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Digital Fingerprinting Codes: Problem Statements,
Constructions, Identification of Traitors

Alexander BargSenior Member, IEEEG. R. Blakley, and Grigory A. Kabatiansky

Abstract—We consider a general fingerprinting problem of resell his copy of: without running the risk of being tracked
digital data under which coalitions of users can alter or erase down. However, several users may collude in order to produce
some bits in their copies in order to create an illegal copy. Each 5 nregistered copy. In doing so, they face the problem of sup-
user is assigned a fingerprint which is a word in a fingerprinting ving it with a fi int. whi h’ hould. besides being dif-
code of sizeM (the total number of users) and lengthn. We plying It with a mgerprm ’,W Ic S ouid, Desiaes emg !
present binary fingerprinting codes secure against siz¢-coali- ferent from each of their fingerprints, preveit from iden-
tions which enable the distributor (decoder) to recover at least tifying members of the colluding group. Thus. the distributor
one of the users from the coalition with probability of error D faces the problem of constructing a large set of fingerprints
exp(—£2(n)) for M = exp(£(n)). This is an improvement 4 fingerprinting code) that enables him to locate at least one

over the best known schemes that provide the error probability . . -
no better than exp(—$2(n'/2)) and for this probability support member of the colluding group. The algorithm of creating reg-

at most exp(O(n'/2)) users. The construction complexity istered fingerprints is parameterized by a secret/keye as-
of codes is polynomial inn. We also present versions of these sume that the algorithm is publicly known; however, the partic-

constructions that afford identification algorithms of complexity  ylar value ofk is kept secret by the distributor.
poly(n) = polylog(M), improving over the best previously . )
known complexity of ©2(M). For the caset = 2, we construct ~ A groupU = {ui, ..., u;} of ¢ registered users that intend
codes of exponential size with even stronger performance, namely, to produce an illegal copy of will be called acoalition. The
for which the distributor can either recover both users from the  goal of the coalition is to create a fingerpring € Q" of
coalition with probability 1 — exp(£2(n)), or identify one traitor  {he jllegal copy so thaD is unable to identify users fror.
with probability 1. _ o Following [5], we assume that the memberdo€an only alter
_Index Terms—Concatenated codes, fingerprinting problem, qse coordinates of the fingerprintin which at least two of their
|dent|f|c_at|on derror, list decoding, polynomial-time decoding, fingerprints differ, and refer to this as théarking Assumption
separating codes. (for more detailed discussion and motivation see [5]). Thus, it
is knowna priori thaty,, = x,,(u) for everyu € U unless
|. INTRODUCTION there is a pain, v’ € U such thatr,,(u) # xm,(u). What the

ET Q be a finite alphabet of siz@. Suppose a dealgp USers are allowed to do in the last case is a part of the formal
distributes copies of a long strifg over Q available by description of the problem, made more precise in Section II-A.

subscription to registered users of the system Mdie the total ~ The distributor faces the task of identifying one or more mem-
number of registered users. A copy assigned tattihaser con- bers of the coalitioi/ of traitors provided thall/| = ¢, where
tains a substring(:) = (z1(4), ..., z,(¢)) (afingerprint); fin- ¢ is a parameter. The fingerprinting problem thus is to design a
gerprints of different users are different. The goal of insertirgetC = {e(1), ..., e(M)} (at-fingerprinting code, or more
the fingerprint is to personalize the copy given out to the usemecisely, an ensemble of codes) in such a way that no matter
and to rule out redistribution. Clearly, an individual user cannaethich coalitionU of at mostt users collude to produce an un-

registered fingerprint and no matter which algorithm the mem-
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or wide-case problem, once there is a choiceyfgr it can be coding algorithms of algebraic-geometry (“evaluation”) codes
any letter from the alphabet. As suggested by [5], both cases taat in polynomial time correct far more errors than half the min-
be expanded by allowing the users to make some symbols imum distance of the code [11].

readable, or erased.

The narrow-case fingerprinting problem was expressly for-||. STATEMENT OF THE PROBLEM AND PREVIOUS RESULTS
mulated in [13], where it was also proved that foe= 2 and
@ > 3, there exist codes providing exact identification of df“ Problem Statements
least one traitor with exponentially many codewords. For arbi- Let us assume some ordering of the users and write them as
traryt < Q — 1 this was proved in [1]. {1, ..., M}. Let Q™ be the set of alR-ary words of length

In the binary case, it turns out that exact identification of even For two wordsz, y € Q" let d(z, y) denote the Ham-
one traitor is generally impossible. Therefore, we will allowning distance between them. Any subgetC Q" is called
some error rate, i.e., with low probabilitthe decision taken by a code of length; if |C| = M we say thatC' is a code of
the distributor can be wrong. Best known results in this problesize M and denote its parameters @y, M). The number? =
were accomplished in [5], where the tradeoff between the si#éC) := n~"logy M is called therate of C. If Q is a prime
of a fingerprinting code and the probabilitywas considered. power andC' is a linear/-dimensional subspace @", it is
The best decline rate of the probabilityaccomplished in [5] called a lineafn, ¢, d] code. Hered is the minimum distance
ise = exp(—+/n), irrespective of the code size (e.g., even fo®f C (sometimes we omit it from the notation). The distance be-
very small codes, for instance, of constant size). The questiorfwfen a worde and a subsel! C Q" is defined asl(z, H) :=
attaining exponential code size and exponential decline of erfompes d(z, h).
rate with the length of the codg natural from information-the- ~ The distributorD assigns to the useéra fingerprintz(i) €
oretic point of view, was left open in [5]. Q™. The set ofV/ fingerprints{z(1), ..., (M)} forms a code

Furthermore, the construction of [5] in the part of identifying” C Q". As we show later (Propositions 2.3 and 2.6), in many
a guilty user relies upon complete (maximum-likelihood) démportant cases using a single code does not enable the dis-
coding of a random code. The best known algorithms for thigbutor to solve the fingerprinting problem, namely, to locate
(NP-hard) problem require complexity of ord@(M). In this @ member of the coalition. Therefore, the distribufdruses
paper, we will, relying on coding theory methods, present co@efamily of codesC = {C%}, choosing a particular cod€,
families of sizeexp(Q(n)) with ¢ = exp(—Q(n)). Both the Wwith probability =(k). More specifically, by the code’, we
complexity of constructing codes and of their decoding grow &ean arorderedset of M vectors{z(1), ..., z(M)}, so that
poly(log M). (k) = Py(2(1), ..., z(M)). Herek ranges over some set of

In Section Il, we will give a precise statement of the problery Possible keys. In the constructions that follow, we will assume
with the aim of placing it in the standard information-theoretithat=(k) = K~*. However, in the general problem statement
context. This is worthwhile to do because rigorous stateme®sthis SeCt'OWf(k) can be an arbitrary distribution.
of the digital fingerprinting problem do not appear in the liter- Having observed a fingerprig, the distributorD identifies
ature, and moreover, because this enables us to establish f¢$&r« as delinquent with some probability that depends both on
tions between different versions of the problem. In formulatirggand on the specific code (key) used. Hence, the most general
the problem, one faces a number of choices related to the wdtggision rule ofD can be described by a conditional probability
versus average case. While in information theory there is an &léstributionPp (uly, k). The distributionsr (k) andPp (uly, k)
cepted standard, in the field of digital fingerprinting the situatiodnd the family of code€ are publicly known. The only infor-
is unsettled. We give a version of the definition geared towaFgation kept secret b is the specific value of.
worst case performance, which is consistent with the code conLet U = {ui, ..., u.} be a coalition oft users that col-
structions known in the literature and suggested in what follow§de to create an unreglstered fingerpgntet X = Cy(U) =
and also corresponds well to the nature of cryptographic prdl?1 z') be the fingerprints assigned to the memberé/of
lems. We conclude Section Il by discussing previous results ai@r breV|ty we writez* instead ofz(u;)). The wordy is taken
goals of our paper. from a subsef(X) c Q", called theenvelopeof X.

One of the new ideas in code construction introduced in thisParticular ways to form the envelope are discussed later in
work is the use of separating codes, which we briefly discussfitere detail; for the moment, it can be assumed arbitrary. We as-
Section I1I, explaining also the reason for them to enter the figume that the members bf attempt to confuse the distributor
gerprinting problem. Section 1V is devoted to constructions & choosing a particular value gfwith some conditional prob-
binary fingerprinting codes. The constructions employ concat@bility P (| X), whereX is the set of their fingerprints. Again,
nation of two codes which proved useful in this problem (sdBe distribution’; (y|.X) describes in the most general way the
[5]): a long outer cod&V and a shorter inner codé. The code Strategy that the members Gfuse to confuse the distributor.

W is error correcting with large minimum distance; the céde ~ The distributor’s probability of error in identifying a member
has ai-separating property (see [14] and the survey [21]) and® U can be written in two ways

used to separate law-abiding users from those committing fraud.

The distance properties ®F enable us to amplify this separa--(U, Pr)

tion. Section V gives identification algorithms of the distributor K
of complexity polynomial in the length of the codes constructed. = Z Z (k) Z Pp(uly, k)Py(y|Cr(U))
This result is possible due to a surprising recent discovery of de- ugU | k= YeE(Cr(U))
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(total probability of identifying user as guilty for allu ¢ U), property or IPP codes). Theide-sensenvelopeE(X) is de-
or fined as follows:

pe(U, Py) E(X)={ye Q"|y; = = fori € Z(X)}.

Bothe(X) and E(X) can be generalized to the expanded case
= Z (k) Z Z Pp(uly, k)Py(y|Ci(U)) under which the coalition is allowed to generate unreadable (or

k=1 uel ye&(Cr (V) erased) symbot in detectable positions. In particular, the ex-
(probability of error for a given code averaged over the choig@nded wide-sense envelofe(X) is defined as follows (see
of the code). [5, Definition 11.3]):
Let E*(X) = {y € {QU 1"y = z! fori € Z(X)}.
pe(U) = max pe(U, Py) Itis clear that

be the error probability under theptimal strategyPy; of the (s n, M., t; K) <e(E;n, M, t; K) < e(E*; n, M, t; K)
coalition (note that [5, Definition 1V.2] implies a weaker attack, (3)
namely, only the uniform distribution ofi(Cy(U)). Thus, the

maximum probability forD to incriminate an user that is not a . .
member ofU equa|s 5(6; n, M7 t; IC) SE(G 3 1y M7 t; IC) < E(E 3 1y M7 t; }C)

4
Pe = pe(C, w(+), Pp(+)) = max p.(U). @
U U=t Note that these inequalities are also valid for the probabilities
This quantity still depends on the strateBy (uly, k) of D, e(:; n, M, t) from (2).
the choice of the family of code§C}.}, and the probability
(k) to choose a particular codg,. It is natural to assume B. Properties of Different Versions of the Problem
that the distributor performs these choices to minimize the valueln this subsection, we establish some relations between fin-
of p.. The resulting probability is a function of the quadruplgerprinting problems formulated above. We begin with a result

and

(n, M, t; K) and the type of, and equals that shows equivalence of the expanded wide-sense problem
(& n, M, t: K)=  min p(C, (), Po(). () (€ = E*) and the wide-sense oné & E).
Cim():Fo () Proposition 2.1: For any family of code€ = {C}} and

If the number of keys (codes in the famif}) is unrestricted, any probability distributionr (), the error rate of the distributor
then we can introduce the value minp, p.(C, =(k), Pp) optimized over its strategieBp(-) is

(& n, M, t) = min (E;n, M, t; K). @) the same for the expanded fingerprinting problem and the wide-

K sense one.

Note that the total number of codes of sikkis bounded above Proof: Clearly, the error rate achievable for the nonex-
by 2" which is also an upper bound on the numkiesf keys panded problem does not exceed the error rate for the expanded
in this formula. case. To show the converse, consider an arbitrary family

The generafingerprinting problemis to finde(€; n, M, t) of codesC for the E-case together with some probability
and codes and the optimal strategylodthat achieve this error distribution(k) defined on it. LetPp (u|y, k) be the optimal
rate. With some abuse of language, a family of codes that efecision rule for these codd$C})} and thisw(k). Then, for
ablesD to identify at least one member &f as long agX | < ¢ the expanded case, define the decision jg-) as follows:
(possibly, with error probability) will be called at-secure code P} (uly’, k) = Pp(uly, k), wherey, = « if y, = * and

Given at-subsetX C Q™ we now define the envelogg X). y; = y. otherwise, and where: is a fixed element of the
If y € £(X) theny is called adescendandf X and anyz € alphabet. The transformatian ' — y establishes a mapping
X is called aparentof y. Following [5], position: is called from the set of strategieB;; (y'|C(U)) of the coalitionU for
undetectabldor X if the values of the words oK match in the expanded wide-sense enveldpe on the set of strategies
their ith position:z} = z7 = --- = 2. for the wide-sense envelofg, defined as follows:

Denote byZ(X) the set of positions undetectable f§r By .
the marking as(su)mption, the coalition cannot change the values Pu(ylCn(U)) = Z Po (Y |Cu(U)).
of undetectable positions. If the position is detectable, then there y'er-i(y)
are several options for the coalition to fill it. We will considerClearly, the error probability. of D for the expanded case
the narrow-sense and wide-sense envelopes and their expanaetér the strategy;, () and any given strategy df equals

versions. the error probability ofD for the nonexpanded case under the
Thenarrow-sensenvelope:(X) is defined as follows: corresponding strategy &f. This proves the proposition. [

e(X)={ye€ Q"y € {z},.... zi}}. The next corollary follows on replacing an arbitrary code

The fingerprinting problem thus defined was studied in [1], [Gfamlly and a probability distribution by the optimal ones for the

[7], [13], [24] (in the case of zero-error code constructions fol?-case.

the narrow case are also called codes with the identifiable parenCorollary 2.2: ¢(E; n, M, t; K) = e(E*; n, M, t; K).
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Note that for the narrow-sense envelope an analogous cld@astt vectors amondz!, z?, ..., £2*~!} whoseith coordi-
does not hold since, on the one hand, for the nonexpanded caates are all the same (and equal to sahé¢hen the coali-
there existt-secure zero-error codes of exponential size (féion U necessarily contains one of these vectors. In this case,
t < @), and on the other hand, for the expanded case the sizdbetsy; = a. If this condition does not hold, then thith po-
anyt-secure code is at mos{Proposition 2.6). The argumentsition is detectable for the coalitidihi andy; is set toa, where
of the proof of Proposition 2.1 fails in this case at the step of is some fixed element of the alphabet. It is easy to see that
setting up the correspondenge— y. Nevertheless, in the bi- y = (y1, ..., yn) € E(U) foranyU C C, |U| = t.
nary case, the one most often encountered in the literature, th€onsider any strategy oD, i.e., a set of probabilities
wide-sense envelope is the same as the narrow-sense one. Phi&:|y). Suppose, without loss of generality, that
leads to an important conclusioall the four statements of the
general problem in the binary case coincide

In the problem of digital fingerprinting, special attention waghen, the probability of identifying a member of the coalition

Pp(z'ly) < Pp(2®ly) < -~ < Pp(z*'y).

devoted to the case of exact recovery= 0). Note that the 17 — (51 | . z*)is

zero-error requirement is a very stringent condition. Indeed, if

a single code” is used and > @, then|C| < @ even for Pp(z'ly) + -+ + Pp(xtly) < b
€ = e, SO zero-errot-secure, ot-IPP codes of nonzero rate 2t -1
do not exist. Ift < @ — 1, it is possible to construct zero-errorHence,

t-secure codes of exponential siz€ i e (see [13] for the case + -1

t = 2 and [1] for arbitraryt). pe(C) > 1~ 121

However, nontrivial zero-error codes do not exist for the three
other types of envelopes considered. Namely, we will estaBonclude by (5). U
lish that for the wide-sense envelopeand for the expanded Corollary 2.4: Let M > 2t — 1. Then
narrow-sense envelopé not only the exact recovery = 0, -
but also relatively small error probabilitycannot be achieved e(E;n, M, t; K) > t—1 .
by a single code. TRt - 1)

For a fixed-code familg we will write p..(C) to refer to error Proof: LetC = {C), 1 < k < K} be a family of wide-
proba_bi_lity of the dist_ributor in identifying a guilty user undergense-secure codes. There is a _khysuch that its probability
the minimax formulation m(ko) > K. Consider the same strategy of the coalition as in

po(C) = min min  max  p.(U). the proof of Proposition 2.3, assuming that ky. Then
=(k) Pp UCC,|U|=t i1
We begin with a simple technical remark that for any a wide- Pe 2 m(ko)Pe(Cry) 2 m O

sense-secure cod€’ and its subcodé C C
In what follows, we do not consider codes wight code-
> . . ' - ey
Pe(C) 2 pe(C) ©®) words, which we call trivial. The proof of Proposition 2.3 also
Since the family consists of a single code, there is no distinctishows that for any cod€' such thaiC| = t + j, wherel <
between a coalition and a subset of codewords, and the proofof ¢ — 1, the error rate.(C) > j/(t + j). Hence, the error
(5) is obvious from the following inequality: ratep.(C) > 1/(t + 1) for any nontrivial code”. We obtain
. the following result.
Pe(C)=min  max p.(U)
Pp UCC,|U|=t Corollary 2.5: Let C be a wide-sensé-secure zero-error
> mi (U) = p.(C).
2min  max Pe(U) = pe(C) code. Ther(C| < .

The next proposition builds upon the fact that if the system Reca]l a re;ult in_[5] whi.ch shows that zero-error recovery is
is based on a single code, then the members of the coalitifiP0ssible with a single binarisecure cod€’ with |C] > 3.
know not only their fingerprints but also the fingerprints of all "€ above sequence of results develops this by establishing a
the other users. limiting tradeoff between the error rate and the size of the family

for any alphabet siz€; in particular, for a single code we have
Proposition 2.3: Let C' be a wide-sensesecure code of size the estimate (6).
|C| > 2t — 1. Then The same reasoning can be applied to the expanded narrow-
t—1 sense problem.
pe(C) 2 o—. (6) y 3
2t—1 Proposition 2.6: The results of Proposition 2.3 and Corol-
Proof. We again identify the users and the codewords asries 2.5 and 2.4 are valid if the wide-sense problem is replaced
signed to them. Lefz!, z%, ..., x'} be the set of fingerprints by the expanded narrow-sense problem.
assigned to a coalitioti. The coalitionU creates a fingerprint Proof: LetC = {z!, ..., #?*~'} be a subcode of the code
y using the following deterministic strategy. Since the catle C. Let us modify the strategy of the coalition defined in the
is publicly known,U chooses an arbitrary subcodec C of proof of Proposition 2.6, replacing with * and leaving the
size2t — 1 formed of its fingerprints and some other codeword®st unchanged. Now the argument of that proof can be applied
1 ..., x¥"1 Lets be a given coordinate. If there exist awverbatim to the case considered. O
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Thus, we arrive at the following important conclusion. Under [ll. SEPARATING CODES

all problem statements except the narrow case, we have In this section, we establish relationships between separating

1 property of codes and fingerprinting. @-ary codeV is called
K> N (t, t')-separating [14] if for any two disjoint subsets C V,
Y Cc VsuchthatX| =t, |Y| = ¢ there holds
In other wordsto achieve exponential decline of the error rate (X)Ne(Y) =0
the number of keys has to grow exponentially with the length c ¢ B
of the fingerprint Note that this growth order of the number ofn other words, for any two disjoint subseXs Y with | X| = ¢,
keys will be achieved in the constructions of Sections IV and Y| = ¢’ there is a coordinatésuch that

C. Previous Results {wi ze X} {y, yeY}=0.

/
We have seen that in the case of binary codes, first considef@dvhat follows, we assume thatt+ ' > 3 because the case

in Boneh and Shaw [5], all the versions of the fingerprinting = ¢’ = 1 is trivial. o
problem considered above coincide. It is proved in [5] that it S€Parating codes were studied in [14], [18]-[21], [15], and

is not possible to solve the fingerprinting problem by using &SC under the name of secure frameproof codes in [25] and of

fixed assignment of fingerprints to the users and suggested R@tially identifying codes in [8].

stead to use random choice of a code from a given code family; emma 3.1: For any single cod& which is not(t, t)-sepa-

This enabled the authors of [5] to construct families-secure rating, the identification error probability. (V) > 1/2 for the

binary (Q = 2) fingerprinting codes. This construction is thenarrow-sense as well as the wide-sense envelope, expanded or

best known in the literature from the point of view of code panot.

rameters. Proof: Ifthe (¢, ¢)-separating property does not hold, then

there exist two disjoint subset§ U’ C V such thaijU| = ¢,

|U’| = t,ande(U)Ne(U’) # 0. Lety € e(U)Ne(U’). Suppose

that the strategy of both coalitiobsandU’ consists of choosing

y as the fingerprint. Then, irrespective of the strategyothe

n = O(t*(log e /M) loge). error probability of deciding betweelii andU’, and thus the
worst case errop. (V') is bounded below by/2. d

Theorem 2.7 [5, Theorem V.5]There exists a family of-se-
cure binary fingerprintingn, M) codes with error probability
e, where

Solving this fore and puttinglog M = O(n®), we obtain It was noted in the literature that separation is necessary (but
log e = —Q(min(y/n, n*~*)). Thus, in the construction of [5], Not sufficient) for narrow-sense zero-error identification. In the

¢ cannot decrease faster thesp(—Q(,/n)) and then)s = context of probabilistic fingerprinting this remark is new.
20(v")_ On the other hand, as proved in [5, Theorem VL.1], for | amma 3.2: For any single(t, ¢)-separating codd’, the
any family of codes identification error probabilityp. (V) < 1 — 1/t for the
1 9 narrow-sense as well as for the wide-sense envelope, expanded
€ > n exp <—m n) or not.

Proof: Consider any sizé-coaliton U € V and any

and so it might be possible to construct codes with error progifategyPy of generating the fingerpring. The distributor’s
ability falling exponentially withn. For this reason, [5] puts Probability of correctly identifying a member @f is at least
forward the question of tightening the gap between the know? by the following strategyD finds any coalitionU/" such
bounds and constructions. The main goal of this paper isfifty € E£(V(U’)) and identifies randomly a user € U".
resolve this question by constructing codes with exponentiafjinceV’ is (¢, t)-separating, we have/’ nU| > 1;thus,u € U
small probability of identification error and the number of word¥ith probability > 1/1. 0
growing exponentially with, and to show that this performance \ye are especially interested in the particular case 2,
is attainable with polynomial complexity of code constructioghich received extensive coverage in the literature (see the
and decoding. survey [21]). In this case, the identification error proba-
Another parameter of the problem whose importance has r@ﬂhy of any single (2, 2)-separating(n, M) codeV equals
been singled out in previous works, but was emphasized in tf,;iES(V) = 1/3 for narrow- or wide-sense envelope, expanded

desirable to have as few keys as possible because the distribggjerprinting code.

must store the key bits in order to manage the system. The best .

known scheme [5] does not invoke this parameter explicitly, re- Lemma 3.3:Let V' be a (2, 2)-separating(m, M) code.
ferring instead to a random code of lendiin) and sizeM . Then

Suppose thad! = exp(£2(n)), then the total number of keys pe(V) =¢e(e*; m, M, 2; K) = e(E; m, M, 2; K)

is K = Q(2"M), i.e.,log K = exp(2(n)), and henceD must (B M. 2 K) = 1/3

storeexp(£2(n)) bits of information. In contrast, we will obtain =e(E% m, M, 2 K) =1/3.
log K = Q(n), which by Proposition 2.6 is the best possible  Proof: By Propositions 2.3 and 2.6, we haugV') > 1/3
order of magnitude. foré = e¢*, E or E*. Onthe other hand, Igtbe a fingerprint ob-
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served by the distributor. Consider the set of all pairg’ such The expectation of the number of paik§ Y that violate the
thaty € E(z, 2’). By the (2, 2)-separating property, either allseparating property is
such pairs have a common element, or there are three pairs that IN /Lt

form a triangle configuratio (z, '), (2’, "), (z”, z)}. In E< ( ) ( , ) Pt
the first caseD outputs the common element, and the(V') = t t

0. In the last case, the strategyofis to take a random element Take

from the triplez, ', z”/, and therp. (V) = 1/3. O

t't/' 1/(T_1)
Hereafter, we focus on the binary case. Let L= (_m Pr >
s log, |V
R§ 2,(m) = max log, [V then
’ vc{o,1}m m T
V is (t,t/)~separating E L pmo— L
RTIRE
be the maximum rate @t, ¢')-separating codes of lengthand
let Finally, note that¢!¢'1/2)(t/(T=1) > 1, a

Note that [14] gives an asymptotic boum}*), > — &2
RS — im RO (m) @) A . : T
IR B AL which is somewhat weaker than this result.

be the maximum achievable rate(of ¢')-separating codes (as
usual, it is not known if this limit exists; if it does not, then the
bounds below should be formulated underlineinf orlimsup ~A. The Case of Arbitrary

definition, as appropriate). if = ', we use a short notation \ye will be concerned with binary codd€ = 2). Recall

_Rgs)- Existence bounds o2, 2)-separating codes were studiedygain that all the statements of the fingerprinting problem in
in [14], [18]; the best known bound [18] gives for the asymptotifhjs case coincide. To construct a family of fingerprinting codes

IV. CODE CONSTRUCTIONS

rate of linear codes the value C we use the idea of concatenation [10]. Recall that a binary
concatenated code of lengthN and sizeM is formed by a
R=1{/m > (3—1log, 7)/3 ~ 0.0642. binary inner(m, q) codeV and ang-ary outer codéV of length

N and sizeM based on a fixed one-to—one mapping of the

On the other hand, it is known that asymptotically< 0.108 4-ary alphabet td’. For every codeworay € W, the word of
for linear codes [21] and%gs) < 0.283 for arbitrary codes the concatenated code is obtained by replacing coordinates of
(see [15], [21]). Paper [21] also contains tablegDf2)-sepa- with the corresponding codewords 6t
rating[m, /] codes. For instance, the well-knofin 3, 4] code  Consider as the inner codéa binary(t, t)-separating code
is readily seen to b2, 2)-separating. Below, we use[3b, 6] of lengthm and sizeg. We choose g-ary [N, K, A = §N]
code from [21] at the inner level to construckaecure finger- linear code as an outer cotdé. Since we need to obtain a family
printing code with very low probability of identification error of codesC, our construction also involve¥ random bijections
(see Example after Theorem 4.4). pi: Fg = V (i = 1,2,..., N), whereF, is the field ofg

It is clear that binary lineaft, ¢')-separating codes do notelements. Restrictions on the parameters of the ctidasd W
exist formax(¢, t') > 2. In the unrestricted case, the existenceill become clear when we analyze the construction.

of (t, t')-separating codes is established by a standard proba€onsider vector mappings = (¢1, @2, ---, ¥n), Where
bilistic argument (“random coding with expurgation”); see [20fachy;, 1 < i < N is an arbitrary bijection. Let us number
[15] for t = ¢’ = 2. We have the following. these mappings fromto (¢!)" in an arbitrary order and write
(k) i i i
Proposition 3.4: Let T = ¢ + t'. There exist binaryt, t')- ¢ to refer to t_hekth mapping. A typical codeword af; is
. d f lenath and sizel P71 whereP — obtained by taking a codeword = (wq, ..., wy) € W and
separating codes of leng 2 i T = computing the binaryn N -vector
1—2=T=Y je,
k k k
D 5900 = (A 0 A ). ).
R()(m) > ——82 T —

- -1 m The mapping*) is chosen byD with uniform distribution and

) . . constitutes the secret key. The length of the cOgés m N, the
Proof: Consider a random binargm, L) code V' and size M = ¢*. Each user is assigned a fingerprint given by a

compute the expectatioF of the number of pairs of subsets . . ; . . :
X, Y of the codeV’, |X| = t, [V| = ¢ that contradict the code vector irCy. It will be convenient to identify the users with

(1. ) separating propery. Whenedr< L/2 hen(m. L/2) (et S L o L e e e
codes with thet, ') separating property exist. !

S . . scheme.
The probablll_ty that a given paik andY violate the sepa- Assume that a coalitiof = {u!, ..., u'} C W generates
rating property is a fingerprint Y

(1-27@-v)" = pp. Y= ¥ uw) € B (¢P@), . o® ()
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where the subblockg, are lengthm binary vectors. The de- decision rule defined by Algorithm 1, forms a binary finger-
cision algorithm of the distributoD first proceeds with “de- printing code of lengti. = m N with ¢ code vectors (users)
coding” of every vectoy, with the inner codd” and then de- that identifies one traitor with error probability
codes the result with the outer codé. P < o—nR(V)[(log; 2) ' D(o]| =)~ R(W)]

Algorithm 1:
) : . .. wheresc =1/t — (1 = H)t.
1) The first stage is decoding of the cotle For a giver: Proof: LetU; = {u! ut} be the multiset of théth
: ~1 ~t ' . UREMMAE Rt
take an arbitrary-set{v", ..., o'} of code vectors from ., ginates of the vectors in the coalitih We denote the
Vthat cangeneragg, '1'8" SUChtthagi € EEZ’) N ”AJ).' number of distinct elements iti; by |U;|. Since for the set#l;
Define the sef/; ~ {hy, ..o h’i}’W.hef% . (h;) = v’ andU;, their images under the bijectiopf.k) can generate the
The result of the first-stage decoding is given by the S€lame vectoy, and since the inner codé is (¢, ¢)-separating,
H={heF):hy € H,..., hy€Hy}. we haveH; N U; # 0. This implies thal~’_; s(u,, H) > N,
and hencenax; s(u;, H) > N/t.
2) The distributorD identifies a possible member of the On the other hand, for any ¢ U, the elementy; can be
coalitionU as the user that corresponds to the code veciacluded in the listH; for one of the two reasons. The first pos-
w € W such that sibility is thatw; € U;, and the numbérf of such positions is at
mostt(N — A) since any two distinct vectors frofy” coincide
in at mostN — A positions. The other option is that the map-
ping of w; to V- matches the random bijecti@jﬁk). To compute

(8)

s(w, H) = max s(w, H)

where the probabilityp; of the last event, note that, by assumption, we
s(w, H) == |{i: w; € H;}| = N — d(w, H). havew; ¢ U;, thus,w; ¢ (U; N H;). Since the bijections are
chosen randomly and uniformly, we obtain
We note that this algorithm has two nonstandard features. The t— U N H|  t—1

first-stage decoding outputs a subseligg of the words. This  p; := Pr{w; € H;|w; ¢ U;} = U < T 9)
differs from the standard decoding algorithm of concatenated ¢ = Uil 1=
codes (which is also [5, Algorithm 2]), where it is assumed th&tow let us bound above the probability thatw, H) > N/t for
this output is a single codeword. In the second stage, the algaParticular vectow. Let¢; be independent Bernoulli random

rithm looks for a nearest code vectoridfto thesubset rather Vvariables equal ta with probability p; and0 with probability

than to one “received” word. L —p;. Then, forw ¢ U
The reason that this algorithm and its subsequent modificaPr{s(m H) > N/tjw ¢ U}
tions will work for the identification problem is that the number NoT
of occasions that coordinates of a code vector fall in the&et < Pr{ Z &> N _ T}
is a random variable whose average is greater when the code — = Tt
vector is amember of the coalitidghthan when it is not. Hence, N
the probability that the distributor identifies incorrectly a code < pr {Z & > E _ t(N—A)} < 9=ND(o|3=7) (10)
vector as a member of the coalition falls exponentially with the im1 t

length V of the codelV. “where in the last step we relied upon the inequality >

We will use the following standard bounds on large dewe{% —1)/(¢q — 1) implied by the condition o in the statement
tions. Let¢; be independent Bernoulli random variable equal {gf the theorem. Now

1 with probabilityp and0 with probability1 — p. Then the prob-

abilities of the tails can be bounded as pe < Pr {mggg s(w, H) > N/t}
N w
o {Z < NU} <aNDEI), iy <¢¥ Pr{s(w,H) > N/tjw ¢ U}.
i=1

Let us substitute the bound on the last probability. Taking
N the logarithm of the right-hand side and using the definitions
Pr {Z & > NU} <2~ ND(lp) ifp<o R(W) = K/N andR(V) = log, q/m, we obtain

’
=1 t—1

q—1

whereD(a||p) = alogy(o/p) + (1 —0)log,((1—0o)/(1—1p)) p. < 2KmMR(V)9-ND(e|

is the information divergence of two binomial distributions. which is the same as (8). O
Theorem4.1:LetW be ag-ary linear{N, K, A = §N]code Remark: The theorem yields nontrivial results, i.e., the ex-
with ponential decline of the distributor’s probability of incorrectly
1 -1 identifying a user as guilty, when the outer cdde has large
6>1— 5+ distanceA. Itis well known [19] (rediscovered in [25]) that con-

2 tlg—-1 . . ) . .
(g-1) catenation of an inner separating code with an error-correcting

and letV be a(t, t)-separating binarym, q) code. The family outer code with large distan¢é > 1—1/t2) gives a longer sep-
of concatenated cod€s= {C}.} with inner codel’, outer code arating code. We would like to stress that the separating property
W, and the set of allq!)"¥ bijections$(*), together with the (renamed in crypto literature as secure frameproof property) is
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not sufficient for identifying members of the coalition. Thereand, thus, of ratd?(V) ~ R,;. Hence, for a constantand
fore, in the last theorem we perform a probabilistic analysis efifficiently largerm, it is possible to find a code of sizesuch
the random ensemble of codes which amplifies the separatthgtq satisfies the conditions of the corollary. Considerary
property to achieve a desired fingerprinting performance. No&& codelV of lengthN and rateR(W) < Ry (W) such that for
also that concatenation of a fingerprinting inner code with darge, its distanced =6 N satisfiesl—6 < R(W )+1/(,/q—1).
error-correcting code used in [5] does not lead to asymptoticallyBy Theorem 4.1, the error probability of identification will

good fingerprinting codes. fall exponentially ifo > (t —1)/(¢ — 1) and

Let us use the general construction of this theorem together ) t—1
with specific choices of codes to present a few families of easily 0 < R(W)logy g < D <U g—1 ) ' (12)
constructible-secure fingerprinting codes. These construction]she inequality
will enable us to claim overall code rate separated from zero
together with exponentially small probability of identification oo L HROW) + 1 ) t—1
error fort = const. We will tacitly assume that for a fixed 13 Vi—1 qg-—1
choice of the coded” and W, the family of codes{C}.} is g equivalent to the inequalitf(W) < A, where
obtained by applyingV random mappingsogk): F, — V, ’
1=1, 2, ..., N tothe coordinates of vectors . In the fol- - o t=1r 1 ]
lowing, we focus only on the choice of the codes. 2 tg-1) g-1

TakeV to be along binaryt, t)-separating code of length |1 is immediate to verify that the condition > (¢2 + 2)2 im-
and rate plies thatA > 0. Hence, the upper bound (8) holds true if

Row — m=11 _ logy Py 0< R(W) < A.
20 =M 0820 = =5 Next, let us show that the segment of value®6F/) that sat-

isfy (12) is a proper subset @6, A). This is immediate since
for R(W) € (0, A), D(o||f1%§) is a positive decreasing func-
tion of R(W) which reaches zero when= (t—1)/(¢—1), and
the middle part of (12) increases from zera4dog, ¢q. Hence,

(see Proposition 3.4) aid a[q, K] extended Reed—Solomon
(RS) code of rate?(W) = K/q overF,. Substituting these
parameters into Theorem 4.1 and taking into account that

(logy q)~'D <U t—1 ) ~ o (11) has a (single) roof2o (W) < A, and for all0 < R(W) <
2 - Ro(W), inequality (12) holds true. This completes the proof.
for ¢ fixed andg growing, we obtain the following result. O]

. Note that the codes of Corollary 4.3 are polynomially con-
Corollary 4.2: Forany fixed: and anyraté? < Ry /t(t+1), structible. Indeed, by a recent result of [22], the construction
a binary fingerprinting code of Ieng_blnwith 2" code v_ectors complexity of the cod&V for them isO((N log, N)?), and the
(users) constructed by concatenating the cddemd W iden-  complexity of constructing the codé is constant, independent
tifies one traitor with exponentially decreasing error probabilitys p-

—n[t~ ' Ras —(t+1)R+o(1)]
pe <2 ' B. The Casé = 2

Now let us takd/ to be a fixed binaryt, t)-separatingm, q) A usual assumption in digital fingerprinting is that it is not
code, whergy is an even power of a prime. This choice is pogPossible to recover “the entire coalition since some of its mem-
sible due to Proposition 3.4. Let us take the outer cddeéo Pers might be passive” (see, e.g., [5, p. 1899)). Therefore, the
be a long algebraic-geometry (AG) code from a maximal curvé)gerprinting problem was restricted to finding one guilty user

whose parameters asymptotica”y approach the bdt,(W) — with hlgh probablllty In the case of Simeoalitions, itis pos-
1-6—1/(/7 - D27]. sible to construct a family of fingerprinting codésthat have

_ i ) ) ) a stronger property than in the original definition. Namely, the
Corollary 4.3: For any fixed, anyg > (1 + 2)” thatis an  gistriputor either recovers one member of the coalition—
even power of a prime, and any ralee < Ry Ro(W), where {u, u'} with probability one ¢ero-erro), orbothmembers with

Ry (W) is the root of the equation probability 1 — e.
1 1 t—1 To construct a family of fingerprinting codes = {C,} in
R(W)logyq = D <Z —t <R(W) N 1> H q— 1> the case of = 2, we use the same general idea of concatena-

11) tion as for arbitraryt, with a somewhat different decision al-
a binary fingerprinting code of length and size2®" con- gorithm. The construction involves a binaf¥, 2)-separating
structed by concatenating a fixed innen, ¢) codeV with [m, £] linear codeV [18], ag-ary [N, K, A = ¢ N] code,q =
the (¢, t)-separating property and AG codéd of rate 2¢ andN random bijectionsogk): F,—V,i=1,...,N.
R(W) < Ro(W) and growing lengthV, identifies one traitor ~ Encoding, or the fingerprinting assignment procedure, is

with exponentially falling error probability given by (8). the same as above. Namely, the fingerprint corresponding to
Proof: By Proposition 3.4, for amy, there exists a binary a vectorw = (w1, ..., wy) € W is obtained by computing
(t, t)-separating cod® of lengthm, size T = (wgk)(w1)7 . <p§\'$)(u{N)). The length of the cod€’; is
(2t1) —m/(2t—1) n = mN and the size ig’*. As before, we identify the users
V= (1/2) (1 -2 ) with the code vectors of the cod¥.
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Assume that a coalitiolV = {u, '} C W generates a fin- Therefore, outer decoding in Step 2 of Algorithm 2 can yield
gerprinty = (yq, ¥, ..., Yy ), Where the subblockg, are only an elementol/ (or maybe both of them). If outer decoding
length+sn binary vectors. gives no output, thed < 4N (1 — §) because

Let us first describe inner decoding, which will be dif- . ) '
ferent from the general case. Recall tigat= 2, and so the I |{e: Hi = wid] + [z Hy = wi}].
narrow-sense envelopeand the wide-sense envelogeare |n this casel > N(1 —4(1 - ¢)), and bothu;, u; € H; for
the same. By definition, the subblogk is contained in the all j € L.
envelopee({v, v'}), wherev = <p§k)(u) andv’ = wgk)(u’). Now observe that fow ¢ {u, '}, its coordinatew, can
Consider all possible pairév', »*) of code vectors from be included in the list{; either because; € {u;, v/}, and
the codeV such thaty; € e({v', v*}). By the (2, 2)-sepa- the number of such positions is at mas{ (1 — ¢), or if w; ¢
rating property, all these pairs should intersect. Hence, either;, u’;}, then it can be included iff; with probabilityp <
there is a vectow* that is an element of every such pair (a1 pecause the random bijecti@é’“) is not known to the mem-

star configuration), or there are three such pairs that for ™ (k) (k) 4
a triangle{v, v', v"} (cf. Lemma 3.3). In the first case, the ers ofl/, except for the (two) values ;™ (u;) andp;™ (u;).

. L H ,forallj € £, th babilit
decoding result is given bif; = (wgk))—l(v*) € F,; note that ence, foraly € © probabiity
H; € {u;, u}}. Inthe second case, the result is given byliste Pr{w; € H; | j € L} <(q—2)"L72N1=9)

_ N N S(q_Z)fN(lffi(lf&))
= {(")7 ). )7 @), ()7 )] .
for any vectorw € W\ {u, u'}. Therefore, the probability that

and{u;, u;} C H,. at least one vector from the codié that is distinct fromu, /,
. : " . Ko -
Algorithm 2: WI!;altI_SGf);_th coqdltlon of Step 2 is at mog&2 2)(q
, . 2)~N(1-6(-9)) This proves the theorem. O
1) TheN columnsy,, ..., y, of the observed fingerprint

y are independently decoded with the cddeThe de- ~ Example: Take a(2, 2)-separating binar{s5, 6] code [21]
coding resultf; of the m-vectory, is either a single ele- as inner code/, an extended R5, 7] code overFe, as
ment ofF, or a3-subset of-,. The result of this step is outer codd¥’, and all(64!)° different vector mappingg™*) =

the set ¥ ¢%)), where thep™): Fey — V are bijections.
N Then Theorem 4.4 states that the resulting binary fingerprinting
H={heF, :h1 € Hy,...,hy € Hy}. code of lengthn, = 2275 and sizeM = 242 either identifies

_ ) ) one traitor with probabilityl or both with probability of error
2) Denote byr the subset of coordinates in which;| =1, - 24262-29 - 1039,

andletC = {1, 2, ..., N)\T; I = [Z], L = |£|. Ifthere | otys use Theorem 4.4 to construct specific families of codes.
is a vectorw € W such that the number of agreements opserve that, denoting = 1 — 6(1 — §), we can rewrite the

bound forp, as follows:

o _ B . < 9-n(R(V)a—R) (| _9—t+1)~Na 27n(R(V)a7R)42Na/2I
then the distributor identifie® as a member of’. Pe = ( ) < (13)

3) If the condition of the previous step is not satisfied, th@here the last step relies on the inequality— 1/z)* > 1/4
distributor finds all code vectors € W such thatw; € valid for all z > 2.

Hjforall j € £ and identifiesu andu’ as any two of  |n particular, let us také¥ an RS code. We obtain the fol-
them. lowing.

{i €I w;,=H;} >2(N—-A)

This procedure enablel to find either both users frorty Corollary 4.5: For any rateR < (3 —log, 7)/21 = 0.0092,
with probability close tol, or one user froml/ with proba- there exists a family of fingerprinting codes;, of length
bility 1. n with 28" code vectors (users) that either identify one

Theorem 4.4: The family of code€ = {C}} together with traitor with probability 1 or both with probability of error

—n(R4—7R— _ ~
the decision rule given by Algorithm 2 forms a binary finger?e < 2 (o 7, whereR, = (3 —log, 7)/3 ~ 0.0642
andg = O(N—1).

printing code of length = m N with 25" = 2K code vectors _ _ _
(users) that either identifies one traitor with probabilityr both Proof: TakeV a(2, 2) separatingm, /] linear code. By
Proposition 3.4, for large: there exists a code of rate arbitrarily

with probability of error

close toR,. TakeW, an extended REV = 2¢, K| code over

pe < 2fn (26 — 2)~N(=6(1=9)) F,, ¢ = N ofrateR(W) < 1/7. The estimate of, is obtained
] ) from (13) by direct substitution. O
Proof: Lety = (yy, ¥, ---, Y ) b€ a fingerprint gen-

erated by a coalitio/ = {u, '} C W. Suppose that inner Remark: Codes of _Corollary_ 4.5 have a stronger property
decoding ofy results in a sett. As we pointed out earlier, for than codes of the previous section for the case-e2, namely,
all i € T we haveH; € {u;, u/}. Hence, for anw ¢ {u, v/} the error-free recovery of one user from the coalition or of both
the number of agreementé ‘ / users with a small probability of error. This is achieved in ex-

change for a drop of the maximal achievable rate of codes by a
{i: w; € H;}| < [{i: wi = w4+ |{i: w; = uj}| <2N(1-6). factor of6/7 (cf. Corollary 4.5 versus Corollary 4.2).



BARG et al: DIGITAL FINGERPRINTING CODES 861

Now let us concatenate @, 2)-separating binarym, 2¢] this decoding for théth column is any coalition of sizewhose
codeV with a family of AG codesW from maximal curves envelope containg,. Upon inner decoding of all thg, we ob-
over Fy2:. We assume that the rafe(WW) is fixed and letN  tain a subset
grow. Then the parameters Bf approach the bountl— § = ~
R(W)+1/(2¢—1). The parameters of the resulting code family H={2eF :z1€H, ..., 2x € HN}
depend on the choice of the colle For instance, we have the

: of N-words overf,. The objective of outer decoding is to find
following result.

avectorw € W that minimizes the distanew, H) from the
Corollary 4.6: For any rateR < 2L ~ 0.015 there exists a code to the “received” subsgt. A straightforward approach to
family of fingerprinting codes of length and rater that either this problem requiregH| runs of some conventional decoding
identify one traitor with probabilityi or both with probability algorithm, which results in exponential running time. Further-
of errorp, < 2-7(0-105=7R) more, until recently all known algebraic algorithms could cor-
Proof: Let V be the (2,2)-separating binary rectonly about\/2 errors (the so-called bounded distance de-
[m = 126, 2¢ = 14] code of rateR(V) = 1/9 [8] and W  coding). Note that even if the sét is of sizel, it does not help
be an[N, K, 6N] linear code from a family of maximal curvesto use a bounded distance decoding algorithm because we need
overF,i1. For largeN we havea = (121/127) — 54R. Using to correct, roughly speakingy(1 — 1/t) > N/2 errors. To

this in (13) gives the claimed bound pp. O show this, recall that users in the coalition can create any vector
N h . lexity of cod . by C that is contained in their envelope. Consider the following fin-
ote that construction complexity of codes given by Orogerprint vecto — (y,, ..., y), Where (assuming tha¥ /¢
lary 4.6 grows polynomially with the code length is inte
ger)
_ R i _ .
V. IDENTIFICATION (DECODING) ALGORITHMS Ysrri = Porri(Useri)y =0, 1, .., N/t =1, i=1,.... L

In this section, we address the algorithmic side of the r&hen Hy1; = uly;, SO|Hy1| = 1, and for every vectoa’
covery problem of the users from the coalition. This questioie haveN — d(u’, H) = N/t. Fortunately, the recently found
was essentially sidestepped in the literature. A notable excédipt decoding procedures of AG codes correct many more errors,
tion is work on tracing traitors [6], [7] which discusses identioutputting in polynomial time a small (polynomial-sized) list of
fication complexity for the narrow-case fingerprinting problenode vectors. More precisely, we have Guruswami-Sudan (GS)
However, these papers, as well as [5], only give algorithms wilicoding [11], [12]. LetV" be ag-ary (one-point) AG code with
complexity linear in the numbe¥! of users of the system, i.e.,Parameter$N, RN, 6N]. LetR = [r;;] be ag x N matrix of
in our terms, exponential in the length of the fingerprinting codonnegative integers. There exists an algorithm which finds all
Here, we give algorithms of complexipplylog(M) = poly(n) the codewordss € W that satisfy the inequality

that ensure exponential decline of the error probability. N
Conceptually, we face a problem of decoding of two-level r(w) := Z Twi.i > VN — A |R|| (14)
concatenated codes. In the case of error correction this problem im1
has a long history in coding theory literature [10], [9]. Decoding
can be accomplished, for instance, by exhaustive search pehere||R|| = />, ;77 is the/y-norm of R. The number of

formed for the inner-level code and some algebraic algorithimese codewords is bounded by a polynomial functiol oThe

for the outer code. Following this pattern, we analyze the dgaplementation complexity of the algorithm is also polynomial

coding algorithm formed of the following steps. in N. Implementation details for the RS and one-point AG codes
Recall the parameterém, ¢) of the inner codelV and together with complexity estimates are worked outin [17], [12].

[N, K, A = N¢] of the outer codéV which will be assumed  This formulation of the decoding algorithm is motivated by

an AG code. Here, byA we mean the designed distancelaf the soft-decision decoding setting. In that context, the mdrix

We will confine ourselves to the so-called one-point AG codedescribes reliabilities of symbols &f,. For this reason, in the

A one-point code is a geometric Goppa cdtfeconstructed in following we call the value (w) the reliability of the vectoww.

a usual way from a (smooth projective absolutely irreducibl&he original list decoding algorithm of [11] that works with a

curve overl, with rational pointsFy, Pi, ..., Py. Namely, particular “received” vectat = (x1, z», ..., zy) iS obtained

let Fy, ..., Fx be a basis of the Riemann—Roch space @l puttingr;; = 6, ., (ones for the values that correspond to

rational functions onX associated with a divisor of the formthexz; and zeros elsewhere). In this case, by (14), the algorithm

aPy, a > 0. Then the set of vector§ F;(P1), ..., F;(Pn)), wilfindalisty c W formed of all the codeworda of the

1 <i < K}inF, forms abasis of the codé'. For this reason, codeW that satisfyd(w, z) < N — /N (N — A). The size

all the codes obtamable in this way are sometimes callg}| is again bounded by a polynomial functloan

evaluation codedn particular, if we takeX to be the projective  Note that if our goal is to output one decoding result rather

line overlF, and Py = oo, then the space of functions is formedhan a list, we choose a vectarfrom ) whose reliabilityr (w)

by all the polynomials of degree at mast The dimension of is the maximum of all the code vectors)h In particular, for the

this space i = a + 1, and we obtain afV, K] RS code. basic version of the algorithm which builds a list of code vectors
Suppose that a coalitiofi = (u!, ..., u') generates a fin- in a sphere of radiu®’ — /N(N — A) around a given point

gerprinty = (y4, ..., ¥y). The distributor first performs de- z, we can choose a vector whose distance te the smallest

coding of every columy, with the inner codé’. The result of among all the members @f. In other words, this algorithm
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enables one to correct, whenever possible, a number of errorsi) # satisfies (14), and
greater than half the minimum distance of the code. i) the probabilityp. of incorrect identification satisfies the
This observation explains the usefulness of the list decoding  claim of the theorem.

methods in the fingerprinting problem. In the following subsec- e pegin with part i). By assumption(w) > N/¢. On the

tions, we will show a way to find @ member of the coalition agther hand, the right-hand side of (14) for our choice of the
amost reliable code vector, maintaining the overall polynomiglatrix R equals

complexity.
N q
A. ldentification in the Case of Arbitrary (N=2)Y > %=/ (N-A)N
Consider the family of binary fingerprinting codéformed i=1j=1
by concatenating a binarf, t)-separating'm, ¢) codeV of NI =0 < N
rate R(V) = m~"'log, q with outerg-ary [N, R(W)N, §N] -t
AG codeslV. Hence, the vectoi. € U satisfies (14).

Consider the following identification procedure for the ob- For part ii), note that
served fingerpring = (y4, ..., Yn)-

Algorithm 1’

1) Foreveryi = 1, 2, ..., n, find the subsef]; of symbols Therefore, let us estimate the probability that there exists a
of F, corresponding to an arbitratytuple of vectors of/  vectorw € W\U such that-(w) > N/t. Denote byl the
such thaty; is contained in their envelope. To accomplisifiumber of coordinates in which w; agrees with one of the
this, the distributor performs a lookup of at m@%t) #-tu- vectors inU. Assume that these coordinates have numbers
ples of vectors of/. (Same as Step 1 of Algorithm 1.) 1, 2, ..., 1. We have

2) Form a(q x N) matrix R, settingfori =1,2, ..., N

Tj; = 1, if J € H;
rji =0, if j ¢ H,. If 5 is one of the remaining/ — I coordinates, then by (9) we
- _ ’ _ havePr(w; € H;) < p = '=;. Therefore, the probability of
3) Use the GS algorithm with the code and matrixR as  mistakenly identifying a vectaw is estimated as follows:
the input to obtain a lis) ¢ W of code vectors oV
N
N
1 w,g > —
+ Z Tawj,j 2 p }

that satisfy (14). Ify # 0, find a vectoru from ) such N
that the value:(u) > N/t. Identifyu as a member of the Few = Pr {T(w) 2 —} < Pr
j=I+1

pe < Pr{3w e W\U: r(w) > N/t}.

I<t(N-A)<

Wl =

Remark: The reliabilitiesr;; are chosen in a way suitable N t—1
for addressing the following decoding problem: given a subset <Pr Z &N 2
=1

coalitionU'.

HCFY

here every¢; is a Bernoulli random variable that takes the

—(heFN:heH, ..., Hy W oIy 1S a & . >

_ H=(heFiheH, ’_h_N .e N) ~ valuel with probability p and 0 with probability 1 — p. The
find a codevector of the codé” that minimizes the Hamming overall error probability of identification can be bounded as
distance betweel and. This generalizes the standard dep, < ¥R(OV) p, . This quantity can be estimated as follows:
coding problem for whichH| = 1. '

_ _ _ pe < 2~ N(D@llp)=R(W)log, q) < 9= N(D(ollp)—t > logy q)

Theorem 5.1:Let C = {C}} be a family of binary finger- T -

printing codes of rat&k = R(W)R(V') with (¢, t)-separating To complete the proof of the theorem, we have to show that for

inner code of ratd?(V') = m ! log, ¢ and outer-ary codeW  our choice of the parameters the exponent

of rate R(W) and relative distancé > 1 — 1/t3. 4
For anyy > 0, there exists a valug, = qo(v) such that for E = D(o|lp) —t "logy q

anyq > go and anyt < (1 —7)/q — 1T, Algorithm 1" used o his hound is a positive number. The exponent has the form

in conjunction with the code€';, has complexitypoly(n) and

i ifi iti i ili -1 ?—t+1 ?—t+1 1
identifies a member of the coalition with error probability E(q, t) = log, q - n f + log, : _;L - logy g.

po < 2~ NID(llp)~t > logz d]
Its derivatived £ /9t can be checked to be negative foriak
\/q — 1. Therefore, it suffices to check that for amy> 0 there
exists a valueyy such thatE[q, (1 — v)v/q — 1] > 0 for any
q > qo. The quantity

wheres = (t —1)/t>,p = (t —1)/(q — 1).

Proof: By definition, for everyi the subset/; contains at
least one of the coordinates of the vectors of the coalition
Since for anyu, the valuer(w) = |{i: u; € H;}|, we have

1 log, q

r(u) > N — log, g =
2z O (PR AT Ry
and, therefore, there exists a vecfore U such that-(#) > can be made arbitrarily small for large The termD(¢||p) is
N/t. We shall prove that zero fort? = ¢ — 1 and positive otherwise. For any fixedhis
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term is a growing function of. Hence, for anyy > 0 there wherei € 7 andj € L.
exists a valuey = go(7) such that for any > go 3) Use the GS algorithm with the cod® and matrixR as
Elg, (1 - wm)] > 0. g;é?;m to obtain a lis)y ¢ W of code vectoraw that
This completes the proof. O
r(w) > N.

The valuegq() is easy to find numerically. For instance,
q0(1/3) = 39, qo(1/10) = 355, qo(1/20) = 1613, etc. If Y # 0, identify an arbitrary vector frory as a member
This theorem is valid for any sequence of AG codes (in- of the coalition.

cluding the RS codes). To maximize the achievable rate of the.l_he difference of this algorithm from the general Algorithm

codesC we can choose a sequence of AG codes [27] whose H?is motivated by the fact that the sktfor the case = 2 has
rameters for largév approach the bound

a particular structure described above.
1

RW)=1-6- Ji-1 Theorem 5.3:LetC = {C}.} be a family of binary finger-
_ _ _ printing codes of rat&k = R(W)R(V) with (2, 2)-separating
This shows that for a giveft, ¢) separating cod® of lengthm  inner code of raték(V') = m ! log, ¢ and outei-ary codel’

and size; there exist sequencesieecure fingerprinting codes of length NV, rate (W), and relative distancé > 3/4.

{Ck} with rate R = R(V)R(W), where For the family of fingerprinting code€, the identification
1 B rule given by Algorithm 2has complexityoly(n) and identi-
0<R(V)< - 57— 1 log(1 —2%71) — o fies a member of the coalition with probability— ., where
1 1 o\ —N/2
0<R(W)< 5 — . Pe < 1-2 .
B g1 = \47
The error probability of identification for code&s;, falls expo- Proof: Letu, u’ be the vectors df” that correspond to the
nentially in the code length. Hence, taking sufficiently large  members of the coalitiofv. At least one of these vectors, say
we derive the following result. u, satisfies the conditiof{i € Z: u; = h;}| > I/2. Therefore,
Corollary 5.2: Let RES) be the maximum achievable rate of N
(t, t)-separating codes. For any rale 0 < R < R'™ /13, > runi = L+2(1/2)=N.
there exists a sequencetegecure fingerprinting codes of length i=1

n and size2®" that allow polynomial-time identification with On the other hand
error probability falling exponentially with the code length 1 1
P y falling exp y 9w N AR < NI +30) = { NBN +1) < N

B. Identification Algorithm in the Case= 2 Hence, by (14), the vectar will be contained in the lisy.
The case = 2 is of special interest because it is possible to Now letw € W\U be another code vector. The number
modify the general decoding algorithm of the last section so theift coordinates: such thatw; € {u;, v} is not more than

it lends itself to a more accurate performance analysis. 2(N — A). In these coordinates, the valug, ; = 2 or 1 ac-
Consider the family of fingerprinting code8 of length cording as € Z ori € L. In the remaining coordinates, which
n = Nm and size2™EW) formed by concatenating anecessarily fall in the subsgt the valuer,,, ; = 1 with proba-

binary (2, 2)-separatingm, ¢] codeV (¢ is even) and @-ary bility 1/(¢ — 2). So denoting by; a Bernoulli random variable
[N, R(W)N, 6N] AG codeW (¢ = 2°). By Section IV-B, thattakes the valuewith probability1/(g—2) and0 with prob-

after inner decoding the distributor forms a set ability 1 — 1/(¢q — 2), we can write the reliability of the vector
He{heFY heH hy € Hy' w as follows:
= q . 1 17 ey N N ]\T_Z(]V_A)
where some subsefd; are singletons (i.eg-ary letters) and r(w) <2(N - A) + Z &
some3-sets ofg-ary letters. We recall the notatidh for the i=1
subset of coordinates corresponding to the singletons and N N X
L = {1,2,..., N}\Z for the subset corresponding to the SAN—A)+Y & < 5 1 >
triplets; I = |Z|, L = |L|. i=1 i=1

Consider the following decoding procedure of the codthe probability P. ., of erroneously identifyingw can be
C = Cy. bounded as follows:

Algorithm 2': N N
Pow <P =P >N} <P > =
1) Apply the same procedure as in Step 1 of Algorithm 2to “* = rHwe ) r{r(w) 2 N} < r{; ¢ 2 }

construct the set!.
2) Form the matrixR as follows:

2, a=h; 1, a € Hj 1 4 — -N/2
Ta,i = { Ta,j = { ] <23Nlom 7%y — (122 2 )
0, (07 75 hz 0./ (07 ¢ Hj 4

. 1 4(¢—3)
<9-ND(5llg2s) — 9z N log 5
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The size of the cod® is ¢*WIN < ¢N(1-8) < ¢N/4 There- sess the traceability property together with a polynomial identi-
fore, we finally obtain for the error probability of identificationfication algorithm. (After this paper was submitted, we became

the bound aware of the paper [23] which works out the details of this idea.)
9\ ~N/2 o\ —N/2 This application of list decoding is, however, limited as fol-
Pe < |Wpe,w < gN/* <q;> = (q;> ) lows: to construct-ary error-correcting codes of rate bounded
’ 4 1va away from zero, we must take> n/(n — d) (by the Plotkin
as was to be proved. 7 bound of coding theory). Hence, if traceability codes or effi-

cient IPP codes are constructed based on error-correction prop-

Remark: Codes secure against coalitions of size two weggtjes only, then no matter what the identification algorithm is,
proven in Section IV-B to be able to restore either one user Wiifhnzero code rate is obtained onlyit> 2.
probability one or both with an exponentially small error proba- o, the other hand, the ideas of the present paper, in a sim-
bility. With a little more work, itis possible to attain this perfor-p|ified form, enable one to construct explicit families PP
mance with polynomial complexity. The details will be omittedgodes together with polynomial-time identification procedures

The remarks made after the proof of Theorem 5.1 are aif @nyq > ¢ + 1 (this was suggested as an open problem in
valid for the result proved in this section. In particular, let ut?4)- This resultis presented elsewhere [2], [3]. Independently,
combine the(2, 2)-separating binarym = 126, ¢ = 14] code Similar results were obtained in [26].
with a sequence of AG codes over the fi#flgi. constructed 2) Capacity of the fingerprinting channgbpen problem).

from maximal curves. We obtain the following result. Let us call the ratd? an achievable rate of the “fingerprinting
channel” if for any giveru > 0 there exists a positive integer
Corollary 5.4: For any ratelz < 0.0242 there exists a se- ,, with the property that for every > n, the best attainable
guence of-secure fingerprinting codes of lengttand siz&%" g rror probability of identification (2) satisfies
that allow polynomial-time identification of one of the members

of the coalition with error probability, < 2-57/252, e(&;n, "B 1) < a.

This result follows immediately from Theorem 5.3. In particas ysual, let us call the number
ular, sincen = mN, the error probability is at most
—N)2 C(&q.t)= sup R
Pe < <g> ~ 2—%]\7 _ 2—511/252. R achievable

44 capacity of the digital fingerprinting channel for the envelope
It is interesting to compare this result with Corollary 4.6. Wé- We have shown that(€; 2, ¢) > 0 for every giveni and
see that the exponent of the error probability in that corollary R¥€sented constructive code sequences with rate bounded away
better than here for rate close to zero. On the other hand rom zero. The question of finding the capacity of the finger-
Corollary 5.4 gives a constructive family of codes with rateRfinting channel presents an interesting open problem.
much greater than in Corollary 4.5. Moreover, the error prob-
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