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1 INTRODUCTION

Let C 2 Zn
2
be a binary block code. One says that C corrects r errors if every

sphere of radius r in Zn
2
contains at most one codevector and r is the maximal

number with such property. Relaxing this de�nition, one may require that
every such sphere contain at most m vectors from the code. Then if r or fewer
errors occur in the channel, the transmitted vector can be isolated by compiling
a list of m codevectors closest to the received vector. If these conditions hold
true, one says that C corrects r errors under list decoding. For brevity, we
call such a code C an (m; r) code. The number r will be called the size-m list
radius of C.

Let C be an (m; r) code of rate R(C) = log
2
jCj=n. We assume that r = �n,

i.e., the number of errors depends linearly on n, and m is a constant. The main
asymptotic problem for (m; r) list codes is to determine the value of

R(m; �) = lim sup
n!1

R(C);

where the limit is computed over all sequences of codes whose size-m list radius
converges to �.

The concept of list decoding was introduced by Elias [6] and Wozencraft
[12]. Ahlswede [1] showed that it enables one to determine capacity of a wide
class of communication channels. Some 30 years after (m; r) codes had been
introduced, Blinovsky [4] (see also [5]) derived lower and upper asymptotic
bounds on their size for any given value of m. Since in this paper we deal
only with the case of m = 2, in the theorem below we quote only the relevant
bounds from [4].

Let H(x) = �x log
2
x � (1 � x) log

2
(1 � x) be the entropy function and

H�1(x) its inverse.

Theorem 1 [4] We have R2(�) > R(2; �) > R
2
(�), where

R
2
= 1�

1

2
(�3� log

2
�� (1� 3�) log

2
(1� 3�)) (1.1)

R2 = 1�H
�1
2
�

1

2

p
1� 4�

�
: (1.2)

Lower bounds on (m; r) codes for �nite n were derived in [7].
Note that formally the upper bound (1.2) coincides with the well-known

Bassalygo-Elias bound on the size of error-correcting codes. Technically it will
be more convenient to us to study the function

�(m;R) = lim sup
n!1

1

n
r(m;C);

where r(m;C) is the size-m list radius of the code C. In this paper we are
concerned with upper bounds on �(2; R) (typically, any such bound also gives
an upper bound on R(2; �)). Eq. (1.2) implies the bound

�(2; R) 6 H�1(1�R)(1�H�1(1�R)): (1.3)
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In this paper we derive an improvement of this bound (and so also of (1.2)).
The principal technical tool of obtaining the new bound is an application

of Delsarte's linear programming method to deriving lower bounds on code
invariants, found recently in [10], [2]. In particular, in [10] it is proved that in
every code of rate R > 0 and suÆciently large length n, there necessarily exists
an exponentially large component of the weight distribution. This theorem
was used in [3] together with bounds on constant-weight codes to prove sharp
estimates of the distance distribution of codes meeting the MRRW upper bound
[9] (provided that such exist). These results are also used below. More details
and notation are given in Section 2. Section 3 is devoted to the new bound.

2 NOTATION AND PRELIMINARIES

Let

Æ(R) = lim sup
n!1

dist (C);

where distC is the distance of the code C and the limsup is computed over all
sequences of codes of rate R. In other words, Æ(R) = 2�(1; R):We shall use the
upper (linear programming) bound on Æ(R) [9], which has the form

Æ(R) 6 Ælp(R) = min
06�6�61=2

H(�)�H(�)=1�R

2
�(1� �)� �(1� �)

1 + 2
p
�(1� �)

(1.4)

Likewise, let C be a binary code of distance d = Æn and constant weight
w = �n. De�ne

Æ(R;�) = lim sup
n!1

d(Rn; �n)

n
;

R(Æ; �) = lim sup
n!1

R(C):

By [9], we have

Æ(R;�) 6 Ælp(R;�) = 2
�(1� �)�H�1(R)(1�H�1(R))

1 + 2
p
H�1(R)(1�H�1(R))

; H�1(R) 6 � 6
1

2

In a certain range of parameters this bound can be improved. The improvement
is based on a result in [8] and appears in an explicit form in [11]. In the form
convenient to us it is given in [3]. Let �m(R) be the value of � that furnishes
the minimum to the right-hand side of (1.4)1. Then

Æ(R;�) 6 Ælp(1 +R�H(�)); �m(R) 6 � 6
1

2
:

1Note that � in (1.4) is a dummy variable whose value is determined uniquely given � and
R.
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Let us summarize these results in the following theorem.

Theorem 2

Æ(R;�) 6 Æup(R;�) =

(
Ælp(R;�); H�1(R) 6 � 6 �m(R);

Ælp(1 +R�H(�)); �m(R) 6 � 6 1

2
:

(1.5)

The second ingredient that we need is the following theorem, which gives a
lower bound on the components of the distance distribution of the code. Let

Ai =
1

jCj
f(c0; c00) 2 C2 : dist (c0; c00) = ig:

Theorem 3 [10] For every code of rate R and suÆciently large length n there

exists a number �,

� 2
�
0; 2

�(1� �)� �(1� �)

1 + 2
p
�(1� �)

i
; (1.6)

such that

1

n
log

2
A�n > R̂0(�; �; �) := R� 1 +H(�) + 2H(�)� 2q(�; �; �=2)

� � � (1� �)H

�
�� �=2

1� �

�
; (1.7)

where � and � are arbitrary numbers satisfying

0 6 � 6 � 6 1=2; H(�) �H(�) > 1�R; (1.8)

and

q(�; �; ) = H(�) +

Z 

0

log
2

A+
p
A2 � 4By2

2B
dy (1.9)

A = �(1� �)� y(1� 2y)� �(1� �); B = (�� y)(1� �� y):

3 THE NEW BOUND

Theorem 4 Let C be a (2; �n) code of rate R; 0 6 R 6 1. Then

� 6 �(2; R) 6
1

2
min
�;�

max
�

Æup(R0(�; �; �); Ælp(R));

where R0(�; �; �) is given by (1.7) and �; �; � satisfy (1.6)-(1.8).

Proof. By Theorem 3, there exists � in the interval (1.6) such that the number
of codevectors on the sphere of radius �n centered at a certain codevector a
satis�es (1.7). We can translate the space Zn

2
by a; then this claim is equivalent

to the existence of a constant-weight code of rate R0. This code has relative
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minimum distance at most Æup(R; �) (cf. (1.5)). Take two codevectors c0; c00 at
a distance nÆup(R; �) and consider them together with the center of the sphere
(0, for that matter). It is easy to see that the center of the sphere of minimal
radius that contains c0; c00 and 0 has weight 1

2
nÆup(R0(�; �; �); �).

Optimization carried out in [3] leads to the following corollary.

Corollary 5

�(2; R) 6

(
1

2
Ælp(R � 1 +H(Ælp(R)); Ælp(R)); 0 6 R 6 R0;

1

2
Ælp(R); R0 6 R 6 1;

(1.10)

where R0 = 0:421 : : : is the root of the equation �m(R) = Ælp(R):

Bound (1.10) is plotted in Fig. 1 together with bounds (1.1) and (1.2). Com-
putations show that it is better than (1.2) for all R 2 (0; 1): Note that the
second segment in (1.10) coincides with the best known upper bound (1.4) on
�(1; R) = Æ(R):We wish to stress a di�erence between this result and the upper
bound in Theorem 1. The upper bound in Theorem 1 is the same for the cases
of m = 1 and m = 2 simply because the way of counting the contribution to
the weight of the center of the sphere in [4] cannot tell between m = 2i � 1
and m = 2i. Corollary 5, in contrast, indicates a geometric property of (hypo-
thetical) codes meeting the MRRW upper bound (1.4), namely, that for some
pairs of vectors at a distance nÆlp(R) apart, there is a third vector at the same
distance from each of them.

For reference purposes we also give a short table of values of the bounds.

Table 1 Bounds on �(2; R).

R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lower bound (1.1) 0.168 0.133 0.105 0.082 0.063 0.046 0.031 0.018 0.0079
Elias bound (1.3) 0.216 0.184 0.153 0.125 0.098 0.073 0.050 0.030 0.0128
New bound (1.10) 0.196 0.165 0.138 0.114 0.091 0.069 0.048 0.029 0.0127
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