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Concatenated Codes: Serial and Parallel
Alexander Barg, Senior Member, IEEE, and Gilles Zémor, Member, IEEE

Abstract—An analogy is examined between serially concate-
nated codes and parallel concatenations whose interleavers are
described by bipartite graphs with good expanding properties. In
particular, a modified expander code construction is shown to be-
have very much like Forney’s classical concatenated codes, though
with improved decoding complexity. It is proved that these new
codes achieve the Zyablov bound on the minimum distance.
For these codes, a soft-decision, reliability-based, linear-time
decoding algorithm is introduced, that corrects any fraction of
errors up to almost 2. For the binary-symmetric channel, this
algorithm’s error exponent attains the Forney bound previously
known only for classical (serial) concatenations.

Index Terms—Bipartite-graph codes, concatenated codes, ex-
pander codes, Forney bound, min-sum algorithm, soft-decision
decoding, Zyablov bound.

I. INTRODUCTION

CODE concatenation is the method of choice for con-
structing code families with good asymptotic as well as

practical properties. The general idea can be traced back to
Elias’s product code construction, developed later by Forney
[1] into a simple and powerful concatenated code construction.
Another important idea in the area of combining codes is due
to Tanner [2]; it is now seen as generalizing Elias’s product
codes by allowing arbitrary permutations (“interleavers”) to
be used in the choice of ways for the information symbols
to appear in check equations of the constituent codes. Codes
associated with bipartite graphs form an instance of the general
construction termed “parallel concatenation” which covers also
turbo-like code constructions. The counterpart of this construc-
tion, termed “serial concatenations” came into use recently to
describe concatenated codes in the sense of Forney and other
similar constructions (see, e.g., [3]).

The main line of thought pursued in this paper is to examine
the analogy between the two versions of concatenated codes,
those by Forney and Tanner. The latter class, in particular, con-
tains expander codes of Sipser and Spielman [4] and their later
modifications. One of our goals will be to prove that, roughly
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speaking, “whatever can be achieved with Forney’s concate-
nated codes and their generalizations, can be also achieved with
Tanner codes and their appropriate generalizations,” except that
for Tanner codes the decoding complexity is lower by a factor
proportional to the code length, going down from to

.
In Section II, we recall serial and parallel concatenations.

While the idea of describing parallel concatenated codes in a
way similar to the serial construction is implicit in numerous
earlier works, we believe this is the first time it is presented
explicitly. Below, we offer a description of parallel codes that
strives to expose the analogy to the fullest possible degree, the
difference being essentially imposed by the decoding procedure.

In Section III, we develop a modified construction of parallel
concatenations. A new decoding algorithm which employs soft
reliability information is presented in Section III-C. The main
result of this paper is a proof, in Section III-D, that Forney’s
bound on the error exponent of serial codes is attainable with
parallel codes whose interleavers are defined by expander
graphs. This proof involves a nontrivial generalization of the
link [4], [5] between the convergence of iterative decoding
and the spectrum of the underlying graph. As a byproduct, it
is proved in Section III-E that parallel concatenation achieves
the Zyablov bound on the minimum distance, defined in (1)
below, and corrects a fraction of errors.

The parallel concatenation method discussed here was
briefly introduced in [6, Sec. 6] where it was shown that it
can actually surpass Forney’s exponent, but by methods valid
only in the range of code rates close to capacity, and at the
expense of randomizing the encoding procedure (but keeping
decoding deterministic and linear time). In concurrent research,
Guruswami and Indyk [7] introduced a somewhat different
construction of expander codes that they have shown to attain
the Zyablov bound and correct a fraction of errors.
While in retrospect the two constructions come close, a notable
difference lies in the decoding method which relies on gener-
alized minimum distance (GMD) decoding in [7], whereas the
present work uses the min-sum version of message passing.

Let us introduce some notation. We write to de-
note a linear code of length , dimension , and distance .
The alphabet of the code can be binary or -ary for some value
of . The Hamming weight is the number of nonzero
coordinates of the vector . By we denote
the Hamming distance.

We assume transmission over a binary-symmetric channel
(BSC) with transition probability , denoted below by BSC .
Let denote the binary en-
tropy function (the base of the logarithms is throughout). Let

denote the Gilbert–Varshamov (GV)
relative distance for the rate .
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Throughout the paper, we will consider probabilities of dif-
ferent events expressed in the form where is a
large positive number and a nonnegative function of the code
parameters. In such situations, will be called the exponent of
the probability or the error exponent if the event we have in mind
is a decoding error.

Finally, let be the “random coding exponent” [8].
For we have

where

, is the critical
rate, and is the channel capacity. For rates

the random coding exponent has the following form:

where . It is well known that
for large code length there exist families of linear codes of
rate whose distance approaches the GV bound and the
error probability of maximum-likelihood decoding behaves as

, where is an arbitrarily small
quantity.

II. CODE CONCATENATIONS: CONTEXT

A. Serial Concatenations

Let and be two additive bi-
nary codes of length . The product code is formed by taking
a direct product ; it therefore has length , rate ,
and distance . A typical codeword of the code can be
thought of as a matrix in which each row is a code-
word in and each column a codeword in . These conditions
lead to an obvious form of the parity-check matrix of :
for every the subset of coordinates

must satisfy the parity-check equations
of the code ; for every the subset of coordi-
nates must satisfy the
parity-check equations of the code . Generally, this set will
contain some dependent equations, nevertheless it is a conve-
nient way of representing . For definiteness we call the row
code the outer code and the column code the inner code.

Serially concatenated codes in the sense of Forney [1] gener-
alize this construction as follows. Let be the dimen-
sion of the (inner) code . The outer code will now be a -ary

linear code with . A typical codeword
of the concatenated code can be thought of as a binary
matrix in which the th column, , represents an en-
coding with the code of the binary representation of the th
symbol of the Reed–Solomon (RS) codeword. The length of the
code equals , the rate is . The minimum
distance in general is not easy to compute; obviously, it is at
least , but can be much greater than that. The number

is called the designed distance of the code .

A somewhat more general version of this construction is ob-
tained if instead of one -ary code we use independent en-
codings with a binary outer code of length . This results
into codewords of the outer code, viewed as an bit string.
Then the bits of this encoding are permuted in some way and en-
coded to form codewords of the code . (For instance, in the
previous paragraph the permutation is simply

.) The resulting bit string is, by definition, a
codeword in the code which is a serial concatenation of the
codes and . Serially concatenated codes in the sense of this
description were studied in the 1990s, see [3] and references
therein. Later in our discussions of serial concatenations we con-
fine ourselves to the original construction of [1].

To describe decoding of serial concatenations let
be the vector received from the channel.

For the purposes of analysis, we assume that the all-zero vector
was transmitted (this assumption will be taken throughout the
paper in similar situations). First, for every , the vector is
decoded with the code using maximum-likelihood decoding.
The result is a collection of codewords of .
Next, some decoding with the code is applied to the message
parts of these codewords, viewed as a received vector for the
code . If one wishes to keep the overall decoding complexity
of polynomial, the best results under this decoding proce-
dure are obtained if is an algebraic code (say, an RS code)
decoded with the so-called GMD decoding algorithm [1] (see
[9, pp. 1964–1967] for applications to serially concatenated
codes). Then the decoding procedure described corrects every
combination of errors of weight up to half the designed distance

. To maximize the value of , choose to be a linear binary
code meeting the GV bound and an RS code. Then, as

increases, the relative distance approaches the
Zyablov bound [10]

(1)

For this code family, concatenated decoding corrects a
fraction of errors. This bound is attained with a decoding
complexity.

The error exponent attained under concatenated decoding sat-
isfies Forney’s bound [1]

(2)

The decoding complexity is again .

B. Parallel Concatenations: Bipartite-Graph Codes

Let be a bipartite -regular graph with
the vertex set , , where every edge
in has one end in and the other in . Let us choose an
arbitrary ordering of the edges of the graph which will
be fixed throughout the construction. For a given vertex
this defines an ordering of edges incident
to it. We denote this subset of edges by . For a vertex in
one part of the set of vertices in the other part adjacent to will
be also called the neighborhood of the vertex , denoted .
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Let and be two additive bi-
nary codes of length . Let us define the bipartite-graph code

to be the binary code of length consisting of
all vectors such that, for every vertex , the sub-
vector belongs to code (resp.,

). The redundancy of the overall code is not more than the
sum of the redundancies of all the vertex subcodes, therefore,
the rate of the code is at least where is
the rate of and is the rate of .

Viewed from a somewhat different perspective, this construc-
tion simply suggests to encode the message symbols of the code
into codewords of the code and independently encode the
same message symbols into codewords of the code . Iter-
ative decoding of parallel concatenations performs well if be-
tween the two encoding stages, the message stream is permuted
according to some rule (called an interleaver) [11]. The bipartite
graph is thus a convenient way to describe this interleaver.

The above graphical construction of a code was introduced in
Tanner [2] (though without necessarily requiring that be bi-
partite, a feature that will be important to us for decoding). First
we note that the product codes of the previous section form a
particular case of it, because they can be seen as a bipartite graph
code with , the complete bipartite
graph on vertices. Thus, product codes can be viewed as a
seed for both serially and parallel concatenated codes.

Tanner’s construction has an advantage of adding flexibility
to the original product code construction: the idea of using other
graphs instead of suggests itself naturally. In particular,
Sipser and Spielman [4] associated the performance of these
codes under a linear-complexity iterative decoding procedure
to the additional requirement that be an “expander graph,”
and suggested the name expander codes. That is an expander
graph means that it has a second eigenvalue which is small
compared to the degree . For example, can be chosen to be
a Ramanujan graph, for which . The codes con-
structed in [4] are asymptotically good and have the following
parameters.

Theorem 1: [4] Let be a binary linear code
and let be a -regular graph with second largest eigenvalue .
The corresponding expander code has param-
eters with rate and relative
distance with .

The first use of expander graphs to construct asymptotically
good codes appeared in [12]. Expander codes were further
studied in [13], [6], [7], [5] among others. In the sequel, we also
will assume that the graph is Ramanujan, so that .

It is often convenient to choose the component codes and
over the alphabet of letters; in this case, to every edge

there correspond coordinates of the codeword of , where
is some constant. Equivalently, each edge in the graph is

replaced by a bundle of parallel edges. In the next sections, we
will work with this version of the construction.

C. Expander Decoding

Let be a vector. A left-decoding round consists
of decoding in parallel with the code the subvectors for

every . Likewise, a right-decoding round applies de-
coding with the code to the subvectors for every .
In this subsection, decoding of the component codes is assumed
to be maximum likelihood.

Let be the vector received from the channel.
The expander decoding scheme of [5] consists of performing
successive decoding steps of the form ,

. Decoding terminates by either encountering a
fixed point or performing decoding steps.

To study asymptotic properties of expander codes and of this
decoding we assume throughout that is a suitably chosen
constant and the number of vertices . Then the overall
decoding procedure can be performed by a circuit of size

or by an sequential algorithm.
A sufficient condition for convergence of expander decoding

was established in [5]. Slightly reworded as in [13] it reads as
follows.

Lemma 2: [5] Let be the subset of vertices decoded
incorrectly in any even-numbered (odd-numbered) iteration. If

, where ,
then expander decoding converges to the right decision in

additional iterations.

The study of the error probability of expander decoding was
initiated in [13] where it was shown that this probability de-
creases exponentially for all code rates below the capacity of
the BSC; this is the first known result of this kind for low-density
parity-check codes and simple iterative decoding procedures.
The behavior of the error exponent was further analyzed in [6]
for code rates approaching , which is also the region that
receives most attention in coding theory. Improved estimates of
the exponent obtained in that paper required nontrivial modifi-
cations of the code construction and expander decoding.

The analysis of the properties and decoding performance of
expander codes relies in part on the following lemma. For a
vertex of and a subset of vertices, denote by
the number of edges incident to and to a vertex of .

Lemma 3 [6]: Let be a -regular bipartite
graph, , with second eigenvalue . Let ,

. Let , where . Let be
defined by , then

In particular, if and and are fixed, then

Suppose, for instance, that we are interested in the error
probability of the basic version of expander decoding described
above. Let be the received vector, and the vector ob-
tained after the first (left) decoding iteration. By choosing a
sufficiently large , the error probability for a left vertex to be
incorrectly decoded in the first round can be made arbitrarily
close to . In the second iteration, for a right
vertex to be decoded incorrectly it needs to have at least
incorrect edges adjacent to it. By Lemma 3, if the subset of
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left vertices incorrectly decoded after the first iteration is of
size then the size of the set of right vertices
whose -degree exceeds is small. Hence,
most subvectors , will be decoded correctly in the
second iteration. That the remaining errors will be removed in
subsequent iterations is guaranteed by Lemma 2. The value of
the error probability of expander decoding established by this
analysis is (arbitrarily close to) [13]

Apart from the error probability, another parameter of interest
is the fraction of errors correctable by expander decoding. The
original result of [4] gave a bound close to where is the
bound on the relative distance of the expander code given in
Theorem 1. In [5], this estimate was improved to by an ap-
plication of expander decoding. An improved bound on the dis-
tance of the codes (but not on fraction of correctable errors) was
given in [13]. Recently, the GMD algorithm was used for ex-
pander codes [14] to show that they can correct close to
fraction of errors, where is again the quantity in Theorem 1.

In Section III, we present a somewhat different parallel
concatenated construction and prove that under (modified)
expander decoding it provides an exponentially smaller error
probability. Without increasing the order of the decoding com-
plexity from the basic expander construction we will show that
the modified construction attains the Zyablov bound (1) on the
relative distance and the Forney bound (2) on the error expo-
nent. We also prove that the decoding algorithm introduced in
Section III-C below corrects close to a fraction of errors.

III. MODIFIED PARALLEL CONCATENATED BLOCK CODES

A. The Construction

Let be a bipartite graph whose parts are (the
left vertices) and (the right vertices), where
for . The degree of the left vertices is , the degree
of the vertices in is , and the degree of vertices in is

. For a given vertex we denote by the
set of all edges incident to it and by , the
subset of edges of the form , where . The ordering
of the edges on defines an ordering on . Note that both
subgraphs , , can be chosen to be
regular, of degrees and , respectively. We require that the
first subgraph be Ramanujan.

Let be a linear binary code of rate
. The code can also be seen as a -ary additive

code, . Let be a -ary
additive code. These codes will play a role analogous to

the inner and outer code of the serial concatenated construction.
Apart from them, we will need an auxiliary -ary code
of length . The code is defined as the set of vectors

such that (see Fig. 1)

1) for every vertex , the subvector is a
( -ary) codeword of and the set of coordinates is
an information set for the code ;

2) for every vertex , the subvector is a
codeword of ;

Fig. 1. The code construction.

3) for every vertex , the subvector is a
codeword of .

We will choose the minimum distance of the
code so as to make the quantity arbitrarily small,
where is the second eigenvalue of . By choosing large
enough, the rate of can be thought of as a quantity
such that is almost . The role of this code

will become apparent when we describe and analyze the
decoding procedure.

This construction in a different form appears briefly in [6].
It has been recast here to stress the analogy with serial con-
catenations. The rate of the code is given by the following
proposition.

Proposition 4: The code has length and the rate
. Hence, for any there exists

a certain value of , independent of , such that

Proof: To estimate let us calculate the number of
parity-check equations of the code . We obtain

This implies the claimed estimate of .

The key issue about the preceding construction is defining an
appropriate decoding procedure and evaluating its properties in
terms of the number of errors corrected and the error probability
of decoding.

First, let us estimate the minimum distance of .



BARG AND ZÉMOR: CONCATENATED CODES: SERIAL AND PARALLEL 1629

B. Minimum Distance

We recall the following lemma from [5].

Lemma 5: Let , . The average degree of
the subgraph of induced by and satisfies

Theorem 6: The minimum distance of satisfies

Proof: Let be a nonzero codeword of ,
let and be, respectively, the set of vertices of (resp.,

) for which the subvector is nonzero.
By definition of , every vertex of has degree at least

in and every vertex of has degree at least , so that
Lemma 5 implies

which is rewritten as

(3)

and because and are assumed to be positive
quantities, (3) yields

(4)

(5)

Let , let , and let . If
, then which means

and implies

which proves (slightly better than) the theorem. We may there-
fore assume that and Lemma 3 applies and gives

which together with (5) yields

and

Together with this proves the theorem.

Proposition 4 and Theorem 6 together show that the family
of (modified) expander codes studied in this section reached the
Zyablov asymptotic bound (1) on the code parameters. Indeed,
for any given it is possible to choose large enough
(but independent of ) so that the relative distance satisfies

. Similarly, by choosing large enough it
is possible to make the -ary relative distance of the code
arbitrarily close to the -ary GV distance defined as the (smaller)
root of

Moreover, it is also possible to choose large enough so that the
-ary GV distance is arbitratily close to . To summarize,

for any , there exist large but fixed and such that sat-
isfies . Then the relative distance of
Theorem 6 comes close to .

C. Decoding of the Code

Recall that in the case of serially concatenated codes, a naive
decoding algorithm (decoding the inner codes up to half the
minimum distance, then the outer codes by the same procedure)
guarantees correction of about of the designed distance of
codes . Similarly, by performing maximum-likelihood
decoding of the inner codes and then algebraic decoding of the
outer codes, we can attain the exponent of the error probability
equal to , where is given by (2). By taking into account
the reliability information obtained by the decoder of the inner
code and using it in the GMD algorithm for the code we
can double the attainable error exponent making it close to .
Accordingly, there are two versions of iterative decoding of :
a “hard” version and a “soft” version.

1) Hard-Decision Decoding: Decoding is defined as an it-
erative procedure. In the first iteration, every subvector ,

of the vector received from the channel is decoded with
the binary code using maximum-likelihood decoding. Denote
by the result of this iteration. For the rest of the iterative pro-
cedure we forget about the symbols indexed by and shorten

to the set of coordinates indexed by . We next submit
the resulting vector to expander decoding (Section II-C) with
the expander code defined by the subgraph
and the -ary codes (the left code) and (the right code).
If, upon terminating, this decoding produces a codeword of the
code , then by conditions 1) and 3) of construc-
tion III-A for every vertex we have found information
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symbols of the left codewords, which enables us to reconstruct
the transmitted codeword.

The hard-decision version of decoding can be analyzed pretty
much the same way as before: namely, the proportion of cor-
rectable errors can be seen to be arbitrarily close to ,
as in [5] and [13] and the error exponent arbitrarily close to

. Note, however, that the rate of the overall code
is improved with the modified construction.
2) Soft-Decision Decoding: This is a refinement of the

“hard version” based on the following idea. The code is
used only once in the first step of the hard decoding algorithm
to take a decision about the binary vectors transmitted in the
neighborhood of each vertex . Instead, we propose
to use this code to gather information about the reliability of
the -ary symbols transmitted on the edges and pass
that information to the vertices in . A vertex receives this
information from the adjacent vertices in and then performs
decoding of the code that outputs a codeword with the max-
imum total reliability of its -ary symbols. In other words, the
algorithm described in this section performs, in its first stage,
depth-two soft decoding of the code , and then proceeds with
regular expander decoding of the code . A
formal description follows.

The first iteration of decoding is performed in parallel for
every vertex and the corresponding received subvector

. The decoder computes, for every symbol of the -ary
alphabet, and for every (multiple) edge incident to ,
the weight of the edge with respect to as follows:

where by we denote the -ary coordinate of the codeword
that corresponds to the edge , and where is the binary

Hamming distance. This information is passed along the edge
to the corresponding right decoder. No changes in the received
vector are made up to this point. In the second iteration, for
every vertex , the right decoder associated to it finds a
-ary codeword that satisfies

(6)

and passes along the edge , to a vertex
in . Then decoding reverts to hard decisions, i.e., as before
alternates between left and right -ary maximum-likelihood de-
coding of the expander code .

Let us provide some more detail about the first two stages
of the described procedure. Consider a right vertex .
The edges incident to it connect with some left ver-
tices . The subset of edges incident to ,

consists of (multiple) edges one of which goes
into and the other connect with some right vertices
in or (see Fig. 2, where these right vertices are replicated
to the left of the part ). Let us consider the projection of the
code on the coordinates in the depth-two neighborhood of ,
i.e., the coordinates that correspond to the edges in the subset

. The projected code (which is
simply the punctured code ) can be also thought of as a serial
concatenation of the codes and . It is a binary linear code

Fig. 2. The depth-two code (part V of the graph G not shown).

of length and rate .1 After some thought it
becomes clear that the algorithm described in the previous para-
graph performs a version of maximum-likelihood decoding of
the code restricted to the coordinates incident to the vertex .
We also note that this procedure is an instance of a general pro-
cedure known in iterative decoding as the min-sum algorithm
[2], [15].

D. Error Exponents

Let us turn to the analysis of the error probability for the
soft-decision version. Our main result is the following theorem.
It improves the exponent obtainable with the hard-decision al-
gorithm by a factor of and shows that iterative decoding of

-level parallel concatenated schemes achieves Forney’s expo-
nent .

Theorem 7: For any there exist sufficiently large but
finite values of , , and , independent of , and a bipartite
graph such that the error probability of decoding of
a parallel concatenated code defined by the graph and additive
codes , , behaves as .

The remainder of this section is devoted to the proof of this
theorem. We will prove that the overall error rate of the al-
gorithm is determined by the frequency of error events in the
second iteration.

Assume that the all-zero vector was transmitted and let be
the vector received from the channel. Observe that, since after
two iterations we revert to hard decisions, the iterative decoding
algorithm will only be in error if many right vertices are incor-
rectly decoded at the second iteration. With this in mind, we
will analyze the transition from the first to the second decoding
iteration.

For , consider the quantity (the reliability or cost of
the vertex )

where is a nonzero vector of closest to . Note that stan-
dard maximum-likelihood decoding of the left code at vertex
can succeed only when .

In the next series of lemmas we derive sufficient conditions
for correct decoding. Our goal will be to formulate them in

1More precisely, R(L) � R � (1�R )�� (1� R ).
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global terms, i.e., as properties of some subsets of vertices of
the graph . We start with local conditions and use the spec-
tral properties of the expander graph to “globalize” them. The
starting observation is given by the following statement.

Lemma 8: A vertex is wrongly decoded at the second
iteration only if there exists a set of neighbors of such
that

(7)

(8)

Proof: Suppose a vertex is decoded incorrectly.
By (6), the algorithm finds a codeword

more reliable than the all-zero vector. Let ,
be the subset of vertices that correspond to nonzero

coordinates of , i.e., the vertices of incident to edges
for such that . By definition of the decoding procedure,
condition (8) must be true with respect to .

For a subset and a vertex define

From the previous lemma we obtain the following set of suffi-
cient conditions for correct decoding of .

Lemma 9: Let and satisfy

1) and for every and every ;
2) ;
3) .

Then will be decoded correctly after iteration 2.

To make this condition manageable we will need a combina-
torial lemma which is a generalization of Lemmas 3 and 5 from
“simple” to weighted degrees of vertices.

Lemma 10: Let be a regular bipartite
graph of degree , with second eigenvalue .
Let , , let , and let satisfy

. Suppose for every vertex there is a number
, . Let

If then

Proof: Let . Let be the
adjacency matrix of the bipartite graph , i.e.,

if the vertex indexed by is adjacent to the vertex indexed by
and otherwise: a fixed ordering of the vertices is

assumed. Let be the column vector of length such that
every coordinate indexed by a vertex of equals ,
every coordinate indexed by a vertex of equals , and all
the other coordinates equal .

We have, denoting by the transpose of

(9)

Now let be the all-one vector and let be the vector such that
every coordinate indexed by a vertex of equals and every
coordinate indexed by a vertex of equals . The vectors
and are eigenvectors of associated to the eigenvalues and

, respectively. Now define the vector by

The coordinates of the vector are

so that . Because the eigenspaces of are
orthogonal we have

(10)

Now we have

since . We have therefore by (10)

(11)

We now proceed to lower bound . By definition of we
have and since , (9) gives

(12)

Now denote and consider the subgraph of
induced by and . Apply Lemma 5 to it to obtain

(13)

Notice that the left-hand side of (13) is twice the number of
edges in the graph and therefore equals
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Substituting in (13) and writing we obtain, after
rearranging

Throw away the term and multiply by so
that inequality (12) now becomes

which together with (11) gives

and the result after rearranging.

Note that Lemma 9 gave a set of local conditions sufficient
for correct decoding of a given vertex. The next lemma replaces
condition 2) of the previous lemma by a global condition easier
to work with. The resulting set of conditions is sufficient for the
local conditions to hold for almost every vertex of .

Lemma 11: Let . Suppose there exists a subset
satisfying

1) and for every and every ;
2) ;
3) .

Then the number of wrongly decoded codewords of in itera-
tion 2 is not more than

Proof: Let . One possibility for to be decoded
incorrectly is that it is adjacent to a number of vertices in
greater than . An upper bound on the number
of such vertices is given by Lemma 3. If is not such a vertex
then it has at most neighbors in and therefore is incorrectly
decoded only if

(14)

Indeed, if this inequality does not hold, the total cost of any set
of at least neighbors of will be negative by condition 1)
of the lemma, and so will be decoded correctly. The max-
imum number of vertices that satisfy (14) is given by Lemma 10.
Summing and upper-bounding the estimates given by Lemmas 3
and 10 proves the result.

The conditions of Lemma 11 imply that the subvectors
for all vertices in , except for a small fraction of them,
will be correct after the second iteration. By properly choosing

(somewhat above ) we impose that the proportion of
remaining vertices in error is less than approximately
and the overall convergence of the decoding procedure follows
by Lemma 2. Let us state this more formally.

Lemma 12: Suppose and satisfy

(15)

(16)

Suppose furthermore that there exists satisfying the con-
ditions of Lemma 11. Then the decoding algorithm converges to
the right decision in iterations.

Proof: By Lemma 2, expander decoding of the code
will converge to a correct decision if the

number of incorrectly decoded vertices at the second iteration
does not exceed , . Take .
Thus, by Lemma 11, we will have convergence if

(17)
where , , and .
Condition (17) gets rewritten as

which is easily seen to be implied by condition (16). Condition
(15) implies .

Next, we need to estimate the probability of the event that
there does not exist a which satisfies Lemma 11. Let

for all such that

Lemma 13: The probability satisfies

where is a quantity that depends only on the values of
and .

Proof: We recall a result about the probability distribution
of the random variables for a random linear code. Let

be such a code used for transmission over a BSC with
crossover probability . Suppose that the transmitted codeword
is the all-zero one and that is the nonzero codevector closest
to the received vector by the Hamming distance. Let

Let be some number. Denote by the
exponent of the probability , i.e.,

As shown in [16] for the ensemble of all codes and in [17] for
linear codes

Here

if

if
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(A simple proof of this bound together with an improvement of
the results of [17] is given in [18].) In our case, each left code
has length and rate , and for every left vertex

the quantity has the distribution of the above random
variable . Let

be the value of the threshold associated with the vertex . We
write, omitting the terms

where the sums on the right-hand side run over all the choices
of for which . For every there are at
most possible values of and of so that we get

The proof is completed by computing logarithms, choosing
large enough, and taking account of the fact that the binomial
coefficient is only exponential in but not in .

We are now ready to complete the proof of Theorem 7. We
have just shown that, whenever and satisfy conditions
(16) and (15), then the decoding algorithm can be in error only
when event happens. By choosing to be linear in and a
large enough , we see that when the graph is Ramanujan

, we can satisfy both (16) and (15) with simul-
taneously an arbitrarily small and an auxiliary distance
sublinear in .

Because is arbitrarily small, Lemma 13 gives an error expo-
nent for the decoding algorithm arbitrarily close to .
By taking sufficiently large and choosing the -ary additive
code , , to meet the -ary GV bound we can make the
value be arbitrarily close to . Together with Proposi-
tion 4, we obtain that the error exponent is at least a quantity
arbitrarily close to

which, because is sublinear in , can in turn be made
arbitrarily close to . This concludes the proof of
Theorem 7.

E. Number of Correctable Errors

In this subsection, the ideas of the previous subsection
are used to establish a lower bound on the number of errors
correctable under expander decoding. We will prove that this
number is close to half the designed distance, i.e., to half the
Zyablov bound .

The main result of this section is given by the following
theorem.

Theorem 14: Let be a modified expander code of rate
defined by a graph of left degree and additive

codes , , ,
. For any , there exists infinitely many choices of

the graph for which and such that soft-decision
decoding of the code corrects every combination of errors of
weight not exceeding .

We again rely on the modified expander code construction
of Section III-A together with the soft-decision decoding al-
gorithm defined above. Let be the vector received from the
channel (the error vector). Recall the subset of approxi-
mately least reliable vertices from Lemma 11. The key to the
proof of Theorem 14 is in connecting the weight of to the av-
erage cost of a vertex in the set . Roughly
speaking, only if . If, on the other hand,

then by Lemma 11, the number of right vertices decoded
incorrectly in iteration 2 is small, and errors introduced by them
will be removed by regular expander decoding with the code
on the right and on the left.

This argument is made more precise in the following lemma
which also implies Theorem 14.

Lemma 15: Suppose and satisfy conditions (15) and
(16) and let

(18)

Then the vector will be decoded to the all-zero vector by soft-
decision expander decoding.

Proof: Consider the subset such that
formed of the least reliable vertices: for

every and every .
First observe that the inequality implies

that does not satisfy (18). Indeed, recall that we have

where is the nearest nonzero codeword to . With
this we have

so

Hence, if satisfies (18), then so that
satisfies the conditions of Lemma 11. The result follows from

Lemma 12.

Recall from [5] that hard-decision decoding of expander
codes corrects close to a fraction of errors, where is the
code’s designed distance. Theorem 14 shows that, similarly to
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serial concatenations, introducing soft information improves
the guaranteed weight of correctable errors of hard-decision
decoding by a factor of two.

Finally, recall that we have proved the existence of sequences
of expander codes of rate whose relative distance approaches
the Zyablov bound . By the results in this section, submit-
ting these codes to soft-decision expander decoding will correct
a proportion of errors close to .

IV. CONCLUSION

The main idea of this paper was to show that parallel and se-
rial concatenations form very closely related classes of codes.
In particular, parallel concatenations with interleavers given by
expander graphs attain the well-known estimates of the relative
distance (the Zyablov bound) and the error probability of de-
coding (the Forney bound) of serially concatenated codes. The
decoding complexity of the codes grows linearly with the code
length.

Though this paper has focused on the similarities between
both versions of concatenation, we believe there are a number
of potential advantages to the parallel version, besides the im-
provement to decoding complexity. As was mentioned in the
Introduction, it was already shown in [6] that Forney’s expo-
nent can sometimes be surpassed, though with some restrictions.
In recent work [19], we prove that the present expander code
variant can be made to constructively surpass the Zyablov bound
on minimum distances.
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