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Abstract—We consider codes that support the local recovery
property of each code symbol (LRC codes). Codes of this
type were extensively studied in recent years because of their
applications in distributed storage systems. We discuss algebraic
constructions of LRC codes over small alphabets that attain the
best possible distance-locality tradeoff and their extensions to
cyclic codes and codes on algebraic curves. We also discuss
examples of practical LRC codes used in large-scale storage
systems and point out some open questions in this area.

I. INTRODUCTION

Distributed and cloud storage systems have reached such
a massive scale that recovery from several node failures is
now part of regular operation of the system rather than a rare
exception. To support reliable storage, system designers have
turned to error correcting codes, introducing redundancy to
recover the temporarily or permanently unavailable data. The
simplest and to date the most frequently employed solution
is to replicate the data several times, writing the copies of
each data fragment to distinct physical locations. For example,
Apache Hadoop, an open source software for distributed stor-
age, uses a default method of 3-way replication. Another com-
mon solution, based on Reed-Solomon (RS) codes, provides
stronger protection for the same or smaller storage overhead.
For instance, the file systems of Facebook and Google use the
(14,10) and (9,6) RS codes, respectively. RS codes have been
also standardized as a part of the well-known RAID 6 data
protection technology.

New challenges in the development of distributed storage
systems are to a large extent driven by the exponential growth
of the amount of stored data which makes exabyte data vol-
umes today’s new reality. One of the new tasks faced by such
systems, but not addressed by current solutions, is recovery
from a single node failure. Studies show that, although several
concurrent failures are possible, and therefore the system
should be able to protect against them, the most common
scenario is the failure of a single node. Therefore, constructing
codes that optimize the repair of a single node becomes an
important problem for coding theorists and developers alike.

Recovery of the information stored on a single node, or
the repair problem, can be carried out successfully because
of the redundancy inserted in the information at the time of
writing to the memory. The efficiency of the data repair can
be measured in several ways. One of them, introduced in the
foundational paper [4], proposes to optimize the amount of
data transmitted in the system to accomplish the repair. This
metric has become known as repair bandwidth. The second
measure, called locality, is related to the total number of nodes
accessed during the data recovery [8], [9], [7]. Both metrics
have their own merits, and choosing between them is related
to the type of the storage system and the underlying scope

of applications. In this paper we focus on codes with locality,
i.e., codes that in the course of repair of a single node access
only a small number of other nodes.

An (n, k, r) locally recoverable (LRC) code encodes k data
symbols into n symbols in such a way that the value of any
symbol of the encoding can be found by accessing at most
r other stored symbols. For example, a code of length n =
2k in which every data symbol is repeated twice, is an LRC
code with locality r = 1. As another extreme, consider an
(n, k) MDS code with locality r = k in which not only one
symbol, but the entire encoding can be found by accessing k
codeword symbols. Generally the value of locality r satisfies
1 ≤ r ≤ k. Yet another simple example is provided by regular
LDPC codes with r + 1 nonzeros in every check equation,
meaning that every single symbol of the codeword is a linear
combination of some other r symbols. The study of LRC codes
forms a new topic in coding theory that gives rise to questions
ranging from limits to the maximum size of LRC codes to
the constructions and structure of codes and their decoding
algorithms. For instance, MDS codes which are optimal for the
classical error/erasure correction problem, are far from being
optimal in terms of locality because the repair task requires
access to a large number of code symbols.

Bounds and constructions of LRC codes have been studied
in a number of recent papers. A natural question to ask is as
follows: given an (n, k, r) LRC code C, what is the largest
possible minimum distance d(C)? A useful generalization of
the Singleton bound [7], discussed in Section II-A, Eq. (3)
below, gave rise to both studies into code bounds and construc-
tions of RS-type codes that form the main topic of this paper.
While the LRC Singleton bound, like its classic counterpart, is
independent of the code alphabet, another work [3] introduced
a bound on the code’s distance that accounts for the alphabet
size, and more results of this kind appear in the recent paper
[17].

Codes whose parameters satisfy the LRC Singleton bound
with equality, are called optimal LRC codes in the literature.
Among the constructions of LRC codes we note the results
of [15], [19], [6] that combine some known code families to
account for the LRC property. While these constructions are
optimal by their parameters, they rely on alphabets of a large
size, limiting their usefulness in applications.

Coding for distributed storage is currently an active research
area. Codes that optimize the repair bandwidth and codes with
locality appear in a large number of publications, too numerous
to cite or overview in this article. In [16] we initiated a line of
research in this area that begins with a construction of RS-type
codes with the locality property and extends to constructions
of cyclic codes and codes on algebraic curves, as well as to
a study into bounds on the parameters of LRC codes. In this
paper we present and discuss this work, apologizing to our
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many colleagues whose contributions to this area we did not
have a chance to mention.

II. CODES WITH THE LOCALITY CONSTRAINT (LRC
CODES)

We say that a code has locality r if the value of every
coordinate of the codeword c is uniquely determined by the
values of at most r other coordinates of c. In the context of
storage applications, this enables the system to recover the data
from a dysfunctional node by accessing at most r other nodes
in the storage cluster. At the same time, if a group of more
than one nodes become inaccessible, we would still like to
be able to restore the data using the remaining storage nodes.
In this case, it may not be possible to recover the missing
symbols in a local fashion, but we would like to be able to
recover them nevertheless by accessing the remaining available
symbols of the codeword. Taken together, these conditions call
for constructing codes with small locality and large distance
d. A formal definition of an LRC code is as follows.

Definition 1: A code C of length n over a finite alphabet
Q is said to have locality r if for every i ∈ [n] there exists
a subset Ri ⊂ [n]\{i}, |Ri| ≤ r and a function ϕi such that
for every codeword c ∈ C

ci = ϕi({cj, j ∈ Ri}). (1)

As already remarked, simple examples of LRC codes are
obtained by concatenating several copies of some code. For
instance, replicating m times a single-parity-check code of
length r + 1, we obtain an (m(r + 1), mr, r) LRC code with
distance d = 2, and repeating twice an (n/2, k) MDS code
yields an (n, k, 1) LRC code with distance d = 2(n/2 − k +
1).

Let us give a less trivial example of an LRC code. This
example relies on the main LRC code construction discussed
in the paper.

Example 1: We will construct an (n = 9, k = 4, r = 2)
LRC code C with distance d = 5, choosing F13 to be the
code alphabet. Consider the space of polynomials

P = { fa(x) = a0 + a1x + a3x3 + a4x4},

where a = (a0, a1, a3, a4) ∈ F4
13 denotes the message vector

(the omission of x2 is intended). Consider the linear code

C = {evA( f ), f ∈ P},

defined by the set of points A = {1, 3, 9, 2, 6, 5, 4, 12, 10}
and the evaluation map evA : Fq[x] → Fn

q given as
evA( f ) = ( f (a), a ∈ A). For instance, taking a = (1, 1, 1, 1),
we evaluate the polynomial fa(x) = 1 + x + x3 + x4 to find
the codeword

c := evA( fa) = (4, 8, 7, 1, 11, 2, 0, 0, 0). (2)

Since the degree of fa(x) is at most 4, the distance of the
code satisfies d(C) ≥ 5. It will be argued later that 5 is the
maximum possible distance for any (9, 4, 2) LRC code, so the
code C is optimal. Note that an RS code with n = 9 and k = 4
has distance 6 which is only one greater than the distance of

the code C. Therefore by reducing the distance by one we
managed to decrease the locality by a factor of two.

Although the code C is a subset of a (n = 9, k = 5) RS
code1, we emphasize the special choice of the space P and
the set A which account for the locality property of the code.
Indeed, regardless of the exact values of the entries of the
information vector a, there is a linear polynomial that passes
through the points fa(1), fa(3) and fa(9) of the codeword c.
For instance, the polynomial δ1(x) = a0 + a3 + (a1 + a4)x
satisfies δ1(i) = fa(i), i = 1, 3, 9, and in a similar way,
δ2(x) = a0 + 8a3 + (a1 + 8a4)x passes through the co-
ordinates with locations 2, 6, and 5. It is also possible to
construct a linear polynomial δ3(x) that passes through the
locations 4, 12, and 10. This property supports local recovery
of any one symbol. Indeed, if the value fa(1) is unavailable,
we can compute δ1(x) from its values δ1(3), δ1(9) and find
fa(1) = δ1(1). For instance, for the codeword c in (2) we
obtain δ1(x) = 2x + 2 and find the correct value δ1(1) = 4.
This procedure is schematically shown in Fig. 1.
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Fig. 1: Local recovery by polynomial interpolation

The local recovery described constitutes a saving compared
to the standard decoding of RS codes which calls for comput-
ing the polynomial fa of degree 4 from some of its 5 values.
Note also a special property of the construction: the described
linear polynomials pass through 3 points of the graph of fa,
which is one point more than is guaranteed by the general
interpolation. That this becomes possible is an artifact of the
special choice of the polynomial space P and the set of points
A.

A. General Construction of Optimal LRC Codes

There are several classical bounds on the distance of the
code in terms of its length and dimension. One of them is
the Singleton bound, and a code that meets it is called an
MDS code. Moreover, the MDS conjecture (partially proved
recently in [1]) claims that, loosely speaking, in order to attain
the Singleton bound, the code alphabet has to be of the order

1The RS code is obtained by evaluating all the polynomials of degree
deg f ≤ k − 1 = 4.
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of the length of the code. The Singleton bound was extended
to codes with locality in [7] which showed that the distance
d(C) of an (n, k, r) LRC code C is bounded by

d(C) ≤ n − k −
⌈ k

r

⌉
+ 2. (3)

An LRC code whose parameters meet this bound with equality
is called optimal. Taking r = k in (3), we recover the Singleton
bound, so any (n, k) RS code is an optimal (n, k, k) LRC code.
Likewise, the subcode of an RS code constructed in Example
1 is also an optimal LRC code. This suggests that to construct
optimal LRC codes for a broad range of the parameters n, k, r,
it suffices to take an alphabet of size q comparable to n,
and RS codes and their subcodes form natural candidates for
optimal LRC codes. We will show that this is indeed the case
by providing such a construction which we call an RS-type
LRC code.

In Example 1 we implicitly defined a partition of the set of
locations into subsets A1 = {1, 3, 9}, A2 = {2, 6, 5}, A3 =
{4, 12, 10} such that for each of them, there is a linear
polynomial that passes through all the codeword coordinates in
these locations. Building on this intuition, let us take a subset
A ⊂ Fq of n points that label the coordinates of the code.
Suppose that there is a partition A = {A1, ..., A n

r+1
} of the

set A into n/(r + 1) subsets of size r + 1 and that there exists
a polynomial g(x) of degree r + 1 such that g is constant on
the blocks of the partition, i.e.,

g(α) = g(β) for any α, β ∈ Ai, i = 1, . . . , n/(r + 1). (4)

We aim at constructing a linear k-dimensional code C : Fk
q →

Fn
q . Given a vector a ∈ Fk

q, a = (aij, i = 0, . . . , r − 1, j =

0, . . . , k
r − 1), define the polynomial2

fa(x) =
r−1

∑
i=0

xi
k
r −1

∑
j=0

aijg(x)j. (5)

and note that deg fa ≤ k + k
r − 2.

Definition 2: Let P be the set of polynomials of the form
(5) and define the code

C = {evA( fa), fa ∈ P}. (6)

The subsets Ai are called recovery sets. Once we specify a
location α such that Ai ∋ α, the subset Ai\{α} is called the
recovery set of α. The main result about this code family is
as follows.

Theorem 2.1: The code C defined in (6) is an optimal
(n, k, r) LRC code. The local recovery of the symbol in
location α is accomplished by computing a polynomial δ(x) of
degree r − 1 that passes through all the points of the recovery
set of this location.

Sketch of the proof: The distance of C equals n minus the
maximum number of zeros of fa(x), and is seen to meet
the bound (3). The claim that dim C = k becomes obvious
once we observe that the k polynomials g(x)jxi are all of

2We assume that both n
r+1 and k

r are integer numbers and comment on the
other possibilities in the remarks below.

different degrees and therefore span a k-dimensional subspace
of Fq[x]. Furthermore, the polynomials fa are evaluated at
n > k distinct points of the field, therefore the evaluation
mapping (6) is injective and the code is of dimension k.

The local recovery is accomplished as follows. Given the
erased location α ∈ Ai, find the unique polynomial δ(x) of
degree at most r − 1 that intersects the graph of fa(x) at all
the other r points of the set Ai :

δ(β) = fa(β), β ∈ Ai\{α}.

Note that g(x) is constant on Ai, and therefore δ(x) is the
polynomial

δ(x) =
r−1

∑
i=0

xi
k
r −1

∑
j=0

aijg(α)j.

Hence, the symbol at location α equals to δ(α) = fa(α).

Let us make a few observations about the features of the
code family.

(i) CONSTRUCTING g(x): The main ingredient of the con-
struction is the polynomial g(x) whose existence is a priori
not so obvious. It is not difficult to prove by counting that
the required g(x) exists, but we would like to be able to
construct it efficiently. This question will be discussed in the
next subsection, and it will also enable us to establish relations
between the code length n and the size of the alphabet q. The
property that g(x) = const on Aj, 1 ≤ j ≤ n/(r + 1) also
has a natural geometric interpretation which provides a segue
to constructing LRC codes on algebraic curves (more on this
in Sect. IV-B below).

(ii) DIVISIBILITY ASSUMPTIONS: Both the assumptions r|k
and (r + 1)|n can be removed. To lift the first one, we simply
modify the polynomials fa(x) by taking the inner sum in (5)
to go to ⌊ k

r ⌋ or ⌊ k
r ⌋ − 1 depending on whether i < k mod r or

not. As a result, the properties of the code do not change; in
particular, it remains optimal. To construct codes of arbitrary
length n, removing the constraint (r + 1)|n, we take the last
recovery set to be of a smaller size as needed. Most properties
of the code again do not change, although its distance can be
one less than the optimal value given by (3).

(iii) LRC REED-SOLOMON CODES: The codes introduced
in this section form a direct extension of the classical Reed-
Solomon codes; in particular, the code C is a k-dimensional
subcode of an (n, k + k

r − 1) RS code. Our construction also
reduces to Reed-Solomon codes if r is taken to be k. Indeed,
in this case the inner sum in (5) reduces to one term, so g(x)
is removed, and we recover the classical definition. Moreover,
the set A in this case can be an arbitrary subset of Fq, while
the locality condition for r < k imposes a restriction on the
choice of the locations.

(iv) SYSTEMATIC ENCODING: Any linear code can be
represented in a systematic way, but the described construction
can be modified to make this systematic representation explicit
and presented in algebraic terms. For i = 1, ..., k/r let
Bi = {βi,1, ..., βi,r} be some subset of Ai of size r. For
each set Bi define r polynomials ϕi,j, j = 1, ..., r of degree
less than r such that ϕi,j(βi,l) = δj,l , and similarly define
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m = n/(r+ 1) polynomials fi(x) such that fi(Aj) = δi,j. For
k information symbols a = (ai,j, i = 1, . . . , k/r; j = 1, . . . , r)
construct the polynomial

fa(x) =
k/r

∑
i=1

fi(x)
( r

∑
j=1

ai,jϕi,j(x)
)

. (7)

Define the evaluation code C(sys) := {evA( fa), fa ∈ P} where
P is the set of all polynomials of the form (7). It is easily
seen that this code is systematic, and the message symbols
are written in the locations of the sets Bi.

A useful general view of these remarks as well as of the
code construction itself is related to the study of properties
of the polynomial algebra FA[x] spanned by the polynomials
constant on the blocks of the partition A. This approach and
its connections to the code construction are further developed
in [16].

B. Piecewise-constant polynomials

In this section we show how to construct a partition A of
A ⊆ Fq and a polynomial g(x) of degree r+ 1 that is constant
on the blocks of the partition. Let F∗

q and F+
q denote the

multiplicative and the additive groups of Fq respectively. The
main idea is expressed in the following simple observation.

Proposition 2.2: Let H be a subgroup of F∗
q or F+

q . The
annihilator polynomial of the subgroup

g(x) = ∏
h∈H

(x − h) (8)

is constant on each coset of H.

Proof: Assume that H is a multiplicative subgroup and
let a, ah be two elements of the coset aH, where h ∈ H, then

g(ah) = ∏
h∈H

(ah − h) =h
|H| ∏

h∈H
(a − hh

−1
)

= ∏
h∈H

(a − h)

=g(a).

The proof for additive subgroups is completely analogous.
If H is a multiplicative subgroup of F∗

q , then g(x) in (8)
can be written as g(x) = x|H| − 1. Equivalently, we can take
g(x) = x|H|. Accordingly, the code length n can be any
multiple of r + 1 satisfying n ≤ q − 1 (or n ≤ q in the case
of the additive group). In Example 1 we made the following
choices: (i) H is the group of cube roots of unity modulo 13,
(ii) A = H ∪ 2H ∪ 4H a union of three cosets (note that we
can take any three cosets of the full set of cosets), and (iii)
g(x) = x3 (instead of g(x) = x3 − 1).

Example 2: In this example we construct an optimal
(12, 6, 3) LRC code with distance d = 6 using the additive
group of the field. Let α be a primitive element of the field F24

and take the additive subgroup H = {x + yα : x, y ∈ F2}.
The polynomial g(x) in (8) equals

g(x) = x(x + 1)(x + α)(x + α + 1)

= x4 + (α2 + α + 1)x2 + (α2 + α)x.

Let A be the union of any 3 out of the 4 cosets of H. For
a = (ai,j, i = 0, 1, 2; j = 0, 1) ∈ F6

24 let

fa(x) =
2

∑
i=0

(ai,0 + ai,1g(x))xi.

Constructing a code C by evaluating the polynomials fa(x) at
the points of A, we obtain an LRC code with locality r =
3. Note that any (12, 6) MDS code over F24 has minimum
distance d = 7 and locality r = 6. The distance of the code
C is only one less than that, but at the same time the locality
is decreased by a factor of two, from 6 to 3.

The method described above gives a way of constructing
piecewise-constant polynomials, while at the same time con-
straining the possible values of the code length due to the
natural divisibility constraints. We conclude by noting that
the additive and multiplicative structures of the field can be
combined into a more general method of constructing the
polynomials, increasing the range of options for the code
length [16, Section III.B].

III. EXTENSIONS: MULTIPLE RECOVERY SETS;
CORRECTING MORE THAN ONE ERASURE

A. Algebraic LRC codes with multiple recovery sets

In distributed storage applications there are fragments of the
data that are accessed more often than the remaining contents
(they are called “hot data”). In the case that such fragments are
accessed simultaneously by many users of the system, it may
be desirable to ensure that every symbol has several disjoint
recovery sets, increasing the instantaneous availability of the
data.

Using this as a motivation, let us generalize the definition
of LRC codes as follows. A code over the alphabet Q is said
to be locally recoverable with two recovery sets (an LRC(2)
code) if for every i ∈ {1, . . . , n} there exist disjoint subsets
Ri,1,Ri,2 ⊂ [n]\{i} and functions ϕi,j, j = 1, 2 such that for
every codeword c ∈ C

ci = ϕi,j(cℓ, ℓ ∈ Ri,j), j = 1, 2. (9)

Suppose that |Ri,1| ≤ r1, |Ri,2| ≤ r2 for all i (we do not
assume that r1 = r2). We write the parameters of an LRC(2)
code of dimension k as (n, k, {r1, r2}).

Among the obvious ways to construct LRC(2) codes are
various two-level constructions such as product codes or codes
on bipartite graphs. We focus on algebraic constructions,
extending the approach of the previous section to multiple
recovery sets.

Suppose that A1 (A2) is a partition of a set A ⊂ [n] into
subsets of size r1 + 1 (resp., r2 + 1). Call the partitions A1,A2
orthogonal if

|A1,i ∩ A2,j| ≤ 1 for all A1,i ∈ A1, A2,j ∈ A2.

If the partitions A1 and A2 are orthogonal, then it is possible
to construct a code in which every symbol has two disjoint
recovery sets of size r1 and r2. The construction relies on
polynomial evaluation and is very similar to the construction
of Section II-A. To give an example, consider the field F16. Its
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additive group F+
16 contains several pairs of subgroups G ∼=

H ∼= (Z2)
2 such that G ∩ H = 0. For instance, take G =

{0, 1, α, α4} and H = {0, α2, α3, α6}, where α is a primitive
element that satisfies α4 = α + 1. The subgroups G and H
define a pair of orthogonal partitions of F+

16 given by

AG = {G, α5 + G, α6 + G, α7 + G}
AH = {H, 1 + H, α + H, α4 + H}.

Using each of these partitions, we can construct an LRC code
C with the parameters (n = 16, k, {r1 = 3, r2 = 3}) of
dimension k, 1 ≤ k ≤ 8. Every coordinate of the codeword
can be recovered in two independent ways: for instance, the
coordinate cα is found by computing the polynomial δ1(x) of
degree at most 2 that passes through the points c0, c1, cα4 as
well as the polynomial δ2(x) that passes through cα5 , cα9 , cα11 .
Then we have cα = δ1(α) = δ2(α).

It is easy to identify a necessary and sufficient condition for
two subgroups to generate orthogonal partitions.

Proposition 3.1: Let H and G be two subgroups of a finite
group X, then the coset partitions H and G defined by H
and G respectively are orthogonal iff the subgroups intersect
trivially, namely

H ∩ G = 1.

If the group X is cyclic, then it is equivalent to requiring that
gcd(|H|, |G|) = 1.

In the context of finite fields we can use both the multiplicative
and the additive group of the field to construct LRC(2) codes.
It is also easy to find several subgroups that intersect trivially;
in particular, this is clearly possible for the additive group F+

q
in the case of a non-prime q. At the same time, constructing
LRC(2) codes from a multiplicative subgroup of Fq, q = pl

requires one extra condition, namely, that q− 1 is not a power
of a prime. In this case, we can find two subgroups of F∗

q of
coprime orders that give rise to orthogonal partitions of F∗

q .
Proposition 3.2: Let Fq be a finite field such that the q − 1

is not a power of a prime. Let r1, r2 > 1, gcd(r1, r2) = 1 be
two factors of q − 1. Then there exists an LRC(2) code C of
length q − 1 over Fq such that every code symbol has two
disjoint recovery sets of sizes r1 − 1 and r2 − 1.
The discussed construction gives codes with distance close to
the upper bound on LRC(2) codes derived in [17].

The definitions and constructions of this section extend
straightforwardly to an arbitrary number t ≥ 2 of recovery
sets, giving rise to easily constructible LRC(t) codes with the
parameters (n, k, {r1, . . . , rt}), where ri + 1, i = 1, . . . , t is
the size of the blocks in the corresponding partition. At the
same time, note that for t ≥ 3 better parameters are obtained
using random expanders; see [17, Theorem C]. Paper [17] also
contains results on upper bounds for codes with an arbitrary
number of recovery sets.

B. Correcting more than one erasure: (r + ρ − 1, r) Local
MDS Codes

A more general version of the local recovery problem calls
for correcting more that one erasure within each recovery set.
To address this task, we consider LRC codes in which the set

of coordinates is partitioned into several subsets of cardinality
r + ρ − 1 such that every local code is an (r + ρ − 1, r) MDS
code, where ρ ≥ 3. Under this definition, every symbol of
the codeword is a function of any r out of the r + ρ − 2
symbols, increasing the chances of successful recovery. A
compact notation for such codes is (n, k, r, ρ) LRC codes,
where n is the block length and k is the code dimension. A
generalization of the bound on the distance (3) to the case of
(n, k, r, ρ) LRC codes takes the form [11]

d ≤ n − k + 1 −
(⌈ k

r

⌉
− 1

)
(ρ − 1). (10)

As before, we will say that the LRC code is optimal if its
minimum distance attains this bound with equality.

We assume that (r + ρ − 1)|n and r|k, although the latter
constraint is again unessential. To construct the code using
the ideas of Sect. II-A, we begin with a partition A =
{A1, . . . , Am}, m = n/(r + ρ − 1) of the set A ⊂ F, |A| =
n, such that |Ai| = r + ρ − 1, 1 ≤ i ≤ m. Let g ∈ F[x] be a
polynomial of degree r + ρ − 1 that is constant on each of the
blocks Ai. Given a message vector a ∈ Fk, let us write it as
a = (a0, ..., ar−1) ∈ Fk, where each ai = (ai,0, ..., ai, k

r −1) is a
vector of length k/r. In analogy to (5), define the polynomial

fa(x) =
r−1

∑
i=0

k
r −1

∑
j=0

aijg(x)jxi.

The properties of the obtained codes are summarized in the
following theorem.

Theorem 3.3: Let C : Fk
q → Fn

q be a linear code defined
as the image of the evaluation map a 7→ evA( fa). Then C
is an optimal (n, k, r, ρ) LRC code in which local recovery
of an erasure at location α can be performed by polynomial
interpolation over any r locations of its recovery set.

IV. MORE ALGEBRAIC CONNECTIONS: CYCLIC LRC
CODES AND LRC CODES ON CURVES

In classical coding theory there are two code families related
to RS codes, namely cyclic codes and codes on algebraic
curves. Since the codes considered above can be viewed as
LRC analogs of RS codes, it is natural to consider these two
families in relation to our construction. It turns out that both
connections lead to new constructions of LRC codes as well
as new problems in algebraic coding theory. Sections IV-A
and IV-B below are based on [18] and [2] respectively.

A. Cyclic LRC codes

Cyclic codes form a well-established chapter in coding
theory, important both theoretically and in applications. To
construct cyclic LRC codes, we will rely on the multiplicative
structure of the field Fq. Let us choose the code length
n to be a divisor of q − 1 and let us assume that the
coordinates are labeled by n-th degree roots of unity in Fq, i.e.,
A = {1, α, . . . , αn−1}, where α is a primitive root. Suppose
that (r + 1)|n and let m = n/(r + 1) be their quotient.
We rely on Proposition 2.2 to construct the polynomial g(x).



6

Let H be a subgroup of the group F∗
q of order |H| and let

r = |H| − 1.
According to the discussion after Proposition 2.2, we can

take g(x) = xr+1. Examination of the expression (5) shows
that the polynomial fa(x) can be written in the form

fa(x) =

k
r (r+1)−2

∑
i=0

i ̸=r mod(r+1)

aixi, (11)

where the ai’s form the message vector. Following the con-
struction (6), we obtain an LRC code, denoted by C.

It is clear that the code C is cyclic, and it is easy to find
its defining set of zeros. From the classical BCH bound it is
well known that a set of d − 1 consecutive zeros guarantees
that d(C) ≥ d. The following theorem supplements this claim
by identifying the set of zeros of C that supports the locality
property.

Theorem 4.1: Consider the following sets of elements of
Fq :

L = {αi, i mod(r + 1) = l}
D = {αj+s, s = 0, . . . , n − k

r (r + 1)},

where 0 ≤ l ≤ r and αj ∈ L. The cyclic code with the defining
set of zeros Z := L ∪ D is an optimal (n, k, r) q-ary cyclic
LRC code3.

If the set Z contains cosets of two groups of roots of unity
of coprime orders r1 + 1 and r2 + 1, then this gives rise to an
LRC(2) code (n, k, {r1, r2}) which has two disjoint recovery
sets for every coordinate.

The following obvious remark sometimes facilitates the
analysis of cyclic LRC codes.

Proposition 4.2: Let C be a cyclic LRC code with locality
r. Suppose that d⊥ is the distance of the dual code C⊥, then
r = d⊥ − 1.

So far we were interested in RS-type LRC codes. Subfield
subcodes of these codes form a natural analog of the family
of BCH codes. Their properties are not so easy to analyze in
general, but one possibility has been suggested in [18]. Let
C be an (n, k, r) LRC code over Fqm and denote by C|Fq
the subcode of C formed by the codewords whose coordinates
are contained in Fq. Suppose we attempt to construct LRC
codes over Fq as subfield subcodes of RS-type LRC codes
over Fqm . Since C|Fq ⊂ C, we have that d(C|Fq) ≥ d(C). At
the same time, the dual distance of a cyclic LRC code (C|Fq)

⊥

may, and often does, decrease from its original value r + 1.
Thus, studying subfield subcodes is an appropriate context for
constructing cyclic LRC codes over small alphabets with good
distance and small locality.

B. LRC codes on algebraic curves

The RS-type LRC codes constructed above solve the prob-
lem of local recovery for codes of length n that is on the
order of the size of the alphabet q. Consider again the problem

3We note that the sets L and D have a nonempty intersection, but their
common elements appear in Z only once.

of constructing long LRC codes for a fixed alphabet size. In
classical coding theory good codes of this kind are obtained
using the Goppa construction of codes on algebraic curves.
Here we show how this approach can be utilized for codes
with the locality constraint.

We begin with another view of the construction of RS-type
LRC codes (4)-(6), focusing on the polynomial g(x). Let k =
Fq denote the code alphabet. Recall that g : k → k defines
a mapping such that there are exactly r + 1 points that are
mapped to every point in the range of g. In other words, we
have |g−1(P)| = r + 1 for all P in the range. Switching to
geometric language, let X = Y = P1 denote the projective
line over the field k, then g : X → Y is a covering map
of lines such that the fiber above any point of Y in its range
contains exactly r + 1 points of X. For instance, in Example 1
the range of g : x 7→ x3 is the set {P1 = 1, P2 = 8, P3 = 12}
and g−1(Pi) = Ai, i = 1, 2, 3.

This view of our construction suggests the following gener-
alization to codes on curves. Let X and Y be smooth projective
absolutely irreducible curves over k and let g : X → Y be a
rational separable map of curves of degree r+ 1. For example,
let k = F9 and consider the Hermitian curve X of genus 3
given by the equation x3 + x = y4. The curve X has 27 points
in the finite plane, shown in Fig. 2 below, and one point at
infinity.

α7 • • • •
α6 •
α5 • • • •
α4 • • • •

x α3 • • • •
α2 •
α • • • •
1 • • • •
0 •

0 1 α α2 α3 α4 α5 α6 α7

y

Fig. 2: 27 points of the Hermitian curve over F9; here α2 = α + 1.

Take Y = P1
k

, then we can take g to be the map of degree
r + 1 = 3 given by the natural projection g : (x, y) 7→ y.
Another possibility is a degree-4 map g : (x, y) 7→ x whose
range does not include the points 0, α2, and α6.

More generally, let k(X) and k(Y) denote the fields of ra-
tional functions on X and Y. By the primitive element theorem
there exists a function x ∈ k(X) such that k(X) = k(Y)(x)
and that satisfies an algebraic equation of degree r + 1 over
k(Y). The function x can be considered as a map x : X → P1

k
,

and we denote its degree deg(x) by h.
The codes that we construct again belong to the class of

evaluation codes. Let S = {P1, . . . , Ps} ⊂ Y(k) be a subset
of k-rational points of Y in the finite space, and let Q∞ be
a positive divisor of degree ℓ ≥ 1 such that supp Q∞ ⊂
π−1(∞), where π : Y → P1

k
is a projection map. To construct

our codes let us assume that

A := g−1(S) = {Pij, i = 0, . . . , r, j = 1, . . . , s} ⊆ X(k);
(12)
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g(Pij) = Pj for all i, j.

Let { f1, . . . , fm} be a basis of the Riemann-Roch space
L(Q∞). Our codes will be constructed as evaluations of
functions in the k-subspace V of k(X) generated by the
functions

{ f jxi, i = 0, . . . , r − 1, j = 1, . . . , m} (13)

(note an analogy with (5)).

Definition 3: (LRC codes on curves). Consider the evalua-
tion map

evA :V −→ k
(r+1)s

F 7→ (F(Pij), i = 0, . . . , r, j = 1, . . . , s),
(14)

and denote its image by C(Q∞, g). It is a linear code in the
space Fn

q , n = (r + 1)s, and since supp Q∞ ∩ S = ∅, the
code is well defined.

The code coordinates are naturally partitioned into s subsets
Aj = {Pij, i = 0, ..., r}, j = 1, . . . , s of size r + 1 each; see
(12).

Theorem 4.3: The subspace C(Q∞, g) ⊂ Fq forms an
(n, k, r) linear LRC code with the parameters

n = (r + 1)s
k = rm ≥ r(ℓ− gY + 1) (15)
d ≥ n − ℓ(r + 1)− (r − 1)h,

provided that the right-hand side of the inequality for d is a
positive integer. Local recovery of an erased symbol F(Pij) can
be performed by polynomial interpolation through the points
of the recovery set Aj.

In particular, let us specialize this construction for codes on
Hermitian curves. Let q = q2

0, where q0 is a prime power, let
k = Fq, and let X be the Hermitian curve, i.e., a plane smooth
curve of genus g0 = q0(q0 − 1)/2 with the affine equation

X : xq0 + x = yq0+1.

The curve X has q3
0 = q

√
q rational points in the affine plane.

By taking g to be the projection on y as discussed above we
obtain a family of LRC codes with the parameters

n = q3
0, k = (ℓ+ 1)(q0 − 1), r = q0 − 1

d ≥ n − ℓq0 − (q0 − 2)(q0 + 1).

It is also possible to take g to be a projection on x, which gives
a family of LRC codes with similar parameters and locality
r = q0.

Asymptotically good code families. As in classical coding
theory, we obtain infinite families of codes with good pa-
rameters by taking asymptotically maximal curves such as,
for instance, the Garcia-Stichtenoth towers of curves. These
curves are constructed by successively extending the function
fields, adding algebraic elements that satisfy equations similar
to the equation that defines the Hermitian curves. Similarly
to the Hermitian case, there are several variants of the code
construction. For instance, it is possible to construct a family

of q-ary LRC codes whose rate and relative distance satisfy
the asymptotic inequality

R ≥ r
r + 1

(
1 − δ −

2
√

q
q − 1

)
, (16)

where r =
√

q and q = q2
0 for some prime power q0. For

q0 ≥ 23 this bound improves upon the Gilbert-Varshamov
type bound for LRC codes discussed in the next section (see
an example in Fig. 3).

LRC codes
on curves

LRC GV bound

0.0 0.2 0.4 0.6 0.8 1.0
∆

0.2

0.4

0.6

0.8

1

R

Fig. 3: The bound (16) shown together with the Gilbert-Varshamov
type bound (q0 = 32).

While this construction yields sequences of codes with
asymptotically good parameters, its locality parameter r is
fixed once we choose the code alphabet. In principle one would
want to have flexibility in choosing r in a way similar to the
construction of RS-type LRC codes. This is indeed possible by
studying certain quotients of curves in the Garcia-Stichtenoth
tower. As a result, we obtain asymptotically good codes over
a fixed field Fq with a range of values of r with parameters
similar to the ones mentioned above.

Concluding this section, note that the proposed approach
generalizes to codes with more than one recovery set for every
coordinate (the so-called availability problem). Indeed, when
discussing the example in Fig. 2 we remarked that there are
two natural maps from X to P1. A closer look confirms that
together they define a pair of orthogonal partitions of the set of
n = q3

0 − q0 − 1 affine points of the Hermitian curve, giving
rise to an LRC code of length n with two disjoint recovery
sets for rdeach codeword symbol.

V. BOUNDS ON THE PARAMETERS OF LRC CODES

Here we discuss bounds on the rate and distance of LRC
codes introduced in Definition 1. It can be easily seen that the
rate of any LRC code C with locality r is at most R(C) ≤
r/(r + 1). Intuitively this is justified by the fact that any r + 1
codeword symbols within a recovery set satisfy a functional
relation, so they contain at most r information symbols.

How large can d(C) be? Even in the classical coding
problem, this question is addressed in more than one way,
depending on whether we account for the value of q or not. The
Singleton-type bound (3), discussed above, does not depend
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on the size of the alphabet. A bound that accounts for the
value of q, proved in [3], has the following form:

k ≤ min
s≥1

{sr + kq(n − s(r + 1), d)}, (17)

where kq(n, d) is the maximum dimension of a code of length
n and distance d over Fq (with no locality assumptions).
It is also possible to derive lower Gilbert-Varshamov-type
bounds on the parameters of LRC codes using the probabilistic
method, bringing the state of bounding the parameters of LRC
codes to the same status as bounds on classical error correcting
codes. In particular, sequences of codes of asymptotically
positive rate exist if and only if the number of correctable
errors does not exceed the (q − 1)/2q proportion of the code
length. The results of [3], [17] imply that the same conclusion
is valid once we add the locality constraint (for any constant
r). Therefore, adding the locality constraint does not shift the
“Plotkin point” for asymptotic relative distance from the value
(q − 1)/q. The best asymptotic lower and upper bounds on
LRC codes are shown in Fig. 4.

Fig. 4: Asymptotic bounds for the rate R of binary LRC codes as
a function of the relative distance δ; r = 3. The upper curve is

obtained from the bound (17), and the lower curve is a GV-type
bound.

VI. OUTLOOK

A. LRC codes in industry

Apart from their theoretical merits, LRC codes offer an
efficient solution for data protection in large-scale distributed
storage systems. Data encoding schemes employed by com-
panies using or providing distributed storage solutions are
based primarily on the ease of implementation, update, and
maintenance. Driven by these metrics, companies are mostly
interested in implementing LRC codes that provide the locality
property only for the information part of the codeword. Codes
with this property are said to have information symbol locality.
It turns out that constructing such codes with good minimum
distance is relatively simple, which is why these codes are
popular in current industry solutions.

To construct an (n, k, r) LRC code with information symbol
locality and good minimum distance, begin with an (n− k

r , k)
MDS code (typically an RS code). To account for locality,
let us partition its k information symbols into k/r disjoint
sets of size r and add one parity check symbol for each set.

X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 Y4 Y5 Y6 P1 P2

Px Py

Fig. 5: (16, 12, 6) LRC code used in Windows Azure storage [10].

This results in a code of length n with information locality r.
Examples of LRC codes constructed in this way are already
used in practice or have been tested by industry, and here we
list a few of them.

The free software storage platform Ceph enables the users
to protect their information by simple replication, RS code, or
an LRC code. In another project [13], the authors constructed a
(16, 10, 5) LRC code based on the (14, 10) RS code and tested
it on a cluster at Facebook’s data warehouse. The construction
proposed in [13] has in fact the all-symbol locality property.
Finally, Windows Azure Storage (WAS), Microsoft’s scalable
cloud storage system that has been in use for some years [10],
uses a (16, 12, 6) LRC code shown in Fig. 5. Here P1 and
P2 are the global parities found from all the 12 information
symbols Xi, Yi, i = 1, ..., 6. They are employed in cases of
more than one failure among the nodes. The symbols Px
and Py are the parities that provide local recovery for the
information symbols by accessing 6 other symbols within the
recovery set.

Encouraged by the fast embrace of LRC codes by large-
scale users of distributed storage, we believe that there is
room for implementation and testing of other code families
with the locality property. Specific storage applications may
benefit from all-symbol locality or large minimum distance. At
the same time, the solutions should be tailored to the needs
of the application, including update complexity, security and
availability of the data, and other features.

B. LRC codes on graphs
An interesting generalization of the LRC coding problem is

related to local recovery that is constrained by the topology
of the computer network. Consider a graph on n storage
nodes whose edges describe the available communication links
between the nodes. Similarly to the problem studied above,
we require that every node can recover its storage contents
by reading the information stored in its neighbor nodes in
the graph. A set of vectors over a finite alphabet that can be
stored in the nodes to satisfy this constraint, forms an LRC
code on the graph, and we seek such codes of the largest
possible size. This problem was recently introduced in [12]
(in a different form, it was also studied earlier in [5]). It is
also shown to be (in some sense) a dual of the well-known
index coding problem [12], [14]. Major open questions in this
area include finding constructions of good codes for the graph
LRC problem, for instance, for families of graphs with some
structure, as well as advancing connections between LRC
codes and index coding.

C. Maximally recoverable codes: Can a code be LRC and
MDS?

MDS codes form a practically appealing family because
they provide the best possible error resilience for a given
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amount of storage overhead. In formal terms, this amounts to
saying that any k symbols in a k-dimensional MDS code form
an information set. At the same time, the locality constraint
requires some dependence among the codeword symbols, so
locality and the MDS property cannot be combined in one
construction. How close to being both MDS and LRC can
a code be? This question brings in the following natural
definition: Call an (n, k, r) LRC code maximally recoverable
[6] if every k coordinates that do not contain a full recovery
set form an information set. Note any k-subset that contains a
recovery set cannot be an information set.

For large sets of parameters (n, k, r) maximally recoverable
codes have been constructed in [15], [19], [6]; however,
none of these results yield code families over alphabets q
of size comparable to the code length. At the same time,
as shown above, it is possible to construct LRC codes over
small alphabets. This gives rise to the following open problem:
is it possible to construct maximally recoverable codes with
small q, or does maximality necessarily require a superlinear
alphabet size?

Observe that the maximality property is not resolved even
for the RS-type LRC code family presented in this paper: we
do not know if (apart from the trivial cases of r = 1, k) among
the constructed codes there are maximally recoverable ones.

D. AG codes: Parameters and availability

The construction of LRC codes on curves in Sect. IV-B
is rather general in the sense that it applies to any pair of
curves equipped with a covering map. At the same time, the
estimates of the parameters of the obtained codes derived
using this general approach do not take into account specifics
of individual families of curves, and for this reason may
be somewhat crude. Thus, the initial results reported above
could be specialized and improved in examples that rely on
properties of specific curves and their maps.

Another problem, mentioned only very briefly in Sect. IV-B
and in [2] concerns the availability problem for algebraic
geometric codes. While we have explored the most natural
approach to this problem, the parameters of the obtained codes
are far from optimal. It may be possible to obtain better LRC
codes relying on the automorphism groups of curves and their
codes, and we envision this as another avenue for further
studies.

Yet another topic of possible studies is related to decoding
of the constructed codes. While we have focused on local
erasure recovery, occasionally we will face the task of global
decoding for the purpose of error and erasure correction. Here
we tacitly rely on the existing decoding algorithms of algebraic
geometric codes, although conceivably the structure of our
codes could support decoding algorithms designed specifically
for this family. It is also of interest to explore the connection
of these codes with generic list decoding algorithms of codes
on curves.
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