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Now, it follows directly from the definition ofBp(r; m)? that if
f 2 hEp(r; m� 1)i thenf � ep(Xm) 2 Bp(r; m)?. Also, since

X
l
m = ep(Xm) + (1 + ep(Xm)) �X

l
m

inAp;m, fl 2 Bp(r�1; m�1)? implies thatfl �X l
m 2 Bp(r; m)?:

Hence

B
1

p(r; m)�B
2

p(r; m) � Bp(r; m)?:

Now

dim(B1
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r�1

i=0

m� 1

i
(p� 1)i

and

dim(B2

p(r; m)) =
m� 1

r
(p� 1)r:

The identity m�1

i
+ m�1

i�1
= m

i
then implies that

dim(B1

p(r; m)�B
2

p(r; m)) = dim(Bp(r; m)?):
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Concatenated Codes with Fixed Inner Code and Random
Outer Code

Alexander Barg, Jørn Justesen, Member, IEEE, and
Christian Thommesen, Member, IEEE

Abstract—We derive lower bounds on the distance and error exponent
of the coding scheme described in the title. The bounds are compared to
the parameters and error performance of a concatenated code family with
varying inner codes of equal rates and a fixed minimum-distance separable
(MDS) code as the outer code, letting the inner and outer code lengths ap-
proach infinity.

Index Terms—Error exponent, minimum distance, power moment iden-
tities, weight distribution.

I. INTRODUCTION:
CONCATENATED CODES

The concatenated code construction is formed of an outer[N;K]q
linear block codeA and an inner[n; k]q codeB by the following map-
ping:

K
q

A
!

N
q ,!

k
q

N
B
!

n
q

N
(1)

where the middle arrow denotes the standard embedding. The image of
the composite mapping is called a concatenated code, and we denote
it by C = A B. It is convenient to think of a code vector inC
as ann � N matrix whose columns are vectors inB. Thus,C is an
[nN; kK] q-ary linear code. It is known that if bothA andB are chosen
randomly with uniform distribution from their respective ensembles
and bothn andN go to infinity, then almost all concatenated codes
C = A B asymptotically meet the Gilbert–Varshamov (GV) bound
[2]. Moreover, the same is valid even ifA is a fixed minimum-distance
separable (MDS) (say Reed–Solomon) code [3], [9]. By makingn grow
slower thanN and taking varying inner and MDS outer codes, it is
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possible to present families of codes with both nonvanishing rate and
distance and low construction complexity [11], [5]. Improvements of
the parameters of these families are based on multilevel concatenations
[3] and the use of algebraic geometry codes [6]. A detailed account of
the early work is given in [3]; see also overviews in [4] and [1].

For a given rateR 2 [0; 1] denote by�0 = �0(R) the GV distance,
i.e., the smaller root of the equationR = ln q �Hq(�), where

Hq(x) = x ln(q � 1)� x ln x� (1� x) ln(1� x)

is the entropy function. Suppose the constituent codesA andB are
both chosen from their respective ensembles, andr = (ln q)k=n is the
rate of the codeB. This defines an ensemble of concatenated codes of
rateR = rK=N . For this ensemble to contain codes meeting the GV
bound it is sufficient that [3], [9]

r � ln[q(1� �0(R))]: (2)

The same holds true ifA is MDS. The error exponent of these codes for
transmission over theq-ary symmetric channel with symbol-to-symbol
error probabilityp=(q � 1) both in the case thatA is a random code
[3] and an MDS code [10] meets the random coding bound

E(R; p)�

��0 ln�q(p); 0�p�pe (a)
ln q�R�ln(1+(q�1)�q(p)); pe�p�pc (b)
Tq(�0; p)�ln q+R; pc�p��0: (c)

(3)

Here

pe =
(2q � q�0 � 2)� 2 (q � 1)(q� 1� q�0)

q2(1� �0)

pc =
�20

q�20 + (q � 1)(1� 2�0)

�q(p) = p
q � 2

q � 1
+ 2

p(1� p)

q � 1

Tq(�; p) = � ln(q � 1)� � ln p� (1� �) ln(1� p): (4)

An interesting question is what happens to the parameters of the
family C if we relax (2) and taker to be a certain fixed value that
does not depend on the target rateR. Then, clearly,R is at mostr. As
shown in [3] and [10], the attainable parameters then behave as

�1(R) =
�0(R); r � ln[q(1� �0(R))]

R�r
ln(q=e �1) ; otherwise

(5)

where the second part of the bound is a segment of the straight line that
is tangent to�0(R) at the pointR = ln q�Hq(1�e

r=q) and connects
it to the point(r; 0).

In this correspondence, we further relax the conditions and address
the following problem: what are the parameters ofC if B is a fixed
linear [n; k]q code and the codeA is chosen randomly from the en-
semble of[N;K]q linear codes. In the next section, we derive a lower
existence bound on the asymptotic parameters ofC and compare it to
the GV bound and to the bound (5). In Section III, we derive an upper
bound on the weight spectrum ofC and estimate its error probability
of decoding under the maximum-likelihood (ML) algorithm. The ex-
ponent of this probability is compared to the random coding exponent.

II. PARAMETERS OF THECODING SCHEME

Suppose that in (1) we takeA to be a random linearqk-ary code
and B a certain fixed[n; k]q linear code with weight distribution
AAA = [A0; A1; . . . ; An]. More specifically, ifGO is the generator
matrix of A, we assume each element in it is chosen independently
with uniform distribution from q . This defines an ensemble of
concatenated codesC = A B; our goal will be to prove an existence
bound on their parameters.

Let us introduce a random variableX defined by

P (X = i) =
1

qk
Ai; i = 0; 1; . . . ; n: (6)

In particular, ifB is an[n; n; 1]q all-word code, then the corresponding
random variableX is binomially distributed; we denote it byX0.

For a given nonzero information sequenceuuu 2 K
q , the weightW

of the corresponding codeword is a random variable. It is conveniently
expressed viaX as follows.

Lemma 1: Let uuu 2 K
q nf000g be an information sequence. The

Hamming weightW of the corresponding codeword inC equals

W = X1 +X2 + � � �+XN (7)

whereXi � X; i = 1; . . . ; N are independent and identically dis-
tributed (i.i.d.) random variables with distribution (6).

Let R = (ln q)kK=nN . Strictly speaking,R is not the rate ofC
sinceGO can have rank less thatK, but as usual, for growing param-
eters almost all codesC have rate approachingR. In the next theorem
we use (7) to derive an existence bound on the codesC from the de-
fined ensemble.

Proposition 1: There exist concatenated codesC whose rate and
relative distance approach(R; �) if

nR < � ln(Efe�t(X�n�)g); t � 0:

Proof: The probability for a code in the ensemble to have a frac-
tional Hamming weight at most� is, for anyt � 0, bounded above as
follows:

eRnNP (X1 +X2 + � � �+XN � nN�)

� eRnNEfe�t( X �nN�)g

= (enREfe�t(X�n�)g)N:

Remark: The bound of this proposition does not depend onN .
However, for� � (q � 1)=q, Chernoff’s theorem for large deviations
gives

lim
N!1

ln(P (X1 + � � �+XN � nN�))

N
= min

t�0
ln(Efe�t(X�n�)g):

(8)
So, by using the random technique together with the union bound for
the minimum weight, no better result than Proposition 1 can be ob-
tained asymptotically, if the inner code is fixed, andN ! 1.

Let � = �(�) be chosen so that

E e��(X�n�) = min
t�0

E e�t(X�n�) : (9)

Computing (@=@t)Efe�t(X�n�)g, we see that� satisfies the fol-
lowing equation:

E (X � n�)e��(X��n) = 0: (10)

If � is used as parameter for the(R; �) curve, given by

R = �
1

n
ln E e��(X��n)

then (10) relates� and�. This gives rise to the following theorem.

Theorem 1: The random ensemble of codesC contains codes whose
parameters approach the following bound:

R =
1

n
(��0� � �) (12)

� = �
1

n
�0� ; � � 0 (13)

where� = �(X; �) := lnEe��X .
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Proof: Solving (10) for�, we obtain

� =
1

n

EfXe��Xg

Efe��Xg
:

Further, (11) gives

R = �
1

n
lnEe��X � ��:

Substituting� completes the proof.

Let us relate this bound to bounds�0(R) and�1(R) discussed above.
The slope of� plotted versusR equals�0�=R

0
� = �1=� . To gain un-

derstanding of the properties of the bound (12)–(13), let us compute its
behavior asR! 0 andR! r. For� = 0, (R; �) = (0; (q� 1)=q) is
obtained, so all the bounds�0, �1, and (12)–(13) coincide. Computing
the limit for � ! 1, we obtain(R; �) ! ( k

n
ln q; 0), which reflects

the fact that minimum distance greater than zero can only be obtained
whenR � r. Finally, it can be seen that the function�(R) is strictly
[-convex for0 � R � r. Indeed, we have

�00R =
�00� R0� � �0�R

00
�

(R0� )3
=

(�00� )2

n2(R0� )3
:

It is straightforward to see thatR is a growing function of the parameter
� , and so�00R > 0.

LetC0 = A ( q)
n be a code withA random andB the[n; n; 1]q

all-word code. Effectively, we eliminate the concatenated construction,
and look at randomq-ary codes. Then, Theorem 1 gives the GV bound.
We isolate this in a separate lemma, whose proof is straightforward.

Lemma 2: Bound (12)–(13) withX = X0 gives the GV bound.

Next let us compare (12)–(13) to�0(R) and�1(R) for an arbitrary
inner codeB.

Proposition 2: For a given rateR 2 (0; r], the distance (13) of the
concatenated codeC is always less than�0(R) and less than�1(R).

Proof: We use the Pless power moment identities for the coeffi-
cients of the weight distribution of a linear code [7]

n

j=0

(n�j)rAj=

n

j=0

A?j

r

�=0

�!S(r; �)qk��
n�j

n��
; j�0

whereS(r; �) are the Stirling numbers of the second kind (S(r; �) is
the number of partitions of anr-set into� nonempty parts, and hence
nonnegative). So, obviously, for any codeB

Ef(n�X)jg � Ef(n�X0)
jg

with the equality for alli = 0; 1; . . . ; d?(B) � 1. Writing out the
power series in the neighborhood oft = 0, we observe that for any
code different from the whole spacenq

Efe�t(X�n)g > Efe�t(X �n)g

or that

Efe�tXg > Efe�tX g; t � 0: (14)

From this we observe that�(t;X) � �(t;X0) for all t � 0. Now
suppose that

�(B) = argmin
t�0

E(e�t(X�n�))

is the value of� for the codeB and�0 is the same for the inner code
n
q . Since the rate of the codeC is fixed, i.e., by (12)

�(B)�0� (X; �(B))� �(X; �(B)) = �0�
0
� (X0; �0)� �(X0; �0)

we finally obtain�0� (X; �(B)) > �0� (X0; �0). This is the first part of
our claim. The second part follows since both bounds (12)–(13) and�1
meet theR-axis atR = r and since the former is convex and the latter
a straight line.

Another proof of this proposition, similar to the above, but based on
the MacWilliams identities, is given in Appendix A.

Bound (12)–(13) displays interesting behavior for small values ofR.
Letu = (q�1=q)�� and let us write the expansion of the GV function
R = ln q � Hq(�) in the neighborhood ofu = 0. The derivatives of
Hq(� � x) areH 0 = ln(� � x)=((q � 1)(1� � + x))

ds

dxs
Hq(�� x) =

(�1)s�1(s� 2)!

(1� � + x)s�1
�

(s� 2)!

(� � x)s�1
; s � 2

where� = (q � 1)=q. So we obtain, in the neighborhood ofu = 0

R(� � u) =
s�2

qs�1

s(s� 1)(q� 1)s�1
�

(�q)s�1

s(s� 1)
us: (15)

For q = 2 this takes a somewhat more appealing form

R((1=2)� u) =
��1

(2u)2�=2�(2�� 1):

Now we are in a position to formulate our claim.

Proposition 3: Let B be a code with dual distanced?. Then, first
d?�1 terms in the power expansion of the bound (12)–(13) forR! 0
coincide with the corresponding terms of (15).

The proof of this proposition is a straightforward though tedious cal-
culation based on the fact that therth-power moment of the weight
distribution is equal to that of the “binomial” distribution as long as
A?r = 0.

Though the expression for our bound is cumbersome, the bound
itself is easily calculated. For instance, taking the[24; 12] extended
Golay codeG24 with the weight distribution(A0 = A24 = 1; A8 =
A16 = 759; A12 = 2576) as the inner codeB, we obtain the bound
plotted in Fig. 1 together with the GV bound and�1(R). In Fig. 2, the
three bounds are compared for the[12; 6] ternary Golay codeG12 as
codeB.

III. ERRORPERFORMANCE

Let us analyze the error performance of our coding scheme used for
transmission over theq-ary symmetric channel with symbol-to-symbol
error probabilityp=(q � 1) and decoded by the ML rule. We use the
union bound together with estimates for the weight spectrum ofC.

Generally, letC be a sequence of linear codes with weight spectrum
Aw; w � 0. Suppose that the distance ofC equalsd = �n. Further,
suppose that beginning with a certain value of the code lengthn the
exponent of the number of codewords of a given weightw = !n can
be bounded above as

(1=n) lnAw � �(!):

Assuming that the the error probability of decoding for familyC be-
haves exponentially inn and puttingPde(C; p) � exp(�nE(R;p)),
one can boundE(R; p) below as follows.

Proposition 4:

E(R; p) � � max
��!�1

(�(!) + ! ln�q(p)) (16)

where�q(p) is defined in (4).
A sketch of the proof is given in Appendix B.

For instance, takingC = C0 to be a sequence of concatenated codes
with a random outer codeA and inner codeB = ( q)

n, we obtain
�(!) = Hq(!) + R � ln q for ! � �0(R). Substituting this in (16)
produces parts (a) and (b) of (3) of the random coding exponent.
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Fig. 1. The bold solid curve is the bound (12)–(13). The thin solid curve is
the GV bound(� (R)). The dotted curve is� (R). The tangent point of� and
� isR = 0:0884; � (0:0884) = � (0:0884) = 0:293, and our bound gives
�(0:0884) = 0:281.

It is known that for any code family that meets the GV bound for
R ! 0, the error exponent in this neighborhood will behave as (a) in
(3). It is also clear that for our familyC with fixed inner codeB the
exponentE(R; p) (at least, calculated by the union bound) will become
zero forR � r. To estimate the error performance for0 < R < r let
us estimate the average weight distribution of a concatenated codeC
with inner codeB with known weight distribution(A0; A1; . . . ; An).
The answer is given in the following theorem, which is proved exactly
as Theorem 1.

Theorem 2: LetEN(!) be the average number of vectors of weight
� nN! over the ensemble of concatenated codesC. Then for1 �
! � �,

ln(EN(!)=nN) � R+
1

n
(ln�� ��0

� ) (17)

! = �
1

n
�0

� (18)

whereX is the random variable with

P (X = w) = Aw=q
k

�(X; �) = lnEe��X

and� is chosen from the condition

E e��(X�n!) = min
t�0

E e�t(X�n!) :

This bound again is easy to compute. For instance, as a follow-up of
the above example, let us compute the average exponent of the weight
spectrum of the family of concatenated codes withB = G24. This
is compared to the weight spectrum ofC0 = A ( 2)

n in Fig. 3,
where on the horizontal axis we show the relative weight! and on
the vertical axis the logarithm of the weight distribution of the code

Fig. 2. The bold solid curve is the bound (12)–(13). The thin solid curve is
the GV bound(� (R)). The dotted curve is� (R). The tangent point of�
and� isR = 0:125; � (0:125) = � (0:125) = 0:423, and our bound gives
�(0:125) = 0:401.

Fig. 3. The solid curve is the exponent of the weight spectrum of
C = A ( ) ; the dashed curve is an upper bound on the exponent of the
weight spectrum ofC = A G .
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Fig. 4. The solid curve is the random coding exponent (3); the dashed curve is
a lower bound on the error exponent of the familyC = A G . The channel
error probability isp = 0:02.

divided bynN . Substituting the resulting weight distribution into (16),
it is possible (and easy) to bound below the average error exponent of
the familyC. This bound is shown in Fig. 4 together with the random
coding exponent (3).

APPENDIX A
ANOTHER PROOF OFPROPOSITION2

Let(A?0 ; A
?

1 ; . . . ; A
?

n ) be the MacWilliams transform of the weight
distribution ofB. The MacWilliams equation for the weight polyno-
mials has the form

1

qk
A(z) =

n

j=0

A?j (q
�1 + �z)n�j(q�1 � zq�1)j: (19)

Substitutingz = e�t in (19), we obtain

Efe�tXg =

n

j=0

A?j (q
�1 + �e�t)n�j(q�1 � e�tq�1)j:

In particular, takingB = n
q , we obtain

Efe�tX g = A?0 (q
�1 + �e�t)n:

Combining the last two equations, we get

Efe�tXg = Efe�tX g

+

n

j=d

A?j (q
�1 + �e�t)n�j(q�1 � e�tq�1)j:

Further, the sum onj on the right-hand side of this equality is nonneg-
ative since fort � 0; 0 � q�1 � e�tq�1 � t=q. This takes us again
to (14).

APPENDIX B
PROOF OFPROPOSITION4 (AN OUTLINE)

The proof proceeds by an application of the union bound. We com-
pute the two-word error probability and multiply it by the number of
codewords of weightw. This gives the following expression:

Pde(C; p) �

n

w=d

Aw

w

j=0

w�j

i=d e

n�w

`=0

w

i

w � i

j
(q � 2)j

�
n� w

`
(q � 1)`

p

q � 1

i+j+`

(1� p)n�i�j�`:

Direct optimization shows that the exponent of the maximal term in the
sum onj behaves asn! ln�q(p). Now taking logarithms establishes
(16).

As a side remark, note that in many cases the bound (16) can be
improved for high code rates. The reason for this is that the union bound
becomes too crude even compared to the trivial assumption that for
all errors of weight greater than somer every error vector results in a
decoding error. In particular, forB = ( q)

n this argument produces
the sphere-packing bound (c) of (3); see [8] for details.
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