NOTE

Linear Codes with Exponentially Many Light Vectors

Alexei Ashikhmin¹ and Alexander Barg¹

Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974 E-mail: aea@research.bell-labs.com, abarg@research.bell-labs.com

and

Serge Vlăduț

Institut de Mathématiques de Luminy, UPR 9016 du CNRS, Luminy, Case 907, 13288 Marseille Cedex 9, France E-mail: vladut@iml.univ-mrs.fr.

Communicated by V. Pless

Received January 3, 2001

G. Kalai and N. Linial (1995, *IEEE Trans. Inform. Theory* **41**, 1467–1472) put forward the following conjecture: Let $\{C_n\}$ be a sequence of binary linear codes of distance d_n and A_{d_n} be the number of vectors of weight d_n in C_n . Then $\log_2 A_{d_n} = o(n)$. We disprove this by constructing a family of linear codes from geometric Goppa codes in which the number of vectors of minimum weight grows exponentially with the length. © 2001 Academic Press

1. INTRODUCTION

Let C be a code over \mathbb{F}_q of length n and distance d = d(C). The (Hamming) distance distribution of the code is an (n+1)-vector $(A_0 = 1, A_1, ..., A_n)$, where $A_w = A_w(C) := (\#C)^{-1} |\{(x, x') \in C^2 : d(x, x') = w\}|$. Of course $A_w = 0$ if $1 \le w \le d-1$. If C is linear then A_w is the number of vectors of weight w in it.

Let $\{C_{n_i}\}$ be a family of binary linear codes of growing length n_i and let $d_{n_i} = d(C_{n_i})$ (below we omit the subscript *i*). Kalai and Linial [2] conjectured that for any such family the number A_{d_n} is subexponential in *n*, i.e., that for any $\alpha > 0$ there is a number $N(\alpha)$ such that for all $n > N(\alpha)$ we

¹Research supported in part by Binational (USA–Israel) Science Foundation under Grant 1999099.

NOTE

have $\log A_{d_n} \leq \alpha n$ (if the base of logarithms is missing, it is 2 throughout). They also made a similar conjecture about unrestricted (i.e., not necessarily linear) codes and wrote, "The [asymptotic] distance distribution near the minimum distance remains a great mystery."

While we now know a little more about the distance distribution of codes for larger w [1, 3], this claim is still very much true. The above conjectures, however, are not as will be shown below. Let

$$E_q(\delta) := H(\delta) - \frac{\log q}{\sqrt{q-1}} - \log \frac{q}{q-1},$$

where $H(y) = -y \log y - (1-y) \log(1-y)$. For $q \ge 49$ the function $E_q(\delta)$ has two zeros $0 < \delta_1 < \delta_2 < (q-1)/q$ and is positive for $\delta_1 < \delta < \delta_2$.

THEOREM 1. Let $q = 2^{2s}$, s = 3, 4, ... be fixed. Then for any $\delta_1 < \delta < \delta_2$ there exists a sequence of binary linear codes $\{C_n\}$ of length n = qN, $N \to \infty$ and distance $d_n = n\delta/2$ such that

$$\log A_{d_n} \ge NE_a(\delta) - o(N). \tag{1}$$

2. PROOF

We will first construct a sequence of q-ary linear (geometric Goppa) codes. Background information on coding theory and geometry of curves can be looked up in [5].

Let X be a (smooth projective absolutely irreducible) curve of genus g over \mathbb{F}_q , where $q \ge 49$ is an even power of a prime. Let $N = N(X) := \#X(\mathbb{F}_q)$ be the number of \mathbb{F}_q -rational points of X and suppose that X is such that $N \ge g(\sqrt{q}-1)$ (e.g., X is a suitable modular curve). The set of \mathbb{F}_q -rational effective divisors of degree $a \ge 0$ on X is denoted by $Div_a^+(X)$. Recall that $Div_a^+(X)$ is a finite set. For $D \in Div_a^+(X)$ let L(D) be the corresponding linear system (the linear space of rational functions associated with D). Denote by $\mathscr{C} = \mathscr{C}(D)$ the geometric Goppa code on X defined by the triple $(X, D, X(\mathbb{F}_q))$ in the usual way. \mathscr{C} is a linear code of length N, dimension dim $(\mathscr{C}) \ge a - g + 1$, and distance $d(\mathscr{C}) \ge N - a$.

THEOREM 2. Let $\delta = (N-a)/N$ satisfy the inequality $\delta_1 < \delta < \delta_2$. Then there exists $D \in Div_a^+(X)$ such that the corresponding geometric Goppa code $\mathscr{C} = \mathscr{C}(D)$ has the minimum distance $d = N-a = \delta N$ and for the number A_d of vectors of weight d we have

$$\log A_d \ge NE_q(\delta) - o(N).$$

Proof. The proof follows the ideas of [6]. We set for an integer $r \in [0, a]$

$$C_{a,r} := \left\{ D \in Div_a^+(X) : \# \left(\text{Supp } D \bigcap X(\mathbb{F}_q) \right) = r \right\}.$$

We denote by $J_a = J_a(X)$ the set of (linear) classes of degree *a* divisors. Thus, J_a is the quotient space of $Div_a^+(X)$ under the linear equivalence of divisors. Recall that since $Div_a^+(X)$ is non-empty, J_a is in a bijection with the set $J_X(\mathbb{F}_q)$ of \mathbb{F}_q -rational points on the Jacobian variety of X.

The following lemma from [4, Lemma A2] (see also [6]) is a key ingredient in the proof.

Lemma 1.

$$\log_q \# J_a = g \left(1 + (\sqrt{q} - 1) \log_q \frac{q}{q - 1} \right) - o(g).$$
 (2)

Further, it is obvious that $\#C_{a,a} = \binom{N}{a}$ and so

$$\log \# C_{a,a} = NH\left(\frac{a}{N}\right) - o(g). \tag{3}$$

Recall that the fibers of the canonical projection

$$\pi_a: Div_a^+(X) \to J_a(X)$$

are the projective spaces $\mathbb{P}(D) = \mathbb{P}(L(D))$, which are projectivizations of linear systems L(D). For any $D \in Div_a^+(X)$ the number of words of weight d = N - a in the code $\mathscr{C}(D)$ equals

$$A_d(D) = (q-1) \# \left(\pi_a^{-1}(\pi_a(D)) \bigcap C_{a,a} \right).$$

Thus we have

$$A_d^* := \max\{A_d(D) : D \in Div_a^+(X)\} \ge \frac{\#C_{a,a}}{\#J_a}.$$

Taking logarithms and using (2), (3) we obtain Theorem 2.

It remains to pass to binary codes. For $q = 2^{2s}$ take the binary linear [n = q - 1, n - 2s, 3] Hamming code and consider its orthogonal code, i.e., the simplex code. For simplicity let us augment each vector in it with a zero coordinate. This results in a binary linear code S of length q, dimension 2s

NOTE

and distance q/2 in which every nonzero vector has Hamming weight q/2. Establish a linear bijection between \mathbb{F}_q and S and for a vector $c \in \mathscr{C}$ replace every coordinate by its image. We obtain a linear binary code C_n of length n = qN and minimum distance $d_n := qN\delta/2$. Note that pairwise distances in \mathscr{C} change by a factor q/2 upon passing to C_n , and so vectors of weight d_n in C_n are obtained from vectors of weight d in \mathscr{C} and only from them. Together with Theorem 2 this completes the proof of Theorem 1.

Remarks. (1) From the definition of $E_q(\delta)$ we see that the interval (δ_1, δ_2) for large q is arbitrarily close to (0, 1). Hence the result of Theorem 1 is valid for all values of d_n/n between 0 and 1/2.

(2) There are many possible choices for the code S in the final step. For instance, one could take $S = \{e_i, 1 \le i \le q\}$, where e_i is a binary *q*-vector with $e_{ij} = \delta_{i,j}, j = 1, ..., q$. Then the distances in \mathscr{C} are doubled, and the qualitative argument of the proof is preserved. This gives a sequence of nonlinear codes C_n .

(3) The rate of the code C_n equals 2Rs/q, where for large N the value R > 0 is given in the main theorem of [6].

(4) Upper bounds on the *average* weight spectrum of \mathscr{C} over the choice of $D \in Div_a^+(X)$ for maximal curves were obtained in [7].

REFERENCES

- A. Ashikhmin, A. Barg, and S. Litsyn, Estimates of the distance distribution of codes and designs, *IEEE Trans. Inform. Theory* 47 (2001), 1050–1061.
- G. Kalai and N. Linial, On the distance distribution of codes, *IEEE Trans. Inform. Theory* 41 (1995), 1467–1472.
- S. Litsyn, New upper bounds on error exponents, *IEEE Trans. Inform. Theory* 45 (1999), 385–398.
- M. Rosenbloom and M. Tsfasman, Multiplicative lattices in global fields, *Invent. Math.* 101 (1990), 687–696.
- 5. M. Tsfasman and S. Vlăduţ, "Algebraic-Geometric Codes," Kluwer Academic, Dordrecht, 1991.
- S. Vlăduţ, An exhaustion bound for algebro-geometric "modular" codes, Problemy Peredachi Informatsii 23 (1987), 28–41.
- S. Vlăduţ, Two remarks on the spectra of algebraic geometry codes, *in* "Arithmetic, Geometry and Coding Theory" (R. Pellikaan, M. Perret, and S. G. Vlăduţ, Eds.), pp. 253–261, de Gruyter, Berlin, 1996.