user u ∈ U such that sH(C(u),y) ≥ n/t.
Motivated by this fact, we extend the tracing algorithm as
follows: Given a forgery y, let

d? = min
u∈[M1]×[M2]

dH(C(u),y)

and u? be a user for which the minimum is achieved. Let

D(y) =

{
u? if d? ≤ (1− 1/t2)n
(G(u?),⊥) otherwise.

Definition 2.1: A two-level code C has (t1, t2)-traceability
property (or is (t1, t2)-TA), where t1 > t2, if
(a) For any coalition U of size at most t2 and any y ∈
E(C(U)), the decoding result D(y) ∈ U .

(b) For any coalition U of size at most t1 and any y ∈
E(C(U)), the decoding result D1(y) ∈ G(U). In addi-
tion, if D2(y) 6= ⊥, then D(y) ∈ U .

We next derive a simple sufficient condition for a two-level
code C to be (t1, t2)-TA. For a given two-level code C, as in
[1], we define two minimum distances:

d1(C) := min
u,v∈[M1]×[M2]

u1 6=v1

dH(C(u), C(v)), (4)

d2(C) := min
u,v∈[M1]×[M2]

u2 6=v2

dH(C(u), C(v)). (5)

Proposition 2.2: Suppose t1 > t2 and C is a two-level code
of length n with

d1(C) > n

(
1− 1

t21

)
and d2(C) > n

(
1− 1

t1t2

)
. (6)

Then C is (t1, t2)-TA.
Proof: We check only the second claim in Part (b) of Def.

2.1 because otherwise the proof is the same as in [1]. Let U
be a coalition of size at most t1 and y ∈ E(C(U)). Observe
that a decoding error occurs with D2(y) 6= ⊥ only if there
exists some innocent user u′ /∈ U such that dH(C(u′),y) ≤
n(1 − 1/t2). However, for any user u′ /∈ U , we find that
sH(C(u′),y) ≤ t1(n − d2(C)) < n/t2, thus ruling out the
possibility of this error event.

B. Randomized fingerprinting codes

Randomization of the encoding/decoding maps can enable
the system to support a larger number of users in exchange
for a small error probability of identification.

Suppose that the distributor chooses the encoding
and decoding mappings (C,D) randomly from a family

{(Ck, Dk), k ∈ K} of (n,M1,M2)q codes according to some
probability distribution on the set K of keys. We assume that
the users have complete knowledge of the family of codes and
the probability distribution over K, but the exact choice of key
is a secret known only to the distributor.

Let U be a coalition of size t. In order to create a forged
fingerprint, the coalition may use an arbitrary randomized
strategy V (·|·, . . . , ·), where V (y|x1, . . . ,xt) gives the prob-
ability that the forgery y is generated on observing the
fingerprints x1, . . . ,xt. Due to the assumed restrictions (2)
on creating forgeries, we say a strategy V is admissible if

V (y|x1, . . . ,xt) = 0 for all y /∈ E(x1, . . . ,xt).

The class of admissible strategies is denoted by Vt. Let Y be
a random vector denoting the forgery created by the coalition
in this manner. We now define the probabilities for the error
events during decoding:

e1(C,D, U, V ) = P [D2(Y) = ⊥,D1(Y) /∈ G(U)]

= EK
∑

y:D2K(y)=⊥,D1K(y)/∈G(U)

V (y|CK(U)),

e2(C,D, U, V ) = P [D2(Y) 6= ⊥,D(Y) /∈ U ]

= EK
∑

y:D2K(y)6=⊥,DK(y)/∈U

V (y|CK(U)),

e3(C,D, U, V ) = P [D(Y) /∈ U ]

= EK
∑

y:DK(y)/∈U

V (y|CK(U)).

Definition 2.3: A randomized code (C,D) is said to be a
(t1, t2)-fingerprinting code with ε-error where t1 > t2 if:
(a) For any coalition U of size at most t2 and any admissible

strategy V , the error probability e3(C,D, U, V ) ≤ ε.
(b) For any coalition U of size at most t1 and any admis-

sible strategy V , the error probability e1(C,D, U, V ) +
e2(C,D, U, V ) ≤ ε.

In this paper, we investigate the set of rate pairs (R1, R2)
that are achievable for the above two-level fingerprinting
codes with the error probability decaying to 0 (as the code
length increases). We also construct two-level fingerprinting
codes that have a tracing algorithm operating with complexity
polynomial in the fingerprint length n.

III. ACHIEVABLE RATES

We use the idea of [1] for code construction but use a
new decoding procedure in order to address the stronger
identification guarantees of Definition 2.3. We note that the
construction below is inspired by error-correcting codes with
unequal error protection [2] used in communications problems.

We construct an (n,M1,M2)q randomized code (C,D) as
follows. For w ∈ [n] and R1, R2 ∈ [0, 1] define Sw,n = {x ∈
Qn : wH(x) = w}, M1 = bqnR1c, and M2 = bqnR2c. Fix
ω ∈ [0, 1] and take n such that w = ωn is an integer. For
i ∈ [M1], we first pick the “centers” Ri independently and
uniformly at random from Qn. Next, we choose Sij , (i, j) ∈
[M1] × [M2] independently and uniformly at random from



Sw,n. Finally, using modulo q operations in Q, the fingerprint
Xu for each user u ≡ (u1, u2) ∈ [M1]× [M2] is generated as

Xu = Ru1 + Su

Let us recall from [1] the following simple facts which will
be useful in our error probability analysis.

Lemma 3.1: If S is uniformly distributed over Sw,n, then
P [Sl = a] = ω/(q−1) for l ∈ [n], a ∈ Q\{0}. Moreover, the
r.v.’s {Sl, l ∈ [n]} are pairwise independent asymptotically.

Lemma 3.2: Suppose p ∈ [0, 1] and ε > 0. For l ∈ [n],
let Zl be a Bernoulli r.v. with success probability p such
that {Zl, l ∈ [n]} are pairwise independent. Then, with
Z :=

∑
l∈[n] Zl, we have

P [Z /∈ [n(p− ε), n(p+ ε)]] ≤ p(1− p)
ε2n

.

Below, for two functions f(n), g(n), we write f(n) .= g(n)
if limn→∞ n−1 log(f(n)/g(n)) = 0. We denote the q-ary
entropy function by h(x). Let q ≥ 3. For ω, γ, α, β ∈ [0, 1],
with α ≤ 1− γ, β ≤ γ, α+ β ≤ ω, ω − α ≤ γ, let us define

φ(ω, γ, α, β)

= (1− γ)h
(

α

1− γ

)
+ (γ − β)h

(
ω − α− β
γ − β

)
+ γh

(
β

γ

)
+ (ω − α) logq

(
q − 2
q − 1

)
− β logq(q − 2).

Lemma 3.3: Let S have a uniform distribution over Sw,n
and δ ∈ [0, 1]. Suppose y ∈ Qn such that wH(y) = γn,
where γ ∈ [0, 1]. Then

P [dH(S,y) ≤ δn] .= q−nE(ω,γ,δ),

where

E(ω, γ, δ) = h(ω)− max
α,β:

γ−β+α≤δ

φ(ω, γ, α, β).

The following notation is used below. For a coalition U =
{u1, . . . ,ut}, we denote the realizations of Xui ,Rui1

,Sui by
xi, ri, si respectively, with xi = ri+si, i ∈ [t]. We use R and
S as representative r.v.’s which have the same distribution as
Ri and Sij respectively in our construction.

A. (t, 1)-fingerprinting

Clearly, a single user (size-1 coalition) cannot generate any
forgery except its own fingerprint. Taking advantage of this
fact, we define the decoder as follows: if there is a user u such
that C(u) = y, then D(y) = u, otherwise D(y) = G(u?,⊥),
where u? is the user whose fingerprint is the closest to y.

Theorem 3.4: For any ω such that t−1
t

(
1− 1

qt−1

)
+ω ≤ q−1

q ,
the randomized code (C,D) is (t, 1)-fingerprinting with error
probability decaying to 0 if

R1 < 1− h
( t− 1

t

(
1− 1

qt−1

)
+ ω

)
, (7)

R2 < h(ω). (8)

The proof, which will be omitted, consists of three cases that
account for the three error events defined above. The analysis

of two of them is rather similar to the proof of Theorems 4.3
and 4.4 from [1]. At the same time, we need to analyze the
probability of an additional error event which accounts for the
stronger notion of two-level fingerprinting used in this paper.

B. (t, 2)-fingerprinting

Let ε > 0 be arbitrarily small and define δ = (q − 1)/2q.
Given a forgery y, let u? and d? be as above. The decoder is
defined as follows:

D(y) =

{
u? if d? ≤ n(δ + ε)
(G(u?),⊥) otherwise.

For m = 1, . . . , t, let

f̃m(ω) = max
γ,α,β:

ωm( q−1
q )t−m≤γ≤1− (1−ω)m

qt−m
,γ−β+α≤δ

φ(ω, γ, α, β).

Theorem 3.5: Let q ≥ 3. For any ω such that t−1
t

(
1 −

1
qt−1

)
+ ω ≤ q−1

q , the randomized code (C,D) is (t, 2)-
fingerprinting with error probability decaying to 0 if

R1 < 1− h
( t− 1

t

(
1− 1

qt−1

)
+ ω

)
, (9)

R2 < h(ω)−max(f̃m(ω),m = 1, . . . , t). (10)

Proof: For any coalition of size 2, we can show that
with probability approaching 1 a guilty user is within distance
n(δ + ε) from the forgery. Once we make this observation,
the analysis for size-2 coalitions proceeds in exactly the same
manner as in Theorem 4.6 in [1]. In the case of size-t
coalitions, we should take into account an additional error
event which occurs if D2(Y) 6= ⊥ and D(Y) /∈ U .

Consider a coalition U of size t. Suppose that the coali-
tion’s members belong to L different groups with each group
containing mi, i = 1, . . . , L members of U . Thus, we have∑L
i=1mi = t and

e2(C,D, U, V )

=
∑

r1,...,rL
s1,...,st

P [r1, . . . , rL, s1, . . . , st]
∑
y

V (y|x1, . . . ,xt)

×P
[
D2(y) 6= ⊥,D(y) /∈ U

∣∣∣r1, . . . , rL, s1, . . . , st
]
.

We now focus on the inner conditional probability. Observe
that D2(y) 6= ⊥ only if there exists a user u′ /∈ U such that
dH(Xu′ ,y) ≤ n(δ + ε). Since u′ can either belong to one of
the L groups in G(U) or be in a different group, we have

P
[
D2(y) 6= ⊥,D(y) /∈ U

∣∣∣r1, . . . , rL, s1, . . . , st
]

≤
L∑
i=1

qnR2P [dH(S,y − ri) ≤ n(δ + ε)]

+ qnR1P [dH(R,y) ≤ n(δ + ε) + w] .

Observe that the last term behaves as q−n(1−h(δ+ω)−R1) for ε
arbitrarily small and thus approaches 0 for R1 satisfying (9).

W.l.o.g. let us consider the term P [dH(S,y′) ≤ n(δ + ε)],
where y′ := y − r1. Define Ũ = {s1, . . . , sm1 ,xm1+1 −



r1, . . . ,xt − r1}. We note that y′ ∈ E(Ũ). Let s0(Ũ) denote
the proportion of the columns which are all-zero in the matrix
formed using the vectors in Ũ as the rows. Similarly, for
the same matrix, s1(Ũ) denotes the proportion of columns
where every element is non-zero. Define Tn to be the set of
all (r1, . . . , rL, s1, . . . , st) such that

s0(Ũ) ' (1− ω)m1

L∏
i=2

( (1− ω)mi

q
+
q − 1
q

( ω

q − 1

)mi)
,

s1(Ũ) ' ωm1

L∏
i=2

(ωmi
q

+
q − 1
q

(
1− ω

q − 1

)mi)
.

For simplicity, we use the approximate relations ' and .
when the respective exact relations hold within some arbi-
trarily small ε. Using Lemma 3.1 and Lemma 3.2, it can be
shown that (R1, . . . ,RL,S1, . . . ,St) is in Tn with probability
approaching 1. Now, assuming that the vectors indeed belong
to Tn, we can show using Jensen’s inequality that

ωm1

(q − 1
q

)t−m1

.
wH(y′)
n

. 1− (1− ω)m1

qt−m1
.

Finally, using Lemma 3.3 and taking ε→ 0, we conclude that
the error probability approaches 0 if R2 satisfies (10).

IV. CONSTRUCTIONS WITH POLYNOMIAL-TIME TRACING

Let Q1 and Q2 denote finite alphabets of size Q1 and Q2

respectively. We introduce the operation ∗ which is defined
in the following way: For x ∈ QN1 , y ∈ QN2 , x ∗ y =
((x1, y1), . . . , (xN , yN )) ∈ (Q1 ×Q2)N .

Let C1 be an [N,K1,∆1]Q1 linear code and C2 be an
[N,K2,∆2]Q2 linear code. The ∗ product extends to the codes
C1 and C2 as follows: C1 ∗ C2 = {x1 ∗ x2 : x1 ∈ C1,x2 ∈
C2}. To obtain a two-level code, we associate C1 with groups
and C2 with users within the group. Thus C1 ∗ C2 can be
viewed as an (N,QK1

1 , QK2
2 )Q1Q2 two-level code over the

alphabet Q1×Q2. Obviously, it is true that d1(C1 ∗C2) ≥ ∆1

and d2(C1 ∗ C2) ≥ ∆2, where the quantities d1 and d2 are
defined in (4), (5). Therefore, choosing ∆1 > N(1 − 1/t21)
and ∆2 > N(1 − 1/t1t2) makes the resulting code C1 ∗ C2

into a (t1, t2)-TA code by Proposition 2.2. This observation
forms the motivation for the code choices in our concatenated
scheme described below.

Let C1 and C2 both be RS (or one-point AG) codes with
parameters [N,K1,∆1]Q1 and [N,K2,∆2]Q2 respectively,
where Ki = Ri,outN and ∆i = δiN for i = 1, 2. Each
codeword from C1 corresponds to a particular group, while
the codewords of C2 are associated with the user indices
within a group. Then the outer code Cout = C1 ∗ C2

is an (N,QK1
1 , QK2

2 )Q1Q2 deterministic two-level code. Let
(Cin,Din) denote an (m,Q1, Q2)q randomized code which
is (t1, t2)-fingerprinting with ε-error under exhaustive search
decoding. For every outer coordinate i ∈ [N ], we generate an
independent instance of (Cin,Din) for the inner level.

For a given user u ≡ (u1, u2), the fingerprint is as-
signed as follows. At the outer level, pick x1 ∈ C1 and
x2 ∈ C2 corresponding to u1 and u2 respectively, and

construct x = x1 ∗ x2. Next, for each i = 1, . . . , N , encode
(x1i, x2i) ∈ Q1 × Q2 using the realization of the two-level
code Cin. This procedure results in a concatenated code C
which is a randomized (n,QK1

1 , QK2
2 )q two-level code with

n = Nm. In the subsequent text, the users are identified with
the codewords of Cout. For x = x1 ∗ x2 ∈ Cout, with some
abuse of notation we write G(x) = x1.

W.l.o.g. we suppose that the tracing strategy Din always
outputs exactly one user (if there is no decoding failure).
In practice, if the decoder outputs multiple candidates, the
decoding output is chosen randomly from the candidate list.
In addition, we assume that the inner fingerprinting code is
“symmetric” across the users, meaning that the fingerprints of
different users are identically distributed random variables. We
also assume that this applies to different groups as a whole.

Our tracing algorithm makes use of Guruswami-Sudan
(GS) list decoding [5] for errors and erasures. Let C be
an [N,K, δN ]q RS code (or one-point AG code) over the
alphabet Q. Then for any given y ∈ (Q ∪ {⊥})N , where ⊥
denotes an erasure, the number of codewords x ∈ C such that
sH(x,y) ≥ N

√
1− δ is polynomial in N . Moreover, there

exists an algorithm with complexity polynomial in N which
outputs the list of all such codewords.

Given a forged fingerprint y = (y1, . . . ,yN ), where each
yi is a q-ary length-m vector, our decoding algorithm operates
as follows.

1) For every i ∈ [N ], apply the tracing strategy Din to yi to
obtain (ŷ1i, ŷ2i) ∈ (Q1∪{⊥})×(Q2∪{⊥}). Completing
this procedure for all N outer coordinates produces a
vector ŷ = ŷ1 ∗ ŷ2.

2) Let ξ > ε. Run the GS list decoding algorithm for Cj , j =
1, 2, with ⊥ treated as an erasure, to compute the lists

Lj(ŷj) = {xj ∈ Cj : sH(xj , ŷj) ≥ N(1− ξ)/tj} (11)

3) Finally, the decoder outputs the list L(ŷ) computed as
follows. For every x1 ∈ L1(ŷ1), x2 ∈ L2(ŷ2), if sH(x1∗
x2, ŷ) ≥ N(1− ξ)/t2, then (x1,x2) ∈ L(ŷ). If there is
no such x2 for a given x1, then (x1,⊥) ∈ L(ŷ).

The concatenated code thus defined together with the de-
coding algorithm described is denoted by (C,D) below.

Theorem 4.1: Let 0 < ε < ξ and σi = 1−ξ
ti
−t1(1−δi), i =

1, 2. Suppose that the relative minimum distances of C1 and
C2 satisfy

δi ≥ 1− (1− ξ)2

t1ti
+

ε

ti(Qi − t1)
, i = 1, 2, (12)

and the inner code (Cin,Din) is (t1, t2)-fingerprinting with
ε-error. Then the concatenated code (C,D) is (t1, t2)-
fingerprinting with decoding complexity poly(N) and error
probability at most

q−ND(ξ‖ε) +QK1
1 q−ND(σ1‖ ε

Q1−t1
) + t1Q

K2
2 q−ND(σ2‖ ε

Q2−t1
).

(13)
Proof outline: We write a coalition U of size t as a subset

{x1, . . . ,xt} ⊆ Cout where xi = xi1 ∗ xi2, i = 1, . . . , t.
Let Y = (Y1, . . . ,YN ), where Yi are q-ary vectors of



length m, be a random forgery generated by U using any
admissible strategy. In any outer coordinate i ∈ [N ], the
coalition observes at most t distinct Q1×Q2 symbols among
{(x1

1i, x
1
2i), . . . , (x

t
1i, x

t
2i)}. At the inner level this is equivalent

to the action of a virtual coalition of size at most t, and
correspondingly Yi is generated by an admissible strategy
from these symbols. This enables us to utilize the fingerprint-
ing property of the inner code to derive some properties of
the vector Ŷ = Ŷ1 ∗ Ŷ2 which is the result of inner level
decoding performed in Step 1 of the algorithm. We use the
above argument to analyze the probability of missed detection
and of identifying an innocent user for the separate cases of
t1- and t2-sized coalitions.

Consider a coalition U = {x1, . . . ,xt1} of size t1 and a
random forgery Y generated by U . We analyze the 3 cases that
correspond to the three error events described before Definition
2.3. As mentioned above, this amounts to a virtual coalition of
at most t1 symbols acting in every outer coordinate. Therefore,
for every i ∈ [N ], the probability that the group index Ŷ1i

output by the inner decoder Din does not match one of the
symbols {x1

1i, . . . , x
t1
1i} is at most ε. Let Z1 be a binomial

r.v. denoting the number of coordinates where this error event
occurs. Then there exists an l ∈ [t1] such that sH(xl1, Ŷ1) ≥
(N − Z1)/t1, and so the probability that none of the guilty
groups are output

P
[
L1(Ŷ1) ∩ G(U) = ∅

]
≤ P

[
N − Z1

t1
<
N(1− ξ)

t1

]
= P [Z1 > Nξ] ≤ q−ND(ξ‖ε),

where the last inequality holds since ξ > ε. This concludes
the analysis of the missed group detection case.

Next, consider an innocent group x′1 /∈ G(U). The decoder
makes an error if x′1 ∈ L1(Ŷ1). In any coordinate i ∈ [N ],
there are two possible ways for the group index output by Din
to be x′1i. The first possibility is that x′1i ∈ {x1

1i, . . . , x
t1
1i},

and the number of such positions is at most t1(1 − δ1)N .
Otherwise, if x′1i is different from the above symbols, it can
be output when the inner decoder makes an error. Due to the
assumed symmetry of (Cin,Din) the probability of this event
is at most ε/(Q1 − t1). Let Z̃1 be a binomial r.v. counting
the number of coordinates where the latter error event occurs.
Then sH(x′1, Ŷ1) ≤ Z̃1 + t1(1− δ1)N and we obtain

P
[
x′1 ∈ L1(Ŷ1)

]
= P

[
sH(x′1, Ŷ1) ≥ N(1− ξ)

t1

]
≤ P

[
Z̃1 ≥ Nσ1

]
≤ q−ND(σ1‖ ε

Q1−t1
),

because by (12), σ1 > ε/(Q1 − t1).
Finally, consider an innocent user x′ /∈ U such that x′1 ∈
G(U). In any coordinate i ∈ [N ], there are two possible ways
for Din to output the symbol (x′1i, x

′
2i). One possibility is that

(x′1i, x
′
2i) ∈ {(x1

1i, x
1
2i), . . . , (x

t1
1i, x

t1
2i)}, and there are at most

t1(1− δ2)N such positions. Secondly, if (x′1i, x
′
2i) is different

from the actual coalition’s symbols, it may be output when
Din makes an error. The probability of this event is at most
ε/(Q2 − t1) due to the assumed symmetry of the inner code.

Let Z̃2 be a binomial r.v. denoting the number of coordinates
where the second error event occurs. Then sH(x′, Ŷ) ≤ Z̃2 +
t1(1− δ2)N, and we get

P
[
x′ ∈ L(Ŷ)

]
= P

[
sH(x′, Ŷ) ≥ N(1− ξ)

t2

]
≤ P

[
Z̃2 ≥ Nσ2

]
≤ q−ND(σ2‖ ε

Q2−t1
),

since σ2 > ε/(Q2− t1) from (12). Applying the union bound,
we conclude that the error probability is less than the estimate
(13). The analysis for size-t2 coalitions is carried out in a
similar manner.

It is not difficult to show that the complexity of the
identification procedure is a polynomial function of the code’s
length N .

Let us analyze the rates attained by Theorem 4.1 by fixing
our code choices. Let C1 and C2 be extended RS codes with
parameters [Q,K1] and [Q,K2], respectively, satisfying the
condition (12). At the inner level, consider a sequence of q-ary
(t1, t2)-fingerprinting codes with error probability ε = o(1)
and rate (Rin, Rin). The tracing procedure of the inner code
will be performed by exhaustive search; for instance, the codes
in Section III can be used at the inner level. We have m ≈
O(logq n) since n = mqmRin . Hence, the tracing for the inner
code has only polynomial complexity in the code length n.
With ξ, t1, t2 fixed and m growing, we have

D
(
σi

∣∣∣∣∣∣ ε

Q− t1

)
∼ Nσi logq

Q

ε
≥ nσiRin, i = 1, 2.

Let Ri = Ri,outRin, i = 1, 2 denote the rate pair of the
concatenated code. Since for RS codes we have 1−δi ∼ Ri,out,
the error probability (13) approaches 0 if for i = 1, 2

Ri <

(
1− ξ
ti
− t1Ri,out

)
Rin, i.e., Ri <

1− ξ
ti(t1 + 1)

Rin.

Finally, taking ξ arbitrarily small and m sufficiently large to
satisfy ε < ξ we obtain the following result.

Corollary 4.2: There exists a sequence of q-ary (t1, t2)-
fingerprinting codes of length n with error probability decay-
ing with n, having decoding complexity poly(n) and rate pair
R1 = Ω(Rin/t

2
1), R2 = Ω(Rin/t1t2).
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