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This article is concerned with properties of codes as packings of met-
ric spaces. We present a selection of results on extremal problems of
geometric coding theory.
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1. Introduction

notes

A. Barg

Notation
element of the distance distribution of a code €
distance enumerator of a code €
distance profile
number of elements of a finite set A
ball of radius w in X with center at x
vol(By)
code
dual code of a linear code €

information distance between two binomial
distributions, Section 2.1

distance of the code €

distance between z and y

relative Gilbert-Varshamov distance, Definition 4.3
Hamming space, the n-fold direct product of a g-set
entropy function, Section 2.1

Johnson space, sphere of radius w about zero in J"
binary Johnson space

Krawtchouk polynomial of degree k

maximum size of a d-code in X

probability of decoding [undetected] error of the code €
intersection number of J", see Section 2

unit sphere in R™

sphere of radius w in X with center at z

vol(8y)

Hamming norm of z

f5-norm of x

indicator function of a subset in a set X

exponential equivalence of functions, Section 2.1

This article is devoted to results of coding theory that are centered around
the concept of a code as a packing of the corresponding metric space. We
derive a few results in several rather diverse directions such as combinato-
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rial bounds on codes and their invariants, properties of linear codes, error
exponents, and applications of the polynomial method. A common goal of
the problems considered is to establish bounds on natural combinatorial
parameters of a code. The primary aim of this article is to explain the basic
ideas that drive this part of coding theory. In particular, we do not strive
to explain the best known result for each problem that we discuss. Our mo-
tivation is that, as in each living mathematical discipline, the current best
results are often of an ad hoc nature and do not add to our understanding
of the central ideas. Pointers to the literature that develops the subjects of
this article are supposed to compensate for this.

The title of this article refers to estimates of code parameters for codes
of large length. This approach helps us to highlight fundamental properties
of codes. There is also a vast literature devoted to beating current records
for parameters of short codes in various metric spaces; this will not be
discussed below (see [41]).

Let X be a metric space. By, (¢) = By (X, ¢) denotes the ball and 8,,(c) =
8w(X, ¢) the sphere of radius w with center at the point ¢ € X. The volume
of a subset Y C X will be denoted by volY (we only deal with the counting
measure for finite spaces and the Lebesgue measure in R™).

2. Metric Spaces

In this section we list the main examples of metric spaces occurring in
coding theory.

A. Hamming space ;. Let () be a finite set of size g.
%n = {(.Z‘l, - ,.’L‘n),.fll‘z' € Q}

Another definition: " = (K,)", where K, is a complete graph on ¢
vertices; in this context " is also called the Hamming graph.

We denote the elements of Q by 0,1,...,q — 1. If ¢ is a power of a
prime, then we assume that @ is the finite field F,, and then J#" is an n-
dimensional linear space over (). We call elements of " words, or points,
or vectors.

The Hamming norm or the Hamming weight of a point =z =
(z1,...,2n) € " is defined as

|z| = t{i : z; # 0}.

The distance induced by this norm is called the Hamming distance.
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A ball B, (", c) of radius w with center at any point ¢ € " has the
volume

w
n .
B, = vol(B,) = Z (l> (g — 1)
=0
Intersection numbers pf’ j of the space by definition are
pE; () = t{z € A" 1 d(2,2) = i,d(2,y) = j; d(z,y) = k}.
Thus, pﬁ ; is the number of triangles with fixed vertices z and y, distance k

apart, and a floating vertex z that obeys the distance conditions. Explicitly,

|22

=3 (F)(IR0) (0 ) a- -

a=0
In particular,
k n—k
k n . .
i (") = o L —i+ke27).
) = (75 1400) (e - 1)X6 :
For any two vectors z,y define their support as

supp(z,y) = {i : z; #yi}.
If y = 0, we write supp(z) instead of supp(z,0). If A C 5", then

supp(4) = U supp(a, a’).
a,a’ €A

We note that the Hamming metric is not the only interesting distance
on J£;". Generally the set ) can support various algebraic structures such
as groups and rings. Even for ¢ = 4 this already leads to nonequivalent
metrics on Hj' : the Hamming distance and the Lee distance. This diversity
increases for larger ¢; eventually the taxonomy of norms and norm-like
functions itself becomes a subject of study.

B. Johnson space.
= {r e A |z| = w}.

The metric in #” is the Hamming distance.

If ¢ = 2, then we write #™" and omit the lower index. In this case
it is sometimes more convenient to use the Johnson metric dy = (1/2) dg,
where dg is the Hamming distance.
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A ball B,(_#™") has the volume
Lr/2] w\ /71— w
B, = .

S ={z eR" : |z = 1}.

C. Unit sphere in R™.

The distance in %" is defined by the angle between the vectors:
0(x,y) = arccos(z,y).
It is often convenient to use the inner product ¢t = (x,y) instead of 6.

D. Projective spaces and beyond. Coding theory is mostly concerned with
X = P 1R, P"!C, and P" 'H. The distance between z,y € X is mea-
sured by the angle § = arccos|(z, y)| or by the absolute value of the inner
product t = |(z,y)|.

One generalization of these projective spaces has recently gained atten-
tion in coding theory. Let X = G, (L) be a Grassmann space, i.e., the
manifold of k-planes (k < mn/2) through the origin in the n-space over L
(here L = R or C). To define the distance between two planes we need to
introduce principal angles. Let p and ¢ be two planes in X. The absolute
value of the inner product |(z,y)|,z € p,y € g, as a function of 2k variables
has k stationary points pi,...,pg. Define the principal angles 64,...,6%
between p and g by their cosines: 6; = arccos p;. There are several justi-
fiable ways of defining the distance between p and g. So far the following
definition received most attention in coding theory:

d(p,q) = \/sin201 + - +sin? f;.

2.1. Asymptotics

We next turn to asymptotic formulas for sphere volume in metric spaces of
interest to coding theorists. They will be used to derive volume bounds on
codes in Section 6.

Let f(n) and g(n) be two functions of n € N. We write f = g if
lim, %log% = 1. The base of the logarithms and exponents is 2
throughout.
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2.1.1. Hamming space. Let X = ", where ¢ is fixed, n — oo and let
w = wn. We have, for w,p € (0,(¢ —1)/q),

— (n i(_ P Y n—i ~
S (M) @-vi(-E5) (1 -p)" = exp[-nD(wlp))
i—o \! ¢—1

where the information divergence between two binomial distributions,

D(w||p), equals

w 1-w
D(w|lp) =wlog— + (1 —w)log .
(llp) (W)l

In particular, with p = (¢ — 1)/¢q we obtain an asymptotic formula for the
volume of the ball:

By = exp[nhq (w)]a
where hg(y) is the entropy function defined by

27~ (1= 9)log(1 =)

hq(y) = —ylog

for y € (0,1) and extended by continuity to y = 0,y = 1.

2.1.2. Binary Johnson space Z™". Let w = wn. The volume of the ball is
given by

B,n = exp [n(whg(%) +(1- w)hg(ﬁ)].

2.1.3. The sphere ™. A ball in X = ",
By(X;z) = {y € X : L(z,y) < 0},

is the spherical cap cut on the surface of X by the circular cone Con (z, §)
with apex at the origin and axis along z. Let Q(6) = vol(By(X;x)). We
have

. 2
n~"log (6) = %log Miﬂu +o(1)) (0<6<m/2).

2.1.4. Grassmann space Gp 1 (L). Let B5(Gy i) be a ball in the Grassmann
manifold of radius § with respect to the distance d(p,q). The volume of
the ball of radius ¢ is given by

J \ Bnk+o(n) . . B
Bé_(ﬁ) (B=1ifL=R g=2if L =C).
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All the results of Section 2.1 except the last one are standard. The
volume of the ball in G, is computed in [10] (see [17] for a discussion of
sphere packings in G, 1.).

3. Codes

Let X be a finite or compact infinite metric space. A code C is a finite subset
of X. The distance of the code is defined as d(€) = min, yece;oxzy d(2,y).

Let M = |C| be the size of (i.e., the number of points in) the code. The
rate of the code, measured in bits, is

R(C) =n"tlog M,

where n is the dimension of X, clear from the context. The relative distance
of € is defined as

The argument € will often be omitted.

A code € C " of size M and distance d is denoted by C(n, M,d). If
the distance of a code C is d, we sometimes call it a d-code.

The distance between a point € X and a subset Y C X is defined as

Y) = mi .
d(z,Y) gg}r,ld(w,y)

3.1. Distance Distribution

Let X be a finite space of diameter D.

Definition 3.1: The distance distribution of a code € C X is the vector
A= (Ao,A]_, P 7‘AD), where

Ai =[] H{(z,y) €€ x € d(z,y) =i}
Thus AO =1.

Let X = J¢". If C is a linear code in J#" (where g is a prime power), then
its distance distribution is equal to the weight distribution (Ag, Ag, - .., An),
where

A =t{z € C: |z| =i}.

Let w = wn and let a,,(€) = n~!log A,p. The (n + 1)-vector [, (€),w =
n~1(0,1,...,n)] is called the distance (weight) profile of €. The main use
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of the distance profile is in asymptotic problems, where it is represented by
a real (usually, continuous) function.
The distance enumerator of a code € C X is the polynomial

Ae(z,y) =) A" 'y,
=0

For codes in infinite spaces we use a slightly more convenient defini-
tion of the distance distribution. For instance, let € C .. The distance
distribution of € is given by

b(s,t) = €] #{(z,y) € Cx € : s < (x,y) < t}.

We have |C|] = fil db(z), where db(x) is a discrete measure defined from
b(s,t) in a standard way.

The main applications of the distance distribution are in combinatorial
properties of codes, bounds on error probability of decoding (Sections 9,
10), and other extremal problems of coding theory (e.g., Section 16).

Definition 3.2: The covering radius of a code € € X is defined as
r(€) = max d(z,C).

3.2. Asymptotic Parameters
Let X be one of the metric spaces introduced above. Let

M(X;d)= max |[C|;
eeX,d(€)=d

R(6) = R(X;6) = nli_}rréo[n_1 log M(X;d)].

In the cases of interest to coding theory, this limit is not known to exist
Therefore, it is usually replaced by lim sup and liminf as appropriate, and
the corresponding quantities are denoted by R(5), R(5). We write X in the
notation only if the underlying space is not clear by the context.

A notational convention: R(J]";d), for instance, means the highest
achievable rate of a sequence of codes of relative distance § in the Hamming
space; here 7" is used as a notation symbol in which n has no particular
value. This agreement is used throughout the text.

Analogously,

0(R) =90(X;R) = nh_}n;o eeXI}}z%}é)sz(e)/n'
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4. Average Properties of Codes

This section is concerned with estimates of codes’ parameters obtained by
various averaging arguments. In many cases, the existence bounds thus
obtained are the best known for large code length. We will establish the
average rate, distance, and the distance distribution of unrestricted codes
and linear codes in the Hamming space.

Theorem 4.1: Let X = jfj]". Let M be such that

n

q

M(M—-1) < .
d—1

Then there exists an (n, M,d) code.

Proof: Let C = {z1,...,2m} be an ordered collection of points. Call €
bad if d(€) < d — 1 and call a point z; € € bad if it has neighbors in € at
distance < d — 1. If the points zs,..., x5 are fixed, then z; is bad in at
most (M —1)By—; codes. The points za, ...,z can be chosen in gHM=1)
ways, so there are no more than (M —1)Bg_1¢™™~1) codes in which point
z1 is bad. This is true for any point z;,1 < ¢ < M; thus, there are no more
than M (M —1)By_1¢™™~1) bad codes. If this number is less than the total
number of codes ¢"M, i.e., if

M(M —1)Bg—1 < ¢,

then there exists a good code. |

This result can be improved by the so-called Gilbert procedure (Section
6). However, for large n, Theorem 4.1 accurately describes the parameters
of typical codes in J£". More formally, we have the following result.

Theorem 4.2: Let X = 4" and n — oc0. For all codes in X of rate
R except for a fraction of codes that decreases exponentially with n, the
relative distance approaches the bound

3R =1 hy(5).
Proof: Consider the Shannon ensemble A of 2"™ binary codes, M = 28",

where every code has probability 2=, Or, what is the same, consider
a random code formed of M independently chosen vectors, where all the
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coordinates of every vector are i.i.d. Bernoulli r.v.’s with P(0) = P(1) =
1/2.

Let us assume that § is chosen to satisfy 2R = 1—hz(d) +¢, where ¢ > 0.
We will prove that with probability approaching 1 a random (n, M) code
C € A contains a pair of vectors at distance én or less. Let x1, %3, ..., Ty be
an ordered (multi)set of independent random vectors such that Pr[z; = y] =
27" for any y € {0,1}". Let v;;,1 < j <14 < M, be the indicator random
variable of the event d(z;,z;) = dn. The v;; are pairwise-independent
random variables, each with mean

EV,',]' = PI‘[V,',]' = 1]
and variance
Var[y,-d] = EVZJ - (E I/i’j)z = EI/,',J' - (E Vi,j)2 < EI/Z'J'.

Consider the number Ne(d) = 3_;_; v;,; of unordered pairs of codewords
(@;, ;) with ¢ # j in C at distance d = dn apart. We have

E Ne(d) = (]‘2" ) Ev;; = 2n(R-1+h2(9)

M
Var[Ne(d)] = (2 > Var[v; ;] < ENe(d).
For any a > 0 by the Chebyshev inequality we have

Pr[|Ne(d) — E Ne(d)| > ENe(d)*+9/?] < (E Ne(d))®
~ 2an(1—2R—h2(6)) —9—ane _, (.

Thus, in particular, with probability tending to 1 we have Ne(d) > 0, or, in
other words, a random code contains a pair of vectors at distance d = dn.
Since € > 0 can be taken arbitrarily small, this proves an upper bound
8 < hy'(1 — 2R) on the relative distance of almost all codes in A.

On the other hand, for any § such that 2R = 1 — hy(d) — € the av-
erage number of codeword pairs with relative distance d = dn decreases
exponentially with n. Then

Pr[Ne(d) > 1] < ENe(d) — 0;
hence with probability tending to 1 a random code € has distance > dn. O
This theorem implies that for R > 1/2 the relative distance of almost

all long codes converges to zero. Thus, unrestricted codes on the average
are much worse than linear codes (cf. Theorem 4.4 below).
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Definition 4.3: The relative Gilbert-Varshamov distance dgv(R) is de-
fined by the equation

R=logg—he(0) (0<6<1-1/q).

Theorem 4.4: Let X = J" and n — oo. For all linear codes in X of
rate R except for a fraction of codes that decreases exponentially with n,
the relative distance approaches gy (R).

Proof: (outline) Consider the ensemble L of random [n,k = Rn] linear
binary codes defined by (n — k) x n parity-check matrices whose elements
are chosen independently with P(0) = P(1) = 1/2. If N,, is the random
variable equal to the number of vectors of weight w > 0 in a code € € L,
then EN,, = (2)(¢ — 1)¥/¢""* and VarN,, < EN,,. Thus, EN,, grows
exponentially in n for w := % > dgy(R). Thus, the relative distance of a
random linear code approaches dgv (R) as n grows, and the fraction of codes
whose relative distance deviates from dgy by € tends to 0 exponentially in

n for any € > 0. |

Theorem 4.5: There exists a linear [n, k] code C with Ag =1,

4,(0) < n%¢*"S,, w such thatlogS, > (n—k)logq — 2logn,
77 o, w :log Sy < (n—k)logg — 2logn.

Proof: Consider linear codes defined in the same way as in the proof of
Theorem 4.4. A vector of weight w > 0 lies in the kernel of g(»~1(n—F)
matrices. All the S, = (7)(g — 1) vectors of weight w are annihilated
by at most S,q(" V("—*) matrices. Thus, on the average the number of
vectors of weight w in the code does not exceed S,,q~ ("% and the fraction
of matrices for which this number is > n2S,¢~ (=% (call them bad) is at
most n~2. Even if the sets of bad matrices for different w = 1,2,...,n are
disjoint, this leaves us with a fraction of 1 —n~! of good matrices; any good
matrix defines a code € of dimension dim € > k over I, with

Ay(€) <n’¢* ™Sy, 1<w<n.

Writing the right-hand side as exp[(k — n)logq + log Sy, + 2logn], we see
that once w is such that the exponent becomes negative, we obtain A,, < 1.
Since C is linear, this implies that A,, = 0 for these values of w. O
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Corollary 4.6: For any R < loggq — h,(8) there exists a sequence of linear
codes of growing length n with weight profile oo, where ap o = 0,

@,w < R—logg+hy(w) (bev(R) <w<1-dgv(R)),
0 = —00 (0 <w < dgv(R)).

Linear codes that satisfy Theorem 4.5 or Corollary 4.6 will be called
random.

Theorem 4.7: (Average value of the distance) Let C be an (n, M) code.
Then, provided in each case that the denominator is positive,

M< 94 eC o, d=d(€),
d—21In !
q
nd
eC 7MY, d=d(C
~ nd = 2wn + Jw? S (©),
Mgl_—_tt ecC.o™, t=t(C).

Here t(C) is the mazimal inner product of the code C C ™.

This result is called the Plotkin bound for ], the Johnson bound
for #;°", and the Rankin bound for /™. It is proved by computing the
average distance between pairs of points in € [18], [38].

Thus, for large values of the code distance d(C) the value of M cannot
grow exponentially with n, and so for any family of codes € the rate R — 0.
For instance, for X = " the code size M is at most O(n) if § = d(C)/n >
=1 Below in asymptotic problems we always assume the reverse inequality.

Already for general unrestricted codes the technique presented in this
section produces weak results. In more complicated problems of coding
theory one resorts to more refined averaging methods, such as averaging
over the choice of subsets rather than individual vectors, etc. [11].

5. Averaging over Translations

This section presents another averaging technique which is useful for de-
riving upper bounds on code parameters and linking the Hamming and
Johnson spaces.

Lemma 5.1: Let x,y be two vectors in ;" with d(z,y) = u. The number
of vectors z € H such that x — 2z € Y and y —z € FY equals
Py (H7")-
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Proof: Obvious. O

Lemma 5.2: [34] Let € C X C 5" be a code and Y, Z C H" be arbitrary

subsets. Then
MY -onz|=> |(C+2)nY].

cel z€Z
Proof:
NIy -09n2zl=>Y Y xy—c=21=> > xlctz=y}
ceC ceCyeY z€Z 2EZ y€eY ceC
=Y |€+2)NnY].
z€EZ O

Corollary 5.3: Let C C _#"" be a d-code. Then

Clpuw < SuM (7" d).
Proof: In Lemma 5.2 take X = §,(0), ¥ = 8,(0), Z = 8,(0). Let y €
Y,c € G, then y—c € Z if and only if d(y, ¢) = u. The number of y € Y with

this property for a fixed ¢ equals p;, ,,. On the right-hand side we observe
that the set (C+ 2)NY is a d-code in Y. O

Corollary 5.4: Let C,Y be subsets of . Then

viel= 3 [(e+2)nY].
zE.ﬁf;"

Proof: Follows by putting X = Z = " in Lemma 5.2. O
Lemma 5.5: [36] Let C be code in . Then

|€|A pww - Z |e T, w |A ( )):
TEIHD

where p}, ,, is the intersection number and C(z,w) = (C+z) N FM.

Proof: Count in two ways the total number of pairs of codewords in C(z, w)
distance ¢ apart for all z € #". By definition, this is the right-hand side
of the claimed identity. On the other hand, every pair of codewords in € at
a distance ¢ falls in _#Z™" in pf, , shifts of € (Lemma 5.1). O
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Any of last two results implies the well-known Bassalygo-Elias inequal-
ity:

n
mitsa(1) @ - 0* < MOAv D G.1)
(take i = 0 in Lemma 5.5 or take Y = _#»* in Corollary 5.4).

Theorem 5.6: (Elias-type bounds)

R(":6) <logg — hy(A1 = VI=8/A) (A=1-¢7"),
R(#™":8) < ho(w) — ha (5 — VI = 2),

R(S™;60) < —log(v/2sin(6/2)).

Proof: Consider the Hamming case. From Theorem 4.7 for the Johnson
space we see that when w = wn approaches the (smaller) root of the de-
nominator,

wo =X — /A —9),

the quantity n~"log M(_#/»";d,w) — 0. Substituting wo into inequality
(5.1) and computing logarithms completes the proof. The other two cases
follow by some modifications of this argument. O

Solving the inequality of the theorem for Hamming space with respect
to §, we obtain the bound

6(R) < 0u(R),

where
0B (R) := 26av(R)(1 — dav(R)/2X)

is sometimes called the Elias radius. The bound itself is called the
Bassalygo-Elias bound (the Hamming case) and the Coxeter-Rankin bound
(the spherical case). For the Johnson space the result can be proved anal-
ogously to the Hamming case; see [33], where a nonasymptotic version of
this bound is also derived. In Section 6.2 we give a proof based on a volume
argument.
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6. Volume Bounds

This section is devoted to the standard bounds proved via a volume, or
packing argument. We begin with the standard Gilbert-Varshamov and
Hamming bounds, which basically say that if the spheres of radius d are
disjoint, then their centers form a d-code, and that the size of a d-code is
bounded above by the number of spheres of radius d/2 that can be packed
into X. The second part of Section 6.1 deals with an improvement of the
Hamming bound for the Johnson space. The ideas developed there will also
be central in the derivation of error exponents in Section 9.

6.1. Basic Volume Bounds

Let X be one of the metric spaces discussed above with distance d and
volume form vol. Let B; = vol(Bg4) be the volume of the ball of radius d
in X.

Theorem 6.1: (Gilbert bound) If M is any number such that M By <
vol(X), then X contains a code of size M +1 and distance d. If the distance
d takes only natural values, then d can be replaced with d — 1.

For 7 this bound was given in Theorem 4.4 and Corollary 4.6.

Theorem 6.2: (Shannon bound [45]) For any
R < —logsinf

there exists a number ng such that for every n > ng the sphere /" contains
a code of size 2F™ and distance 6.

Proof: Follows on substituting the volume of the spherical cap from Sec-
tion 2.1.3 into the Gilbert bound. |

Theorem 6.3: (Hamming bound) Let C be a code of size M in X. Then
M < vol(X)/Bgya.

Concrete expressions of this bound for various metric spaces can be
obtained using the formulas of Section 2.1. The Hamming bound is usually
good for small values of d and weak otherwise. It can be improved for _# ™"
by making use of the embedding #™" C J#". The idea is to notice [12]
that for some v, a ball of radius d/2 with center on 8,(/#",0) = #™v
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intersects the sphere 8,(74",0) by a larger subset than it intersects the
sphere 8, itself.

A\

B, (z) intersects 8,(0) by a large subset

Lemma 6.4: Let w = wn < n/2,7 = pn < v. Then

> mwnsol= () ¥ m<r()(,",)

TE8w(0)
where jo/n — v = p}:r‘;‘;. This inequality is asymptotically tight, i.e., for

w—v ~ jo it turns into an equality in the = sense.

Corollary 6.5: Let
N(w,r)= Y [B(z)N8.(0)]-

ZE€8(0)
Then N(w,r) < T(TT‘)2(1 + o(1)) with equality N(w,r) = (2)2 only for
w/n ~ 2p(1— p).

Proof: (of Lemma 6.4 and Corollary 6.5) Let V = > |B,.(z) N 8,(0)|.
TEHMY
|z|=w

Let j = w — v. The equality

V=) o
=]

follows by definition. To prove the inequality, observe that

o, < Zp =3 () (65

i=j 2
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As is easily verified, the summation term in the last sum grows on 4. Sub-
stituting i = r, we obtain

r
w n—uw

pw SI"( .)< .):rpw )

;j 1,V %(T—Fy) %(T _.7) T,V

Therefore, (7)pry <V <7(3) P,
Further,

(@)= (et = ) es) G- )

In the last expression, for a fixed vector y of weight r, we are counting
vectors z of weight w with d(z,y) = n(w—+), where v = j/n. Their number
is maximized if z is a typical vector obtained after n independent drawings
from the binomial probability distribution given by P(1) = w — v, P(0) =
1 —w + 7. We obtain the following condition on the maximizing value of ~:

p—%(p+v)=p(w—v)-

In other words, the maximizing value of j is attained for j/n — ~. Note
that, at least for large n, jo = 7on satisfies the condition on j = w — v
implied by the restriction on v in the Lemma, so the choice j = jg is
consistent. Thus,

Fier (%(rl j)) (w —n%?rl j))
= exp [n(pha (23 12) + (1 - ppha (2272700

2p 1—0p
= explha(w -] = (" ).
w = Jo
where the last line follows by substituting the value of vy and simplifying.
The corollary follows on substituting v = r into the lemma. |

Theorem 6.6: Let n — co,w/n - w, 0 <w <1/2, w>3§ > 0. Then
vol(8y)
VOI(Bén/Z)’

where n~'loga(n) — 0 as n — oco. Therefore,

R(_7™%";6) < ha(w) — ha(6/2).

M(_7™v;0n) < a(n) (6.1)
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Proof: Let € C _¢#™“" be an (n, M,d) code and r = [(d —1)/2]. We have

1Br(c) N8,(0)| = > p,

i=w—v
Also B,(c) N B,(c'") = 0 for two different codewords ¢ and ¢'. Therefore for
anyv,w—r<v<w+r,
vol(8,)
—_—
2 Py
—w—

v

M <

Take v = ”1%6(?27;. Then using Lemma 6.4, we obtain
@S s _ @)
(Z) . Ef p;"}v (r) (v) (r)

i=w—uv O

The denominator in the estimate (6.1) is an exponentially greater quan-
tity than the volume computed in 2.1.2; hence the estimate itself is asymp-
totically better than the Hamming bound. In particular, by Theorem 6.6,
R(_7™«";§) = 0 for § > 2w while the Hamming bound implies this con-

clusion only for § > 4w(1 — w). The actual answer is
R(/n,wn;(s) >0 0S5<2w(1—w)
=0 0>2w(l—w)

by combining the Gilbert-Varshamov and Elias bounds.

6.2. Elias-Type Bounds as Sphere-Packing Bounds

The Hamming bound is not the best bound obtainable by the volume ar-
gument for large code length. Namely, suppose that the balls of radius
r > d/2 around the codewords intersect, but the intersection volume grows
as a polynomial function p(n) of the code length. Then

1€|B, < vol(X)p(n).

Letting n — oo, we obtain a bound better than the Hamming bound. For
instance, let € be an (n, M = ¢f'*,én) code in ;" and let B, be a ball
of radius wn. By a slight modification of Theorem 4.7 we conclude that for
W < Werit := A — y/A(A = §) the number of codewords inside the ball grows
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at most polynomially in n. Therefore, for any codeword c a point & € H#"
with d(z, ¢) < nwerit can be distance nwerit or less away from at most p(n)
codewords, where p(n) is some polynomial. We then have

1
- 108(MBun) = R —logq + hg(werie) + o(1) < (logp(n)) /,

which again proves Theorem 5.6 for X = J". Other parts of this theorem
can be proved by a similar argument.

7. Linear Codes

This section deals with combinatorial and linear-algebraic properties of
codes. The technique used here is based on an interplay of the rank dis-
tributions and weight distributions of linear codes. Readers familiar with
matroids will immediately notice a connection with representable matroids
and their invariants.

Let ¢ be a prime power. A linear [n, k,d] code € is a subspace of Fy
of dimension k and distance d. A matrix G whose rows form a basis of
C is called the generator matriz of the code. The linear [n,n — k,d'] code
€' = {z: Vece(e,z) = 0} is called the dual code of €. The generator matrix
H of €' is called the parity-check matrix of €. For any matrix G with n
columns and a subset E C {1,2,...,n} we denote by G(E) the subset of
columns of G indexed by the elements of E.

The goal of this section is to derive in a simple way some combinatorial
identities related to the famous MacWilliams theorem.

Definition 7.1: Puncturings and shortenings. Let € be an [n, k,d] code.
Puncturing it results in an [n — 1,k,d — 1] code. More generally, let E C
{1,2,...,n},|E| = n — t. The projection Cg = projg C is a linear subcode
of € of length n — ¢ and dimension equal to rk G(E).

A 1-shortening of € on coordinate i is formed of |€|/q codewords ¢ € €
such that ¢; = 0; this is a linear [n,k — 1,d] subcode. Successively ap-
plying this operation, we obtain a t-shortening of € on the coordinates in
{1,2,...,n}\ E, where E is some t-subset. This is a linear subcode C¥ C €
such that supp C¥ C E.
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7.1. Shortening of Unrestricted Codes

Before proceeding further, we give an application of shortenings to prop-
erties of unrestricted (i.e., linear or not) codes. In general, for an (n, M, d)
code C' C ", shortening is defined as follows: out of the M codewords at
least M /q coincide in a given coordinate i. Consider the code formed of these
codewords with the ith coordinate deleted. This gives an (n —1,> M/q,d)
code. Iterating, we get

Lemma 7.2: Let C be an (n, M,d) code. For any t <n — d, we have
M < ¢ M7, d).

Proof: Let E C {1,2,...,n},|E| = n —t > d. Shortening of € on the
coordinates outside E gives a code C¥(n —t,> ¢~ M, d). O

Theorem 7.3: R(J) is continuous.

Proof: From the previous lemma we obtain

R(5)57+(1_7)Tz(1‘5 )

-7
Assume that 7 < 1—24. Let n =46/(1 —7), then 0 < § <7 < 1/2. We have
0<R(@)—(1-7)R(mn) <

Letting 7 — 0 proves the claim. O

The same claim is also valid for R(6) for codes on S 1.

7.2. Supports, Ranks, Subcodes
Theorem 7.4: (i) If t < d(C) —1, then Cg is an [n—t,k, > d(C) —t] code.

(ii) dim €¥ = |E| — rk H(E).

(iii) Cp = €/CF.

(iv) (€r)' = (€)7; (€F) = (€")E.
Proof: (i) will follow by Lemma, 7.5. (ii)-(iii) are obvious. Let us prove the
first part of (iv). Let a € (€")F, then G(E)a” = 0, so a € (Cg)'. Further,
by (i)

dim(C")? = |E| — tk(G(E))
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The second part of (iv) is analogous. O
Lemma 7.5: |E| —rk(H(E)) = k — tk(G(E)).

Proof: Let Cgp = projg C be the projection of € on the coordinates in E.
Clearly, dim €g = rk(G(E)). On the other hand, Cg = €/CF by Theorem
7.4(iii); hence by (ii)

dim €p = k — dim €% = k — |B| + rk(H(E)).
Lemma 7.6: (The MacWilliams identities)
— n—i = n—i
ZA;( )=|e'|q—“ZAi( ) (7.1)
=0 v =0 o
Proof: We have the following chain of equalities:

> 4(",)= ¥ wer &

|[E|l=n—u

— Z qn—u—rk(G(E))

|[E|l=n—u

— qn—k—u Z qu—rk(H(E‘))

|E|=n—u
- n—1
— g k—u A -
e Z ! (n - u) '
i=0
Here the first equality follows by counting in two ways the size of the set

{(E,c) :fE =n —w and c € (€")E |¢| < n —u},

the second one is straightforward, the third one (the central step in the
proof) is implied by Lemma 7.5, and the final step follows by the same
argument as the first one. O

Theorem 7.7:

|el4; = AK;(), (7.3)
=0
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where

'.:i_ein—i it
ki = Y0 () (1) a0
is the Krawtchouk number.

Proof: Multiply both sides of (7.1)
and use the fact that >, ., (=1)*("

- e ) ()

u=4

(=1)*(}), sum over u from 0 to n,
’; —1)"",_; . This gives

The sum on u in the last expression is just another form for K;(3). O

7.3. Rank Distribution of a Linear Code

Rewrite (7.2) by collecting on the right-hand side subsets of one and the
same rank. Namely, let

=H{EC{1,2,....n} | |E] = u,Tk(G(E)) = v}|.
Then by (7.2) and Theorem 7.4(ii) we have

w n—i n—k
— — !

> (170 )= e, (7.4

=0 v=0

where the numbers U’ are the rank coefficients of €'. Further, Lemma 7.5

implies that

Ok =,

The last two equations relate the weight enumerator of € and its rank
distribution (U2, 0<u <n,0 <v <k).

Example 7.8: (MDS codes) An (n, M,d) code is called mazimum dis-
tance separable (MDS) if M = ¢"~%*1. Let € be an [n,k,n — k + 1] g-ary
linear MDS code with a parity-check matrix H. Then p*E = rk(H(E)) =
min{|E|,n — k} for all E C S, 0 < |E| <n — k. Therefore

u

Uy = (M) if(0<v=u<n—-k)or(u>n—k+1,v=n—k);
o otherwise.
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This enables us to compute the weight spectrum of €. Substituting the
values of (U')? into (7.4), we obtain A4g =1, A; =0for 1 <i<n—k, and

—— 2(—1)" (" e -y asesn @)

Clearly, the dual code €' is also MDS of dimension n — k.

Definition 7.9: The rank polynomial of a linear code C is

n k
Uz,y) =Y > Usa“y"

u=0v=0

Relations of the rank polynomial of €, its dual code €', and the weight
polynomial of € are given by the following results.

Theorem 7.10:
. , 1
U'(z,y) = a"yt™© U(—,y)-
Ty
Theorem 7.11:

Awy) =y"1el V() = =0 ((20).

7.4. Higher Weights and Weight Enumerators

Let € be an [n, k,d] g-ary linear code. Define the r-th support weight dis-
tribution of €, 0 < r < k, as the vector (A},0 < i < n), where

AT = #{D : D is a linear subcode of €,dimD = r,|supp(D)| = i}.

Theorem 7.12: (Generalized MacWilliams identities [46))

w n—k

Z(:__DA?:Z [w;v](U’)Z, O<w<n, 0<r<k).

=0 v=0
This theorem is proved similarly to (7.4).

Theorem 7.13: [30] Let

T

Di(e,y) = 3 (2 [lmAl) =",

n
=0 m=0



August 14, 2002 18:22 WSPC/Guidelines notes

24 A. Barg

then

D — ,—r(n—k) T_1q npr y—z > 0.
b =P+ @ - 00 D () T2

Here [r], = Hzl:_ol (™ — ).

A simple way to prove this theorem is to realize that Df(z,y) is the
Hamming weight enumerator of the code (") = F,- ®r, C.

Concluding remarks. The ideas of this section can be developed in
several directions. First, it is possible to consider different versions of rank
polynomials and of support weight distributions such as, for instance,

Agr) = Z ﬁ{{cl,cz,...,cT}g(‘f,supp(cl,cz,...,cr):E}
EC{1,...,n},|E|=i

(t=0,1,...,n).

The corresponding generating functions, as a rule, satisfy MacWilliams-
type identities. This line of thought leads to matroid invariants that we
mentioned in the beginning of this section. See [7],[15] for more on this
subject.

Another avenue is to study alphabets with some algebraic structure such
as abelian groups, finite rings, and modules over them. This enables one to
define various norm-like functions on the alphabet and study weight enu-
merators of codes with respect to these functions [27]. When duality is ap-
propriately defined, these enumerators typically also satisfy MacWilliams-
type identities.

8. Decoding

Definition 8.1: Let € C X be a code in a metric space X. A (partial)
mapping ¢; : X — C is called decoding if for any y such that d(y,C) < t,

P(y) = argmincece d(c,y).

For y & U.ceBi(c) the value of ¢(y) is undefined.

We will only consider the two extremes: complete decoding and error
detection. Under complete decoding, t = r(C) (see Definition 3.2), i.e.,
X C UeeeBi(c). Under error detection, ¢t = 0. Error detection will be
briefly considered in the beginning of Section 9; otherwise we will focus on
complete decoding, denoted by 1) hereafter.
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To justify the term “decoding”, assume that C C " is used for trans-
mission over a g-ary symmetric channel (¢gSC) given by a random mapping
@ — @ such that

P(bla) = (1= p)oap + L5 (1= dag),

where p is called the crossover probability of the channel, p < (¢ — 1)/q.
Suppose that the transmitted codeword c is received as y € . The event
Y(y) # cis called a decoding error. Let Pye(c) be its probability. As it turns
out, the complete decoder v is a good choice for minimizing Pge(c)-

Definition 8.2: Let C be a code. The Voronoi domain of a codeword ¢
with respect to € is the set

D(c,C) ={z € X : Voee d(z,c) < d(z,c)}.

Lemma 8.3: Let C be a linear code and x a vector in . The complete
decoding of x can be defined as follows:

P(z) =z —£(C - z),

where £(C — x) is a vector of lowest weight in the coset C — x.

9. Error Probability

In this and the next section we are concerned with upper bounds on the
error probability of complete decoding of the best possible codes used on a
binary symmetric channel (BSC). The analysis performed for this channel
offers a simple model for results on error exponents for arbitrary memo-
ryless channels. For the BSC it is possible to derive the error exponent
bound starting with a transparent geometric description of error events.
The ideas developed below are central to (single-user) information theory.
Although they are several decades old, they continue to attract attention of
researchers to this date. In particular, the main problem in this area, that
of the exact error exponent, is still unsolved.

Let X = J". Let C be used for transmission over a ¢SC with crossover
probability p. If ¢ is the transmitted codeword, then the channel defines a
probability distribution on X given by

p d(y,c n— c
P(y'c) = (ﬁ) (y )(1 _p) d(y, )
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The error probability of decoding for a given vector ¢ € C is defined as
Pie(c) =Pr{X\D(¢,€)} = Y Plyle).
yeX\D(c,€)
The average error probability for the code € is
Pae(€) = [€]7" D Pae(c).

ceC
The probability of undetected error P, (C) for the code € is defined analo-
gously.
Theorem 9.1:

p

Pe(€) = A(l - b ﬁ) -1-p"

Proof: Let m(i) = (;£1)"(1 —p)"~* and let A;(c) = #{c’ € C: d(c,c') = i}.
We calculate

P.@ =1 Y xde,d) =1 Y Ai@)n(i)

c€C e\ {c} cee i=1
= Ai(€)m(i)
i=1
P
=A(l-p, L) —(1-pm
(1-p q—l) (1-p) -

Definition 9.2: The error exponent for the Hamming space (known also
as the reliability function of the g-ary symmetric channel) is defined as
follows:
E(R =-n'l in  Pye(@)),
(R.p,n) = —n""log(, min P (C))
E(R,p) = lim E(R,p,n).

Conventions made after the formula for R(4) in Section 3.2 apply to this
definition as well.

Analogously to this definition one defines the exponent E,¢(R, p) of the
probability of undetected error. It is easy to derive a lower bound on this
exponent.
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Theorem 9.3:
Eyue(R,p) > D(0cv(R)|lp) +logqg — R 0 < R <dav(p),
Eue(R,p) > logg— R dav(p) <R <1
Proof: Follows by combining Theorem 9.1 and Corollary 4.6. |

9.1. A Bound on P4 (C)
We proceed with bounds on Pge(C).

Pe(@ <MY > Ple—d),

ceC c'eC\{c}
where
Plc— ) := Z P(ylc)
y€X:d(y,c')<d(y,c)

is the probability, under the binomial distribution, of the half-space cut out
by the median hyperplane between ¢ and ¢'. Note that P(y|c) depends only
on the Hamming weight of the error vector z =y — c.

Lemma 9.4: Let Py (C,z € U) be the joint probability of decoding error
and the event © € U C X. Then for anyr =0,1,...,n,

Pye(€,p) < P(C,z € B,(0)) + P(z & B,(0)).
Let us specialize this result using the distance distribution of the code.

Lemma 9.5: Let C be a d-code with distance distribution (Ao, Aq,. .., An).
Then for any r =0,1,...,n,

P4e(C,p) < P + P, (9.1)

where

T

2r
Pi=3 Au D [Be(c) NS0 (1—p)" " (9-2)

w=d  e=[w/2]

_ E LY 5 () (" )pra- o)

i=[w/2] £=0
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where ¢ is a code vector with |c| = w, and

Py (Mpra-pr (9.4

e=r+1

Proof: Let ¢ be the transmitted codeword, let x be the error vector in the
channel, |z| = e, and let y = ¢+ x be the received vector. A decoding error
occurs if v = d(y, ) < d(y,c) =e.

Let d(c,c¢') = w and suppose that A, (c) is the number of codewords in €
at distance w from c. Since all the error vectors of one and the same weight
are equiprobable, we have

T

Pae(c,z € B,(0)) < Ay(c) D [Be(c') N8 (0)[p*(1 —p)"~*.
e=[w/2]

Computing the average value of Pge(c, z € B,(0)) over the code, we obtain
(9.2). To obtain (9.3), observe that, as in Lemma 6.4,

T

2r T
Pi=) Ay, > p(1-p)" ) ple (9.5)
v=0

w=d e=[w/2]

Let ¢ = | supp(z) Nsupp(c,c’)| and £ = e — i. Now (9.3) follows by substi-
tuting the definition of py’, and renaming the summation indexes.
The expression for P, is immediate. O

The choice of U = B, (0) in the last two lemmas is justified by the fact
that the noise is spherically symmetric. It makes sense to choose the radius
r so that the bound on P, is minimized. An interesting fact is that for
random codes of rate R this minimum is attained for r/n — dgv(R).
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Lemma 9.6: The minimum of the bound (9.1) is attained for r = ro,
where

r

rozmin{r:ZAw Z |‘Be(c)085(0)|ZST},

w=d e=[w/2]

where ¢ € C,|c| = w. Further, if (C;,i =1,2,...) is a sequence of random
linear codes of growing length, then lim " = dgy(R).
n—oo

Proof: The first part of the claim is obvious since P; is a growing and Ps

a falling function of r. Let us prove the second part. Let A,, be an element
of the weight distribution of a random linear code of length n. We then

have (see Theorem 4.5)
Ay <n2(")oRn-n
w = w -

Using Corollary 6.5, we now obtain

2r r 2
22Rn—n n Be . o~ 2Rn—n n .
n é(w e_%ﬂ| (0) N 8.(0)] §

To find rq for large n, we equate this to S, = () to obtain

2Rn—n (n) o~ 1,
To

i.e., ro/n = dgv(R), as claimed. O

10. Upper Bound on the Error Probability

The error probability of decoding of good codes is known to fall expo-
nentially when the code length increases, for all code rates less than the
capacity € of the channel. The following theorem gives a bound on this
exponent.

Theorem 10.1: E(R,p) > Eo(R,p), where for 0 < R < R,
Ey(R,p) = E:(R,p) = —dav(R) log 2¢/p(1 — p), (10.1)
for Ry < R < Reri
Eo(R,p) = E;(R,p) = D(pollp) + Rerit — R, (10.2)
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and for Reit < R <% =1— ha(p)

Ey(R,p) = Esp(R,p) = D(dav(R)|lp); (10.3)

here
Ry =1 — hy(wo), (10.4)
Rerie = 1= ha(po), (10.5)

S/ o, (1= VPP
po_\/ﬁ-i-\/lTp’ wO'_ZPO(l pO)_1+2\/m

For¥ <R<1, E(R,p) =0.

Proof: Suppose we transmit with random [n, Rn,d] linear codes, d/n —
dav(R). We use (9.1), (9.2), and (9.4) to bound the error probability

2r T

Py < p22fin=n y " (Z) D> [Be(0) N8 (0)p?(1 —p)"7c.  (10.6)
w=d e=[w/2]

Letting e = pn, we obtain from Corollary 6.5 the estimate

P = ma. exp[—n(D +(1-R)—h .
V= omax - expl-n(D(plp) + (1= ) = ha(p)]

The unconstrained maximum on p on the right-hand side (the minimum
of the exponent) is attained for p = pg, and, again by Corollary 6.5, the
unconstrained maximum on w = w/n in (10.6) is attained for w = wp.
The three cases (10.1)-(10.3) are realized depending on how wg and pg are
located with respect to the optimization limits.

The case (10.2) corresponds to wyg, po within the limits: dgv(R)/2 <
po < dav(R),wo > dav(R). Then the exponent of P is

D(pollp) + h2(3av(R)) — ha2(po), (10.7)

i.e., the random coding exponent of (10.2). We need to compare the expo-
nent of P; with the exponent D(dgv(R)||p) of P>. Under the assumption
po < dgv(R) their difference is

[D(pollp) — h2(po)] — [D(bav(R)[Ip) — h2(dav(R))] <0

since D(z||p) — h2(x) is an increasing function of x for > po. This proves
that the dominating exponent for R < Rt is given by (10.7).
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Suppose now that wy > dgv(R) and pg > dgv(R), i-e., R > Rerig- In
this case the exponent of P; is dominated by the term with p = dgv(R).
Then we conclude that the exponents of P; and P, are both equal to the
sphere-packing exponent of (10.3).

If wy < dgv, i-e., R < R;, the maximum on w is attained for w = dgv,
and we get for the right-hand side of (10.6) the following expression:

2 (ngicvwm) (l“(l;figgv)pea -p)""

e>d/2
This is maximized when e — (1/2)ndgy = n(1l — dgv)p, i.e., for

)
=(1-dav)p+ —=2v.

p= 5

e
-
Substituting, we obtain the “expurgation exponent” E,(R,p) of (10.1). To
finish off this case we need to show that the exponent D(dgv||p) of the term
Plw(y) > d] is greater for wo < dgv < 1/2 than E,(R,p). This is confirmed
by a straightforward calculation.

The proof of the equality E(R,0) = 0 for R > € (the “converse coding
theorem”) will be omitted. O

In the next two subsections we study a geometric interpretation of this
theorem and provide background and intuition behind it.

10.1. Geometric View of Theorem 10.1

A close examination of the proof reveals the intuition behind decoding error
events for random codes. The capacity region of the BSC is given on the
(R, p)-plane by (0 < R,0 < p < 1/2,R + ha(p) < 1). According to the
three cases in the theorem, this region can be partitioned naturally into the
regions of low noise A, moderate noise B, and high noise C, where

(10.1)  A={(R,p): R<1—ha(wo)},
(10.2)  B={(R,p):1— ha(wo) <R <1-ha(po)},
(10.2)  C={(R,p):1—ha(p) < R<1-hy(p)}-

As n increases, within each region the error events are dominated by a par-
ticular (relative) weight wyyp of incorrectly decoded codewords. Moreover,
the relative weight pty, of error vectors that form the main contribution to
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the error rate also converges to a particular value. We have, for the regions
A, B, and C, respectively,

wo < dav, pyp = (1 — dav)p + $0av, wiyp = dav,
wo > dav, Po < OGv, Pryp = Pos Weyp = 2p0(1 — po),
wo > dav, po > dav, Py = GV, wiyp = 20av (1 — dav).

When the code is used in the low-noise region, the typical relative weight
of incorrectly decoded codewords is dgv(R)n, i.e., it does not depend on
the channel. In the moderate-noise region, the typical weight of incorrect
codewords is pp and in the high-noise region it is dgv(R). We observe
therefore that for R > R, the error probability does not depend on the
minimum distance of the code.

The geometry of decoding for R < Ry and for R > Rt is of very
different nature. Consider an error event that corresponds to the moderate-
noise region. Its probability is dominated by errors y of relative weight pq.
From the proof of the theorem and Corollary 6.5 it can be seen that the
number of points of the sphere §,,, that are decoded incorrectly behaves
exponentially as

(pon)

(scun) (p:n);

hence their fraction has the same exponent as (" )/ (5~ ,,)- We see that for
po < dgv an exponentially small fraction of error vectors y of weight pon
leads to an incorrect codeword ¢’. We have |¢/|/n — wo,d(y,c')/n = po.
Moreover, with some additional arguments it is possible to show that an
error vector y on the sphere of radius pgn around the transmitted codeword
typically falls in at most one ball B, ,(c¢') around an incorrect codeword
¢'. Hence, the union bound of (9.2), (10.6) for random linear codes is expo-
nentially tight. Error vectors y that are incorrectly decoded to a codeword

c' occupy one and the same fraction

) o) ()
[ I 4 I ¢
of the sphere §,,, for almost every incorrect codeword ¢/, |¢'| = won.
On the other hand, once R exceeds Rc;; or pg > dgv, almost every
point y on the sphere 8,,,(c) leads to a decoding error; the only relief

comes from the fact that such points are received from the channel in an
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exponentially small fraction of transmissions. For R > R almost every
incorrectly decoded error vector y will have exponentially many codewords
that are same distance or nearer to it as the transmitted word.

10.2. Ezplication of the Random Coding Bounds

Random coding bounds were a central topic in information theory in the
first few decades of its development. They can be derived by a variety of
approaches. Following the methods developed in this chapter, we single out
two related, though not identical ways to random coding bounds, both with
long lineage. The first one is writing an estimate for the error probability
of complete decoding of a code and then averaging this expression over
an ensemble of random codes. The strongest results on this way were ob-
tained by Gallager whose treatise [26] also gives the most comprehensive
account of this method. A recent informal discussion of it by one of the
main contributors is found in [13].

The second approach suggests first to establish properties of a good
code in the ensemble such as distance distribution and then to estimate the
error probability for this particular code. This idea was also suggested by
Gallager [25]. This is what we did when we first proved Theorem 4.5 and
then used the code whose existence is proved in it, in Theorem 10.1.

There are two reasons for which the second approach may prevail. First,
under it, Theorem 10.1 generalizes without difficulty to arbitrary discrete
memoryless channels. Of course, in this case the Hamming weight and dis-
tances do not describe the effect of noise adequately; their role is played
by the composition (“type”) codewords and information distance between
types, respectively [20]. Remarkably, it is possible to extend some of the
geometric intuition of Section 10.1 to this very general case [19].

Apart from this generalization, in engineering applications it is more
important to be able to bound the error probability for a specific code than
for an ensemble of codes. Constructing good bounds on this probability
received much attention in the last decade (see [42], [43]). This problem has
also revived interest in deriving random coding bounds via estimating the
error probability for a specific code.

There is also a minor technical problem with computing the average
error probability for some code ensembles: for low rates typical codes are
often poor (cf. Theorem 4.2). To deal with this, one usually employs “ex-
purgation” of the code, i.e., removing from it codewords for which the error
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probability Pge(C') is large. This issue is discussed in more detail in [26], [8].
Other methods in this area include hypothesis testing [14] and, lately,
applications of statistical mechanics.

10.3. Spherical Codes

Similar results can be derived for codes on the sphere ™ in R™ used over
a Gaussian channel with additive white noise. In particular, an analog of
Theorem 10.1 was proved by Shannon in [45]. As it is seen now [6], the idea
of Shannon’s proof is qualitatively similar to the proof of Theorem 10.1,
though the analytic part is somewhat more involved.

11. Polynomial Method

This section is concerned with one application of harmonic analysis to
extremal problems of coding theory. The ideas are primarily due to
MacWilliams [37] and Delsarte [21]. We will provide details for codes in
the Hamming space; however, it should be kept in mind that a similar the-
ory can be developed for a large class of finite and infinite metric spaces
[22], [28].

Theorem 11.1: [21] Let x € ", |z| = 4, be a vector. Then the
Krawtchouk number K (i) equals

Ke(i)= Y. (1),

yeHT, |yl=k
where 5 (y) = exp(2mi(z,y)/q) is a character of the additive group (Zg4)™.

Definition 11.2: Let K = ||Ky(4)|| be the (n + 1) x (n + 1) Krawtchouk
matrix with rows numbered by ¢ and columns by k, and let A =
(Ao, A1, ..., Ap) be the distance distribution of an (n, M) code € in J".
The vector

(Ap, Ay,...,AL) = MT1AK

is called the dual distance distribution of C.
The number d' = min(i > 1: A; > 0) is called the dual distance of the
code C. If € is linear, then d' is the minimum distance of the dual code C'.
The code C is called a design of strength ¢ if d'(C) = ¢ + 1.
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Theorem 11.3: [21] The components of the dual distance distribution of
any code are nonnegative, and Ay =1, > Al = ¢"/M.

The main application of this result to extremal problems of coding the-
ory is given in the following theorem.

Theorem 11.4: Let € be code with distance d and dual distance d'. To
bound

below, choose

fl@) =) fuK(z), fr >0,d <k<n,
k=0

so that f(i) < g(i),d <i <n. Then

F(g) 2 1€ fo — f(0).
To bound F(g) above, choose

h(z) =Y heKy(z), he <0,d' <k <n,
k=0

so that h(i) > g(i),d < i <n. Then

F(g) < [€lho — h(0).

Proof: For instance, let us prove the second part. We have

n n

D Oh()Ai =Y AY hiE,(i) = Y hyl€lA] < holC].
i=0  j=0

i=0 =0

Here the second step is by definition of A;- and the final step is justified by
the Delsarte inequalities. Hence

0()A; < 3" h@)A; < hol€] — h(0).
i=d i=d

i
oD

I
[

The first part of the theorem is established analogously. O
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Corollary 11.5: Let
n

f@)=> fiKi(@), fo>0, fr 20,k=1,2,...,n,
k=0

be a polynomial such that (i) < 0,i = d,d+1,...,n. Then for any (n, M, d)
code we have

y< 1O

fo
Proof: Take g = 0 in the first statement of Theorem 11.4. |

Theorem 11.4 is essentially due to Delsarte [21] who proved it in the form
given in the last corollary. It was realized not long ago [3] that the same
method can be used for bounding code parameters other than its size. This
approach implies numerous results in extremal problems in coding theory,
both “finite” and asymptotic.

Corollary 11.6: Let g(i) = p'(1 —p)" ¢ and let f(x) be a polynomial that
satisfies the conditions of Theorem 11.4. Then for any code C,

Pue(€) 2 € fo = £(0).

Corollary 11.7: Letr € {1,2,...,n}. For any code C there exists a num-
ber i,1 <i <, such that

, 1€ fo — £(0)
A;i(€) > 0

Results similar to those established here for " can be proved for
the Johnson space _#™®. In the Johnson space the role of Krawtchouk
polynomials is played by one class of Hahn polynomials Hy(z).

Spherical codes. Let € C X = %™ and b(s,t) be its distance (inner
product) distribution, see Section 3.1. The analog of Delsarte inequalities
has the following form.

Theorem 11.8: [23], [28]
1
/'mwamwmzm k=0,1,...,
-1

where o = (n — 3)/2 and P, (z) is a Gegenbauer polynomial of degree k.
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Corollary 11.9: Let C be a code with distance distribution b(s,t). To bound

F(g) = / o(z)db(z),

choose

F(g) 2 1€ fo = f(1).

12. Krawtchouk Polynomials

Definition 12.1: Krawtchouk polynomials are real polynomials orthogo-
nal on {0,1,...,n} with weight u(i) = ¢ "(7)(¢ — 1)*:

(#i,5) = () (0= V'

where
(Ki, Kj) =Y Ki(s)K;(s)u(s)
s=0
Explicitly,
k
K = 20 (7) (327 ) a0t
Properties.
i = (*) @ - 15 w0 = (1) -7
. () (g - 1)
Ki(s) < O

Any polynomial f(z) of degree < n can be expanded into the Krawtchouk
basis: f = ) fr Ky, where

LT A%
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In particular, let f(z) = K;(z)K;(x), then
n
fla) = pr,ij(a), a=0,1,...,n,
k=0
where pf ; is the intersection number of J#5".

Proof: We treat the case ¢ = 2, the general case being analogous.

Ki(s)Kj(s) = S (=)0 37 (-t = Y (m)eev ),

ly|=i |y’ =4

ey, O
lyl=i, [y'|=j
From this we can derive another expression for pﬁ it
n n n
(Y ook Ki Ki) =i, ( ,) = (KiKj, Ki) = Y Ki(0)K;(0) Ki(o)p(0).
k=0 =0
The polynomial Kj(x) has k simple zeros 1, < Zap < --- < gk

located between 0 and n. Zeros of Ki(z) and K41 (z) possess the “inter-
lacing” property:

0< Tre+l < Tk < T2htl <" < Tik < Thtlk+1 < T

Most of these and many other properties of Krawtchouk polynomials
were proved by Delsarte [22]. Given the importance of Krawtchouk polyno-
mials for coding theory, they have received much attention. Comprehensive
surveys of their properties are provided in [35], [32].

In the Johnson space _#™" the role of Krawtchouk polynomials is
played by Eberlein polynomials Ej(z) and some Hahn polynomials Hy(x)
(they are the p- and ¢-polynomials of the Johnson association scheme, re-
spectively). The polynomials Hy(x) are orthogonal on the set {0,1,...,w}
with weight p(i) = (%) ("3") /(). Their properties were established in [22],
see also [39].

Asymptotics. Asymptotic behavior of extremal zeros and of the poly-
nomials themselves plays a major role in coding-theoretic applications of
the polynomial method.

Let K,,(én) be a binary Krawtchouk polynomial, 7 < 1/2. We are
concerned with the asymptotics of the first zero =1 ;5 and of the exponent
k(7,€) = lim,, 0o n ™1 logy K¢(x). Let ¢(u) = (1/2) — Ju(l —u).
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The zeros of Ky(z) are located inside the segment [ng(7),n(1 — ¢(7))]
and for the minimum zero we have

n¢(7—) < T1,mn < n¢(7—) + t1/6 vn —t. (122)
The following is known about k(7,£).
1

K1) < ki(r,€) = 5(ha(r) —ha() +1) (07 <1),
K(T,8) ~ ko) = ha(r) + 1(,6) (0 < €< 4(r),

)
( T2 gy 10821 = 8(7) + ha() +1]
(

Here

PR v )
I(r,€) = /0 log *EV 2 = V=,
where s = 1 — 27. While these asymptotic relations cover coding theory
needs, much more accurate results on the asymptotic behavior of K;(z) in
the region z < (1/2)(n—1) — \/t(n — t) (i.e., outside the oscillatory region)
are given in [31].
We note that ky(7,€) > k3(7,€) > ko(1,€) for 0 < € < ¢(7), with
equality if and only if £ = ¢(7). Moreover, for this £ also

(kl(Ta 5))15 = (k2(7—7 6))15 = (k3(Ta 5))15

It is also possible to prove a lower bound on Krawtchouk polynomials.

Theorem 12.2: Let © € [z1,4,n — x1,] be an integer. Then

(o) + Kisa(@)? 2 0 (}) futo)

With the exception of the last theorem, similar results are known for
the Hahn [36] and Gegenbauer [2] polynomials.

12.1. Jacobi Polynomzials

The role of Gegenbauer polynomials for projective spaces over R, C, and
H is played by various Jacobi polynomials. Jacobi polynomials P’ P (z) are
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orthogonal on the segment [—1,1] with respect to the measure du(z) =
(1 —2)*(1 + 2)Pdz. We have

k
PP (2 H T —tjk)

where

w-rr ()

The zeros t; 1 of P, are located between —1 and 1; we assume numbering
from right to left: tg p < tp—1,6 <+ <t1,,. We have

POP(z) = (—1)* PP (—x).

Zeros of P."*(x) are symmetric with respect to 0, and ¢y 5 = —t1 4.
For k — o0, = ak, 3 = bk, we have [28]
a® + b2
(a+b+2)?’

tir = q(a,b) :=4\/(a+b+1)(a+1)(b+1) —
tek — —q(ba);

in particular, for a = § this implies

v1+2a

tir = q(a,a) = i+a

The asymptotic exponent of P’ % has the same qualitative behavior as that
of the Krawtchouk and Hahn polynomials, see [2], [31].

13. Christoffel-Darboux Kernel and Bounds on Codes

This section deals with a famous application of the polynomial method
to extremal problems. Following [39], consider the polynomial f(z) =
(Ky(a))*Wy(z), where

(Ki11(z) + Ky(2))” '

a—x

Wi(z) =

Here a is the smallest root of K;11(z) + Ki(z) and ¢ is a parameter.
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Theorem 13.1: The polynomial f(x) has the following properties:

(i) in the expansion f(z) = Y o frKk(x) the coefficients fi are nonneg-
ative and

(i)

(iii) fr == logy (Ky(a))?pf -
Proof: We rewrite f(z) as

f(a) = Kl Ken(@) = K@)Kon (@)

a—z
and use the Christoffel-Darboux formula

Ky(y)Kip1(2) — K@) Kipa (v) _ 2() Z K;(@)K;(y)
y—x t+1 '

Then by (12.1)

From the last line we also find fo; f(0) is found from the definition of f(x).
This proves parts (i)-(ii).
From the last line of the above calculation we also find
2Ky(a) 4
>
ez 59
To prove part (iii), we need a matching asymptotic upper bound on f.
This bound indeed holds true (see [1]), though its proof is somewhat more
complicated. O
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Theorem 13.2: [39] Let C be an (n, M,d) binary code. Then

2
M < n+1) (n ,
= 2(t+ a \t
where t satisfies £1 441 < d < 214

Proof: The bound follows on verifying that the polynomial f(z) from the
previous section satisfies the conditions of Corollary 11.5. |

This result can be improved for all finite n, d by using in Corollary 11.5
another polynomial related to but different from f;(x) [35].

Theorem 13.3:
R(A7;0) < ha(4(9)), (13.1)

R(F™"8) < hy (% (1-V1- (VB —w) sz -9 -02)), (132)

n. 1+siné 1—siné
R(77:6) < 2sin6 2(1 + sinﬁ)'

The bound on R(#™;4) (the so-called firss MRRW bound [39]) follows
easily from the previous theorem and (12.2). Bounds (13.2) [39] and (13.3)
[28] are proved by repeating the above argument for Hahn and Gegenbauer
polynomials, respectively.

Bound (13.1) can be improved for small ¢ using (13.2) in the Bassalygo-
Elias inequality (5.1). The resulting estimate is called the “second MRRW
bound”; it is the best upper bound for the Hamming space known to-date.
Bound (13.2) is the best known for large d; however, for small ¢ it is not as
good as the result of Theorem 5.6. Another improvement of (13.2) is given
in [44].

Although it is not clear if the second MRRW bound can be improved
within the frame of the polynomial method, it is shown in [44] that re-
lying on this method it is not possible to prove tightness of the Gilbert-
Varshamov bound. After more than two decades of holding the record, it is
believed by many that the second MRRW bound is asymptotically the best
obtainable by the polynomial method. Experimental evidence confirming
this conjecture is provided in [9].

Asymptotics of the coefficients of the polynomial f(z) in Theorem 13.1
calls for geometric interpretation. It is tempting to conjecture the existence

(13.3)
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of some packing argument which would lead to the same asymptotic result
as Theorem 13.2 and link it to the results of Section 16 on the covering
radius, to bounds on constant weight codes and to the union bound on the
error probability of decoding. At the time of writing this, any argument of
this kind is missing.

14. Bounding the Distance Distribution
14.1. Upper Bounds

Let € C 3" be a code with distance d, dual distance d' and distance
distribution (1, Ay, ..., A;). If either d or d' are unknown, below we assume
them to be zero.

The nature of the polynomial approach to bounding the distance distri-
bution leads to asymptotic upper bounds that depend either on d or on d'.
Lower bounds depend on the code rate R.

Upper bounds in terms of d' also involve R and bound the distance
distribution of designs. Since a design in a finite space approximates a
uniformly distributed set of points, one expects its distance distribution to
approach that of the random code. Therefore in this direction one obtains
bounds on the deviation of the distance profile of codes from the function
ag(R) (Section 3.1).

A straightforward way to bound the component A, above is by saying

Ay < M(F™;d). (14.1)
Better results in many cases are obtained by Theorem 11.4.

Theorem 14.1: [3] Let € be a code with distance d and dual distance d':

n

F(d.d) =7 gu(i)Ai(©).

i=d

n—d’
talsi) g cw <,
c= (t—d’/2)

0, if 0<w<d/2.

Then for sufficiently largen and 0 <w <t < 7,

Fu(dd) < |€ [(Z) “’(m } (Z) ta KﬁJ*(?)r'



August 14, 2002 18:22 WSPC/Guidelines notes

44 A. Barg

The proof is accomplished by choosing in Theorem 11.4
. c . . n
1@) = (K@) = == (Kia () + K@) (¢ = 5 = V/d(n — d)).

Theorem 14.2: [3], [1] Let C be a code of distance on. Its distance profile
is bounded above as follows: A¢p, < exp(n(ag + o(1))), where

o < ha(§) + ha(9(0)) =1 6 <E<1-4,
— | —21(4(0),€) 1-6<€<1.

This bound for large ¢ and & is better than (14.1).

Let us summarize the bounds as follows: There exist sequences of codes
of rate R with distance profile ag, = ha(w) — ha(dav(R)); for no sequence
of codes of relative distance § the weight profile can exceed the bound of
Theorem 14.2.

Theorem 14.3: Let € be a code with rate R and relative dual distance §'.
Let & = (1/2)(1 — /d'(2 = &")) and & be the root of the equation
!
R=(1-ha(PE02) L1k e - o),
or 0, whichever is greater. For any £ € [min(&,&2),1/2] and sufficiently
large n the distance profile of the code C approaches oy ¢.

Remark. Similar results can be obtained for #™* and J"; for /™ the
dual distance of codes is not well defined.

14.2. Lower Bounds
We give an example of results in this direction, proved by Corollary 11.7.

Theorem 14.4: [36] Let C C " be a code of rate R and let 0 < 3 <
hy ' (R). For sufficiently large n there exists a value of & € [0,(B)] such
that the distance profile of C satisfies

ag 2 R — hy(B) — 1(8,§).

The interpretation of this theorem is as follows: For a code of rate R and
any s > ¢(hy " (R)) there exists a value ¢ of the relative distance such that
the average number of neighbors of a codeword is exp[n(R—h2(8)—1(8,£))]
or greater. Note that ¢(h; *(R)) is the value of the distance from Theorem
13.3. Further results in this direction are found in [36], [2].
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15. Linear Codes with Many Light Vectors

The results of the previous section do not resolve the following question:
do there exist sequences of linear codes whose number of codewords of
minimum weight grows exponentially in n ? It was conjectured in [29] that
the answer is negative. This conjecture was disproved in [4], where it is
shown that such code families do exist.

Theorem 15.1: Let

_ loggq q
E,(6) := ha(9) i1 logq_l.
Let g = 2% s =3,4,... be fired and let §; < §y be the zeros of E,(3). Then
for any 0 < §1 < § < 2 < 1/2 there exists a sequence of binary linear codes
{C;,i =1,2,...} of length n = ¢N,N — oo, and distance d; = nd/2 such
that

log Aq, > NE,(6) — o(N).

The idea of the proof is as follows. Let X be a (smooth projective
absolutely irreducible) curve of genus g over F,, g = 225, Let N = N(X) :=
$X (F,) be the number of F,-rational points of X and suppose that X is
such that N > g(,/g — 1) (e.g., X is a suitable modular curve). The set of
F,-rational effective divisors of degree a > 0 on X is denoted by Div}(X).
Recall that Div}(X) is a finite set. For D € Div}(X) let € = C(D) be an
[N, K,d(C)] geometric Goppa code constructed in a usual way [49]. Then
K>a—g+1andd(C) >N —a.

Note that once X and a are fixed, the estimates of the code parameters
given above do not depend on the choice of the divisor D. It is conceivable
that for some divisors D the code €(D) will have better parameters. That
this is the case was shown by V1ddut in 1987 [49]. This result was obtained
by computing the average parameters of codes over Div} (X). The same
idea applies to the weight spectrum of the Goppa codes: one can compute
the average weight spectrum of the code €(D),D € Div}f(X), and then
prove that there exists a code whose weight spectrum is at least as good
as the average value. This code is then concatenated with a binary [n =
g —1,2s,q/2] simplex code. This results in a binary code whose number of
minimum-weight codewords is given in Theorem 15.1.
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16. Covering Radius of Linear Codes

The polynomial method can be used to derive bounds on the covering radius
of linear codes.

Theorem 16.1: [16, p. 230] Let C be a linear code with dual distance d'.
Let v be an integer and f(z) = Y., fiK;(z) be a polynomial such that
fG@) <0,i=r+1,...,n, and

fo> Z |fj|A}-
j=d'

Then r(C) < r.

Proof: Let € be a code of size M and D(z) = € + z be the translation of
€ by a vector z and let A(z) = (4;(z),i = 0,1,...,n) be the weight dis-
tribution of D(z). Let A'(z) = (A}(z),i =0,1,...,n) be the MacWilliams
transform of the vector A(z):

A'(z) = (M) A(2)K,

where K is the Krawtchouk matrix. Note that the components of A'(z) can
be negative.

Also let €' be the dual code of € and (A},0 < i < n) be its weight
distribution. It is known that for any =

|AL(z)| < A (i=0,...,n).

Therefore, compute
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If the last expression is positive, then so is the sum Y, f(¢)A;(z). Further,
if f(i) <O0fori=r+1,...,n, then there exists an ¢ < r such that (for
every z) A;(z) >0, i.e., 7(C) < 1. O

Applications of this theorem rely on bounds on the dual weight distri-
bution of a linear code with dual distance d', i.e., of the weight distribution
(A;) of a linear code with distance d'. Since 4; < M(J™% d'), any upper
bound on the size of a constant weight code can be used to obtain a bound
on 7(€). Good bounds are obtained if we again take the polynomial W(z)
(Section 13). Another possibility is to use the results of Section 13 and use
asymptotics of its coefficients from Theorem 13.1(iii). These methods yield
the best asymptotic upper bounds on r in terms of §' currently known (see
[1] and references therein).

Further reading. In many cases this article provides only a starting point of
a large topic in coding and information theory. A lot more information is found
in the books and articles referenced in the main text. In addition, the following
textbooks or monographs offer a general introduction and more expanded context
pertinent to the subjects of this chapter: combinatorial coding theory [5], [38], [60],
error exponents [20], [51], algebraic-geometric codes [47], [49], tables of short codes
and general reference source [41], covering radius [16], spherical codes and bounds
[18], [24], orthogonal polynomials [40], [48].
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