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A New Upper Bound on the Reliability Function of
the Gaussian Channel
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Abstract—We derive a new upper bound on the exponent of
error probability of decoding for the best possible codes in the
Gaussian channel. This bound is tighter than the known upper
bounds (the sphere-packing and minimum-distance bounds
proved in Shannon’s classical 1959 paper and their low-rate
improvement by Kabatiansky and Levenshtein). The proof is
accomplished by studying asymptotic properties of codes on the
sphere 1( ). First we prove a general lower bound on the
distance distribution of codes of large size. To derive specific
estimates of the distance distribution, we study the asymptotic
behavior of Jacobi polynomials as .

Since on the average there are many code vectors in the vicinity
of the transmitted vector , one can show that the probability of
confusing and one of these vectors cannot be too small. This
proves a lower bound on the error probability of decoding and the
upper bound announced in the title.

Index Terms—Distance distribution, error probability of de-
coding, Jacobi polynomials, spherical codes.

I. INTRODUCTION

T HE classical model of communication over channels with
noise, introduced by Shannon in 1948, assumes that mes-

sages are represented by vectors (points) in the-dimensional
Euclidean space. Under this model it is assumed that when a
vector is sent over the channel, the received signal is repre-
sented by a vector , where is a vector whose coor-
dinates are independent Gaussian variables with mean zero and
variance .

A consistent definition of capacity of such a channel is ob-
tained if one assumes that the input signals satisfy some sort
of energy constraints. Typically, one assumes that the energy,
or the average energy, of input signals does not exceed a given
number per dimension, where is a positive number called
the “signal-to-noise ratio.” Shannon [31] has shown that for a
set of input signals of sufficiently large size the study of the
channel is reduced to considering signals ofconstantenergy
equal to , that is, points on the sphere of radius
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in . In this paper we restrict ourselves to this communication
model, which will be referred to as the Gaussian channel (with
discrete time and continuous amplitude). It suffices to consider
spheres of any fixed radius. Therefore, in a large part of the
paper we study only codes on theunit sphere in , denoted
by . A codeis a finite subset of . To
distinguish between codes on and in the Hamming space,
the former are often called spherical codes.

Analogously to the Hamming case, the most important pa-
rameters of spherical codes studied in geometry and coding and
information theory are the minimum distance and the error prob-
ability of decoding as functions of the code size. A natural geo-
metric motivation for the distance problem is studying the best
possible packings of with spherical caps. This and
closely related problems of finding the best possible fillings of

with identical spheres and the kissing number were studied
long before the emergence of coding theory (see a survey in
[13]). Spherical codes in information theory were introduced
by Slepian [34] (paper based on a 1951 Bell Labs report) and
Shannon [31]. However, studies in geometry and coding theory
developed independently of each other until the second half of
the 1970s when important unifying steps were taken by Del-
sarte, Goethals, and Seidel [15], [16], and Kabatiansky and Lev-
enshtein [21].

A. Parameters of Spherical Codes

Let be a code and its rate,
. The distance between

two points in can be also measured by the inner product
or by the geodesic distance on the

sphere . Each of these measures is convenient
in some coding-theoretic problems. Accordingly, let

, and .
Let

be the maximum size of a code on of angular distance.
Asymptotic properties of codes are characterized by the func-
tions
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Usually one is interested in upper bounds on and lower
bounds on . Below we assume that these two sequences
have a common limit and speak loosely of the maximum pos-
sible rate of a code (sequence of codes ) of angular
distance . Note that by [30], for .

Likewise, define to be the maximum distance of a code
(sequence of codes) of rate .

Remark: Following the discrete case [1], it is not difficult to
prove that is a continuous function of. Indeed, for any

(Yaglom’s inequality, see, for instance, [13].) Letbe some
small number such that . Apply Ya-
glom’s inequality times, putting each time .
We obtain

Since is monotone, we have Letting
and , we see that is continuous.

The best known lower bound on is Shannon’s sphere-
packing bound [31]

(1)

(2)

which relies on the same type of argument that the Var-
shamov–Gilbert bound for the Hamming space.

Best known upper bounds on were derived in [21]. One
of the main results of [21] states that

(3)

where is the entropy
function. This bound admits a small asymptotic improvement
for [21]

(the real numbers here and below are approximate). These
bounds can be also transformed to relateand (rather than
). Indeed, let be the root of the equation

(4)

. Then

(5)

(6)

For bound (6) is better than (5). Some further
details on the upper bounds will be provided in the next sections.

B. Error Probability of Decoding

A systematic study of the error probability of decoding for
spherical codes was initiated by Shannon in [31]. Letbe a
code on the sphere of radius . We assume that code vec-
tors for transmission are chosen fromwith equal probability.
Then

is the average error probability, where is the error proba-
bility of decoding provided that the transmitted vector is. Let

for all (7)

be the Voronoi region of with respect to the code . Then the
optimal decoding rule, i.e., the one minimizing the average error
probability, associates to the received vectora code vector
such that . (The definition ignores vectorsat the
same distance from two or more code vectors since their prob-
ability is .) Under this decoding, the error probability
equals

transmitted

(8)
where the last probability equals the total probability, under the
Gaussian distribution with mean atand variance along each
coordinate, of the part of complementary to the decoding
region of . Further, let

Again we are interested in upper bounds on and lower
bounds on as functions of for given . A common
limit of these two functions, provided that it exists, is called the
reliability function (or the error exponent) of the channel, de-
noted . By abuse of notation, below we speak of upper
and lower bounds on .

Shannon [31] showed that for ,
where is the capacity of the channel. In
this interval is bounded above by the sphere-packing
bound [31]

(9)

where
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and is the “sphere-packing” angle; cf. (1).
Further, is bounded below as follows [31]:

(I)

(II)
(III)

(10)

where

Bounds (9) and (10.III) show that is known exactly
for . Shannon [31] also proved the inequality

(11)

which implies that bound (10.I) is tight for . The proof
of (11) in [31] used the minimum-distance argument (the prob-
ability of confusing two code vectors at a minimum distance)
together with a Plotkin-type bound on the size of the code. Inde-
pendently and earlier, Plotkin-type bounds on were proved
by Rankin [30]. Later, it was realized that one can abstract from
the Plotkin bound and use Shannon’s argument to establish a
general minimum-distance bound on (see [32] for dis-
crete channels and [21], [24] for the Gaussian channel). This
bound has the form

(12)

Together with (5) this implies the best known bound on
for low code rates.

Finally, as shown in [32], the reliability function of discrete
channels is bounded above by the straight line connecting
any point of any upper bound on with any point

, of the sphere-packing bound. Sheverdyaev
[33] extended this result to the Gaussian channel, showing, in
particular, that a segment of the common tangent to
and gives an upper bound on (note that
both and are convex). Rather than writing out a
cumbersome explicit expression for this bound, we simply
denote it by .

Concluding, let us summarize the results on the upper bound
on known to date

(I)
(II)

(III)
(13)

where are certain numbers which are easier to compute
for each given than to write out in general.

In our paper, following [34] and [31], we assume that code
vectors can be any points on . In communication theory
one also studies a restricted case of this problem, namely, trans-
mission over the Gaussian channel with codes whose vectors
have coordinates equal to (binary or nonbinary) roots of unity.
Then it is possible [28] to obtain upper bounds on codes better
in a certain region of rates than the Kabatiansky–Levenshtein
bounds. For lower existence bounds on the reliability function
of the Gaussian channel withbinary codes see, e.g., [29].

C. Outline of the Paper

The goal of this paper is to prove a new upper bound on
given by the following theorem.

Theorem 1: The reliability function of the Gaussian channel
with signal-to-noise ratio satisfies the upper bound

(14)

where is a value of the code rate

is the root of

Together with a segment of the common tangent to the curve
on the right-hand side of (14) and the sphere-packing exponent
(9) this theorem improves bounds (13.I)–(13.II) for all rates

. Indeed, observe that forgetting the second term
inside the brackets in (14), we get (13.I), so (14) is at least as
good as the minimum-distance bound. Now put in (14) .
Suppose that , then the second term under the minimum
in (14) is less that since , so in this
case our bound is strictly less than (13.I). On the other hand, if

, then already the first term in (14) is less than (13.I).
Thus (14) is strictly less than (13.I) for all , so the
straight-line bound associated with it is also strictly less than

in (13.II) and touches at some point between
and (see Fig. 1).

The proof combines geometric, analytic, and combinatorial
arguments. Its idea is summarized as follows. It is well known
that the error probability of decoding is determined not as much
by code’s minimum distance as by its distance distribu-
tion. To take into account this influence one has to estimate the
average number of neighbors of a code vector. This number af-
fects the error exponent if it grows exponentially in. Bounds
of the type (12) only take into account the fact [31] that each
code of a large size contains a large subcode in which every code
vector has a neighbor at a minimum distance. In contrast, we use
lower exponential estimates of the average distance distribution
for all distances (i.e., ). This
accounts for a better estimate of in the region of code
rates where the best known bound was .

The paper is organized as follows. In Section II, we derive a
general lower bound on the distance distribution of codes. This
result is proved by a new application of Delsarte’s polynomial
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Fig. 1. Bounds on the reliability function(A = 4). (a) “Random coding”
exponent (10.I–III). (b) Sphere-packing bound (9). (c) Minimum-distance
bound (11). (d) Minimum-distance bound (12). (e) The new bound (14).R

denotes the critical rate. Each of the curves (d)–(e) includes a segment of the
common tangent to the curve and the sphere-packing exponent.

method in coding theory, discovered recently by the authors
in [3] and [25]. As suggested by the Kabatiansky–Levenshtein
(KL) approach [21], we prove these estimates simultaneously
for codes in a number of metric spaces including . We
believe that these estimates will find further use in coding theory
as it happened with analogous results in the Hamming space [4],
[6], [7].

To prove specific bounds, we need to establish the asymptotic
behavior of Jacobi polynomials as the degree and

. This is the subject of a fairly technical Section III. By
combination of classical andad hocmethods we prove a number
of asymptotic bounds on the exponent of and, in a sense,
give a definitive answer for the entire orthogonality segment.
In this section we actually prove more than is needed to derive
Theorem 1;1 readers interested only in this theorem can skip
everything except Theorem 6.

Section IV consists of two parts. In the first part, we use
the estimates of Jacobi polynomials to derive exponential lower
bounds on the distance distribution of spherical codes. In the
second part, we establish some regularity properties of the dis-
tance distribution of spherical codes. This part is a technical aid
for the proof of the lower bound on the error probability for
spherical codes (Theorem 1). Here we prove that in any code
one can isolate large subsets that in the asymptotics possess dis-
tance invariance properties similar to those of linear codes in

1We believe that it is worthwhile to present these results in view of a promi-
nent role that Jacobi polynomials play in coding theory. After this paper was
submitted, we learned of related results [11]. Their results are given in the form
that does not allow immediate use in our bounds.

the Hamming space, namely, that the distance spectrum with
respect to any given vector in the subset is one and the same.

The remaining part of the proof of Theorem 1, given in Sec-
tion V, is geometrically much more intuitive. It is accomplished
by an argument analogous to the Hamming case in [25].

A few remarks on the asymptotic notation. Since in the
paper we are interested only in logarithmic asymptotics of
the reliability function and related parameters, we write

to denote the fact that
as . For instance, the Stirling approximation for
gives . A short notation for

is . Notation means that

II. BOUNDS ON THEDISTANCE DISTRIBUTION OFCODES

In this section we prove a general bound on the distance dis-
tribution of codes. We take a somewhat broader view than in the
rest of the paper since by one and the same method one can prove
this bound for codes in many metric spaces simultaneously. The
method is suggested by Kabatiansky and Levenshtein in [21]
and applies to configurations in very general spaces (indeed, not
necessarily metric). We restrict ourselves to a fragment of their
theory, the unifying idea being to consider those spaces in which
zonal spherical functions are given by Jacobi polynomials. (In-
cidentally, this covers all compact infinite spaces in which our
results and the results of [21] are valid.)

Apart from our main example, the unit sphere ,
we also consider the -dimensional projective spaces
over (the quaternions). Each of them can be realized
as the set of lines through the origin in the corresponding

-dimensional linear space, or the sphere with antipodal
points identified. A code, again, is afinite subset of . Let

be a certain metric and be the usual (Hermi-
tian) inner product on . Let be the set of all possible
distances on with respect to . For instance, for

with the Euclidean metric we have . Let

be a monotone function that depends only on the distance be-
tween and , such that and such
that the zonal spherical functions are expressed as polynomials
in (see below). This substitution enables one to present results
in a uniform way while not changing their analytic nature. For
instance, for with the Euclidean metric we can put

Thus and (a pair of antipodal
points).

Let be a code. Define the functions

(15)

(16)

Typically, below we consider intervals of size for
growing . In this case we keep only one of the two argu-
ments, writing, for instance, for . Observe
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that can be thought of as the distancedensityof (more
precisely, the scalar products density). Further, let

be the (local and average) distance
distributions of . To sum other functions according to , it
is convenient to have a discrete measure associated with it. Ob-
serve that is a nonincreasing function, so its jumps are neg-
ative. Therefore, let , where ,

, where , etc. Then

(17)

where the integration is with respect to the measure.
One of the main results in [21] is that the distance distribution

of codes on satisfies certain positivity conditions. Recall
that there is a natural way of associating with a Fourier
basis formed of zonal spherical functions. A specific form
of these functions depends both on the ground field and on the
distance function on . By [21]

(18)

These inequalities follow from the fact that the action of the
isometry group of is doubly transitive on it; hence
zonal spherical functions form a complete system in , and
Fourier coefficients of any positive-definite function in
with respect to this system are nonnegative. A particularly read-
able introduction in this part of harmonic analysis on compact
groups is found in [37]; see also [19], [20], and [36]. In fact, in-
equalities (18) apply in a much more general context [21]. For

-polynomial association schemes, they constitute the Delsarte
inequalities [14].

We now derive a lower bound on the distance distribution
of .

Theorem 2: Let be the distance distribution of a code
and let be an integer. Let and

suppose that are
defining points of a partition of into segments

.
Suppose that is a polynomial of de-

gree such that

i) for
ii) for for

Then there exists a number , and a point
such that

(19)

Proof: We have

where the first equality follows by (17) and the inequality is
implied by i) and (18) and the fact that . Now let us
interchange the sum and the integral and use ii)

(we have used the fact that ). Let

Then we have

Hence, there exists a number such that the sum-
mation term satisfies the claimed inequality.

Note that condition in the statement
can be replaced by . In the applications of this
theorem below we usually choose the segmentsto be of equal
small length (of order ).

Theorem 2mutatis mutandisis valid for all spaces covered
by the KL theory (for instance, for all two-point homogeneous
spaces with massive invariant subgroup). For codes in the Ham-
ming space this theorem was proved in [25] (see [5] for an
overview).

Let us specialize this theorem to the context of this paper, that
is, to the unit sphere in .

a) . The zonal spherical func-
tions were found by Cartan [10] (see also [37, Ch. 9]) in the
form

where

is the Gegenbauer, or ultraspherical, polynomial. It is known
[35] that

where is the Jacobi polynomial.
Note that the inequalities above do not change if we divide

out a positive constant. Therefore, in estimate (19), we can put
.

b)Projective Spaces.Consider the projective spaces ,
where or or . The distance in can be ex-
pressed via the inner product . The substitution

maps on and possesses the nec-
essary properties. One can take [21]
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where is the dimension of as a linear space
over .

We see that to apply inequality (19) we need to study the
asymptotic behavior of . This question leads
one to the study of values of Jacobi polynomials.

III. A SYMPTOTICESTIMATES OFJACOBI POLYNOMIALS

The subject of this section is the study of the asymptotic be-
havior of Jacobi polynomials for ,

. In order to derive asymptotic bounds on the distance dis-
tribution of spherical codes in the next section it suffices to con-
sider the case . However, exponential estimates of gen-
eral Jacobi polynomials, besides being of independent interest,
are useful for constructing bounds on codes in different metric
spaces (see the end of the previous section). Therefore, we begin
with the case of general especially since it is not much
more difficult than the particular case mentioned.

Below we assume that . The general
analytic situation that we treat in this section stems from the
derivation of the so-called “linear programming (LP) bound”
[26] and its extensions to other-polynomial spaces [21], [23],
[2]. The bound on the rate of a code has a form of a certain
function of the extremal zero of the corresponding family of
zonal orthogonal polynomials. Asymptotics of the extremal zero
for various systems of polynomials were studied in [26], [21],
[23].

A more refined situation encountered in a number of prob-
lems that involve LP bounds [25], [3], [8] requires estimating
the asymptotic behavior of the polynomials in the entire interval
from the extremal zero to the end of the orthogonality segment.
For a discrete space , a simple uniform estimate follows from
the identity , where is the -polynomial
of degree of the association scheme, is the th eigenvalue
of the scheme, and is the corresponding

-norm (cf. our Theorem 5 which employs a different method
to prove a similar result in the continuous case). For Krawtchouk
polynomials an extension of the method in [26] was em-
ployed in [22] to derive an exact expression for the main term
of the exponent in the interval considered. The proof in [22] is
based on the difference equation for . In the continuous case
one can rely on the distribution of zeros of the polynomial and
derive, in a sense, a tight estimate for the entire orthogonality
segment.

Properties of Jacobi polynomials are collected, for
instance, in [35], [17, vol. II]. We need the following facts.
The polynomials are orthogonal on with
weight

(20)

and

(21)

The polynomial has simple zeros on . Denote them
by . Thus we have

(22)

where

Further

so, in particular, . Zeros of are symmetric
with respect to , and . Zeros of the two adjacent
Jacobi polynomials form two interlacing systems:

and so forth.
For sufficiently large by [21] we have

(an independent later proof was given in [27]). In particular, for
this implies

(23)

The zeros of the sequence fill the segment
densely.

Let us proceed to bounds on . We present three results,
each obtained by a different technique. The first result is ob-
tained by transforming the differential equation (60) for the Ja-
cobi polynomials to a form with (locally) constant coefficients
and applying a method of Sturm–Liouville to estimate the dis-
tance between the consecutive zeros. This gives an exponential
estimate for Jacobi polynomials in the entire segment. The
second theorem extends the method of [26] and [22] and gives
an exponentially tight estimate in the range

. In this range this estimate coincides with the first
one, but is derived in a different manner, and has a totally dif-
ferent form.

The third theorem relies on the value of the-norm of the
Jacobi polynomial. It provides an estimate that passes through
all the maxima of and since the zeros of are dense,
can be thought of as the limiting envelope of the polynomials.
It is asymptotically tight in the interval and
in this interval coincides numerically with the first estimate. All
the three estimates are equal at .

From now till the end of this section we denote zeros of
by , omitting the degree. The next theorem, proved in the Ap-
pendix, gives the exact logarithmic asymptotics for .
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Theorem 3: Let be the Jacobi polynomial. Suppose
that and . Then

(24)

Note that for the integral in (24) has
a singularity at the point . However, its convergence is
easily checked.

Theorem 4: Let be the Jacobi polynomial. Suppose
that , and

Then we get (25) at the bottom of the page, where thesign
corresponds to and the to .

Proof: See the Appendix.

Note that (24) also gives the exact main term of the exponent
of . So for such , expres-
sions (24) and (25) represent one and the same function.

Finally, let us derive an estimate which turns out to be tight
in the subsegment from the first to the last zero of.

Theorem 5: Let be the Jacobi polynomial. Suppose
that . Then

(26)

Proof: See the Appendix.

Remark: It can be proved that exponentially bound (26) is
exact for . Hence in the oscillatory
segment the right-hand side of (26) equals that of (24).

Since in the following section we deal with codes on
, the case of is of special interest to us. Recall

that in this case is even, in particular , and
that . Below we abbreviate to . Estimates
of Theorems 3–5 in this case are collected in the following
theorem.

Theorem 6: Let be the Jacobi polynomial and suppose
that . Then up to terms

a)

(27)

b)

(28)

where the first choice of the signs corresponds to and
the second to .

c)

(29)

Proof: Standard asymptotic analysis, see the Appendix.

Obviously, remarks on the mutual relations and tightness of
the bounds made in the general case are valid in the particular
case considered in this theorem. For instance, (27) and (28) for

represent one and the same function.
The integrals in (28) can be computed in a closed form using

Mathematica. The answer is rather cumbersome, but can be
transformed to a compact form (computed by the saddle point
method from the integral representation of in [9]). For in-
stance,

(30)

The following simple corollary is of independent interest and
may be useful in applications.

Corollary 7: Let be the sequence of Jacobi polyno-
mials . Then up to terms

(31)

where

Proof: Note that the derivative of the function on the
right-hand side of (28) equals at . It can be checked
that the function itself is concave for . Therefore,
the straight line drawn through the point with slope

is an upper bound on the exponent of the polynomial in
.

Clearly, a similar argument is valid for , i.e.,
the exponent of is bounded above by a straight line
symmetric to (31) with respect to the-axis.

The behavior of the bounds is visualized in Fig. 2.

(25)
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Fig. 2. Exponent of the Jacobi polynomialsjP j(k ! 1; a = 6). (a)
Exact expression (27), valid forx 2 [�1; 1]. (b) Exact expression (28), valid
for q � jxj � 1. (c) Upper bound (29), valid forx 2 [�1; 1]. (d) Upper bound
(31).

Remark: Observe that is the function on the right-hand
side of (29). The second derivative
is positive for all ; so is convex. So (31) is a
commontangent to (28) and (29) at and separates these
two curves. Bound (31) is useful because on the one hand is easy
to work with, and on the other hand, it is much better than (29),
in particular, it does not become infinite as .

IV. A SYMPTOTIC BOUNDS ON THEDISTANCE DISTRIBUTION

OF SPHERICAL CODES

In this section, we return to the concrete setting of Section
I and prove asymptotic bounds on the distance distribution of
codes on the unit sphere in dimensions.

A. Absolute Bounds

Below we use the asymptotic expression for the distance den-
sity of a “random code,” that is, the expectation of the dis-
tance density of a codeof a fixed size chosen on in
accordance with the uniform probability measure. Let be
a code point and be the local distance density with respect
to (15). In other words, we are counting the number of code
points in the spherical ring located onbetween two cones with
apex at the origin, “center” at and half-angles
and , respectively. On the average, this
number constitutes the same fraction of as the area of the
ring of the total area of . Letting denote the -di-
mensional area of a spherical cap onwith half-angle , we
then obtain

(32)

where the overbar refers to averaging over the ensemble of
codes. By [31, p. 624]

so

Thus the main term of the right-hand side of (32) is independent
of . Hence, we may as well put in (32) . Thus we have

(33)

Further, since (33) holds with respect to every , we can use
the definition of the distance distribution of (16) to conclude
that for the random code

All told, we obtain

or

(34)

Below we call this expression therandom distance spectrum.

Remark: The role of the random distance spectrum for
spherical codes is much the same as that of the well-known
“binomial” weight spectrum in the Hamming case

where this time is the code length. Namely, both functions ap-
pear as the mean distance distribution of random codes chosen
with uniform probability from their respective spaces. More-
over, for large as long as is less than the sphere packing (Var-
shamov–Gilbert) bound on the code distance, . Likewise,
in the spherical case as long as is less than the sphere
packing (Shannon) bound (1). Finally, a code with the random
distance distribution and minimum distance equal to the sphere
packing bound asymptotically meets the “random coding expo-
nent.” This means that at rates below capacity the exponent of
the error probability of decoding for such code asymptotically
behaves as (10) for the spherical case or as its “discrete” coun-
terpart [18].

In this section we use a shorthand notation for
. Let ( is a constant). We will see below that

is the same parameter as appeared briefly in Section I. We
need to take , where is the dimension of the
ambient space. Let

(35)

where , and is chosen so that
(so in particular, depends on ). A polynomial of
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the same form as was suggested in [26] for the Ham-
ming and Johnson spaces and used there to derive upper bounds
on the size of codes. was used in [21] to derive bound
(3)–(5).

We again assume that , i.e., . Our task for now
will be to specialize bound (19) to the case . Let

be the Gegenbauer expansion of . Then [21]

The first equation follows by an application of the Christoffel–
Darboux formula (61) and the orthogonality relations (20); the
second one is straightforward. Then we have for

or, omitting small terms

(36)

and, in particular

(37)

In the last equation we have taken into account (59) and the
identity

Note in passing that (37) leads to the following result.

Proposition 8: Let be a number such that

(38)

Then , i.e., is exponentially greater
than .

Remark: Note that

is the KL bound (3), (4) renormalized to . So this propo-
sition says that as long asis greater than , bound (19) with

is dominated by thefirst term. For fixed this
holds as long as .

Let us return to the main topic of the section. Again by the
Christoffel–Darboux, the coefficients are nonnegative. Fur-
ther, for . Finally, observe that

satisfies the conditions of Theorem 2, so we can apply the esti-
mates of the previous section to derive concrete bounds on the
possible distance distribution of spherical codes. Observe that
as , , and so the number approaches

.
Let be a code of rate and its distance density. Let

(39)

and let , where is defined in (4). (Note that
, where is defined in Section II and is given

by (5).) For we have .

Theorem 9: Let be a code of rate . Let ,
be a fixed number. Then there is a value , such
that

(40)

where

(41)

Proof: Let where
. By Theorem 2 and Proposition 8 we have, for some

and

(42)

We plan to proceed by substituting in this estimate (36) together
with (28). Note that since , the difference

; hence inequality (42) is still
asymptotically valid if we replace with . From the proof of
Theorem 4 we see that the estimate in (28) is nothing else than

times , where the integral is the same
as in (28). Hence by (36)–(37) we get

(Alternatively, to derive this use (36) together with (28) and the
identity after (37).) To complete the proof it remains to change
the scaling according to and use the expres-
sion (30) for the resulting integral.

Note that is monotone increasing on.

Remarks:
a) Let us see what happens with the lower bound on the dis-

tance distribution if in Theorem 2 we use estimate (29) instead
of (28). The answer, not quite intuitive, is that instead of (41)
we obtain in (40) the random distance spectrum (34). In other
words, there is a point at which the logarithm
of the distance distribution asymptotically at least equals .
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Fig. 3. Bounds on the distance distribution of codes(R = 0:5). (a)
“Random” distance spectrum (34). (b) Bound (41). (The first curve from
below corresponds to� = 0:179.) The remaining three curves are drawn
for � = 0:139; 0:099; 0:059; respectively);t = 0:795—the Shannon
(Varshamov–Gilbert) distance;t = 0:675—the KL distance.

Indeed, let us use (19) or its corollary (42) together with (29).
Again taking into account (36), we obtain

Rescale the above inequality using . This gives

Since estimate (28) is better than (29) except for where
they are the same, Theorem 9 gives a lower bound (in fact, a
family of lower bounds) on the distance distribution at least as
strong as the average distribution. At this moment it is instruc-
tive to consider Fig. 3 which visualizes this remark.

b) Projective spaces.Codes in the complex projective space
with distance measured by are also known as

families of sequences with small cross- and autocorrelation [23].
For this reason their properties are of interest to coding theory.
It is possible to use polynomials of the form (35) to write out
lower bounds on the distance distribution of codes in
and other projective spaces mentioned in the end of Section II.
Let us outline this derivation.

Let be a code of rate , where or
or . Let . Together with the definitions of
and (see the end of Section II) we then obtain . The
maximal zero of converges to

The bound on the rate of a code such that for
any two points , has the form [21]

where . The bound on the distance
distribution has the following form. Let be the root of

and let be a fixed number. Then there exists a point

such that

(43)

where and should be chosen as specified above. With
and constant, (21) yields . Next we substitite

in (25) and integrate (using Mathematica) to obtain the
expression at the bottom of the page. Plugging all this into (43)
and substituting , we obtain an exponential
lower bound on the distance distribution of.

Codes in the real Grassmann space recently attracted
interest in geometry [12]. is the manifold of -dimensional
linear spaces in passing through the origin. The case
corresponds to the real projective space .

B. Regularity Properties

In this part of the section we prove a few results that hold
uniformly for most local distance densities in the code. Together
with Theorem 9 these theorems will be used in the next section.

Let us define theeffective distanceof the code as follows.
Define a partition of the interval into
segments of equal length

(44)

For a code vector let

(45)

Further, let

and
(46)
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There are at most such subsets ; they all are pairwise-
disjoint. Theeffective distanceof (measured in cosines) is
defined as

Let for this value of . It is clear that
, i.e., exponentially this subcode has the same size.

This proves the following lemma (below we omit the unessential
constant in ).

Lemma 10: Let be a code. Then there exists a
subset such that and every vector

has a neighbor . Moreover, .

Since , Theorem 9 implies that for somethere
is a point in the partition (44) such that the exponent of the av-
erage distance density of is bounded below by the func-
tion . In the next theorem we isolate a subcode

of the same exponential size aswith some ad-
ditional properties. Namely, since we will have ,
Theorem 9 implies that for somethere is a point in the par-
tition (44) such that the main term in the exponent of the av-
erage distance density of is bounded below by the function

. We prove that on top of this can be chosen in
such a way that all thelocal distance densities ,
have at least the same exponential growth as . Of
course, .

Theorem 11:Let be a code of rate and distance
. Let , be a fixed number. There exists

a subset such that and
. Moreover, there exists a number

, such that the average distance density in satisfies
and for every vector the

number of its neighbors in

(47)

Proof: Below we denote the average (local) distance den-
sity of a code at a point by (resp.,

).
We begin with the code constructed in Lemma 10

and show that it is possible to choose as a subset of .
Let

where is a defining sequence for partition of the form
(44). If there is an , such that ,
put . This choice obviously satisfies the conditions of
the theorem. Otherwise, consider the set

Clearly, since the size for all is by as-
sumption at most . By Theorem 9 there is an index

such that

Hence in particular, there is a point such that

Obviously . Then by definition,
, contradicting the fact that all the subsets
are cast away from . To complete the proof recall

that .

This theorem establishes the existence in any code of a sub-
code with many neighbors in the vicinity of every code vector,
i.e., some kind of distance invariance in the neighborhood of.

V. PROOF OFTHEOREM 1

As in Section I, let be a code on the sphere in of radius
, where is the noise variance and is the signal-to-

noise ratio in the channel. In this section, we work with Eu-
clidean distances in codes rather than with inner products. Dis-
tances on the sphere of radius will be denoted by ,
and so on, to distinguish them from distances on the unit sphere

. Clearly, , and so on. By we denote
the projection of on the concentric unit sphere . Obvi-
ously, angular distances in and are equal. Let

Note that the projection of on gives the spherical
ring defined in (45), with the obvious relation between

and . Distances in and are connected by the scaling
.

For the rest of this section we assume that the rateof is
between and the channel capacityand does not approach
as grows. Let

be the local distance density related to . As above,
we omit one of the arguments and write if

. The local distance distribution is by definition
. The average values of these functions

over the code will be denoted . They are monotone
nondecreasing functions of. We have

(48)

where is the distance function of and is the Euclidean
distance. By virtue of this relation all our conventions and results
of the previous section are readily translated into the present
context. In particular, if is the effective distance of (mea-
sured in cosines), then is the ef-
fectiveEuclideandistance of .

Below we rely on two obvious facts which are worthwhile to
isolate in a separate proposition.
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Proposition 12: Let be a code and its error prob-
ability of decoding (8). Let be two subsets of

. Then

(49)

(50)

where is the Voronoi region(7).
Proof: The first inequality follows by putting in (8)

for . The second one holds
true since .

Suppose for a while that possesses the regularity prop-
erties discussed in the previous section. Namely, every vector
in has a neighbor at an effective distance equal to its
minimum distance , and if is the average distance
density of for a certain value of then for all the local den-
sities we have .

Let us assume that is the transmitted vector (this
condition is omitted from our notation below; it should be al-
ways kept in mind) and is the received vector. Sup-
pose that for some the set is nonempty and let

. By (8) and Proposition 12 we have

(51)
Let be any code vector and let us bound the last
probability below. Let

be the half-space of points closer tothan to . We have the
following chain of (in)equalities, which is just a one-step inclu-
sion-exclusion argument:

and

(52)

where the last inequality follows since the case of

is the worst one for our estimate.
Observe that the distance betweenand lies between

and . Since we are deriving lower estimates
on (and since the rate is below the capacity of the
channel), we can assume that all these distances equal.
Then by the definition of the channel and properties of the
normal distribution, the first probability in (52) is asymptotic to

, where is the Gaussian
distribution function. To bound below we still need

Fig. 4. To the proof of Lemma 13: We need to find the probability that the
received vectoreee is in the stroked area.

to compute the last probability in (52). Let be two
code points in . As mentioned above, the noise in
the channel is a product of independent and identically
distributed (i.i.d.) Gaussian variables, each affecting the cor-
responding coordinate of. Let us have a closer look at the
probabilities of error events that output or as a decoding
result. These probabilities are completely determined by the
pairwise distances in the triple and the relative
distances betweenand these three points. Therefore, we can
restrict our attention to the secant planedefined by .
Let us introduce affine coordinates in in such a way that
the origin is located at , the first coordinate vector is given
by the direction , and the first two coordinates form an
orthogonal basis for , making it into a linear space. Now let
us write in these coordinates and restrict our attention
to the plane , ignoring the remaining coordinates
(i.e., project orthogonally on ). Denote the corresponding
two-dimensional vectors by . Note that is a random
vector in whose coordinates are i.i.d. Gaussian with mean
zero and variance . The resulting picture is shown in Fig. 4,
where corresponds to .

Let us proceed to estimate the last probability in (52). This is
done in the following lemma.

Lemma 13: Let be two code vectors at a
distance . Then

(53)
where .

Proof: According to the discussion before this lemma

where the last probability is computed under a two-dimen-
sional Gaussian noise centered atwith variance along
each coordinate. Further, we assume that equals
and both are exactly . From Fig. 4 we have

, where is the angle
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between and . Suppose that . Then the condition
that is closer to than to yields the inequality

or . Further, since is closer to than to ,
we also have . Denote the required probability by
. Then as

where we have used the identity

Note that (52) is only nontrivial if the second term is smaller
than the first one. This restricts the number of code points that
can be taken into account in this estimate. In other words, in
some situations in our estimate we can only rely on a subcode
of . In the next lemma is a short notation for .

Lemma 14:

(54)

where , and

Proof: For the inequality in (52) to be nontrivial we need
the inequality at the bottom of this page. Let be equal
to the right-hand side of this inequality. If ,
then we can substitute in (52). Otherwise, in this estimate
we only take into account code points from ,
which is possible by Proposition 12.

Since

we obtain

Observe that is a growing function of . Therefore, in
the worst (for our estimates) case we must assume that every
pair of vectors in is at a distance apart.

Now let . By the above ar-
gument it is clear that

for any fixed .

Lemma 14 gives a lower estimate for the expression on the
right-hand side in (51). Recall that by Shannon’s minimum-dis-
tance bound (12) the error probability is bounded below by
the the probability of confusing two code vectors at a distance

. Therefore,

(55)

provided that is a distance-invariant code (here ).
However, generally is not distance-invariant. Therefore,

we have to employ the asymptotic regularity results in the pre-
vious section. By Lemma 10, starting from, one can construct
a subset of code vectors of rate in which the minimum
distance equals the effective Euclidean distance. This is done by
taking the code , isolating in it the subset whose existence
is proved in Lemma 10, and lifting it back to the sphere of radius

. In this way, each vector in will have a neighbor
at a distance . Further, by Theorem 11, it is
possible to isolate in a subset such that

i) ;
ii) ;

and, for a certain ,

iii) its distance density is bounded below by
;

iv) for each the subset satis-
fies

Here is a fixed number and depends on .
By Property iii), the average density is bounded below by

. If it is exponentially greater than, this only improves
our estimate, so the case of equality assumed below is the worst
one. Moreover, by Property iv), for this all the local densities
have at least the same growth. Again the equality
assumed in the derivation of this section is the worst case, so our
course of action is legitimate. The same applies to the equality

of the minimum and effective distances as-
sumed above.

We will use subcode to estimate from below the first
and the second terms in (55), respectively. In doing so, we rely
on Proposition 12. Let .
Since , the minimum-distance bound (12)

and
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still gives the first of the two terms in (55). Let us estimate the
second term. Let be fixed and be the same as in the defini-
tion of . We assume that ranges over and consider
only decoding errors producing code vectors in . By
virtue of Properties i)–ii), iv) of and (50) we have

(56)

To complete the proof of Theorem 1 it remains to write ev-
erything in terms of distances on the unit sphere. Again let
be the code obtained by projecting on the concentric unit
sphere. Then, taking into account (55) and (56), we obtain

where ,

, is the weight of
“wrong” code vectors, is defined in (41), and
is any fixed number. Inequality (14) is now immediate.

VI. DISCUSSION

The polynomial (“linear programming”) method in coding
theory was introduced in the founding works of Delsarte in
1972–1973. Its applicability to bounding the size of codes (and
designs) was extended by Delsarte, Goethals, and Seidel [15],
[16] to include the spherical case. Kabatiansky and Levenshtein
[21] developed a general approach, based on harmonic analysis
of noncommutative compact groups, to deriving bounds on
packings in a very broad class of homogeneous spaces. Our
paper further extends the scope of the polynomial method.
Though technically speaking it is devoted to the proof of
Theorem 1, on a more conceptual level it involves a large circle
of ideas some of whose consequences are yet to be realized. A
particular case of the linear programming method studied in
coding theory hitherto relies upon the equality ,
where is the average distance distribution, and positivity
conditions of the form (18). However, many other functionals
of primary interest to coding/information theory, notably, the
error probability of decoding, can be written as, or are related
to, linear forms of the distance coefficients. This enables one to
study bounds on these quantities in the same fashion as bounds
on the size of codes and shows that many information-theoretic
problems have their natural place in the geometric context of
coding theory. Curiously, this possibility has been overlooked
for about 25 years until having been explored recently in [3],
[25], where we studied the discrete case.

Applications in [3] include bounds on the undetected error
exponent, which is directly expressible via the distance coeffi-
cients. The same holds true for error probability of decoding up
to any radius for which the spheres around code vectors are
disjoint. For larger , and in particular, for maximum-likelihood

decoding ( equals the covering radius of the code) it is not pos-
sible to write the error probability as a function of the distance
distribution, but is possible to estimate it. This is in contrast to
previous works which relied only on the minimum distance of
the code, and explains improvements in upper bounds on error
exponents in [3], [25], and the present paper.

APPENDIX

JACOBI POLYNOMIALS

A. Further Properties

The explicit expression for has the form

(57)
This implies the following useful relation (the forward shift op-
erator):

(58)

From (57) one obtains

(59)

It is known that satisfies the equation

(60)

Polynomials satisfy the Christoffel–Darboux formula

(61)

B. Proof of Theorem 3

We need a result from Sturm’s comparison theory [35, p. 19].

Theorem 15:Let and be functions continuous in
with . Let the functions and

satisfy the differential equations

and

respectively. Let and , be two consecutive zeros
of . Then the function has at least one root in the
interval .

From (22) we have

(62)
Rewrite the second term in the last expression as

(63)

(Note that the segment containinggives rise to two terms; we
have omitted one of them since it does not affect the main term
of the answer. Similarly, we omit the last term in the sum.)

To estimate the distance , apply a transformation of
(60) discussed in [35, Ch. 1,4, esp. p. 67]. It can be checked that
the function
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satisfies the following equation:

(64)

where

The set of zeros of is the same as of . Since
, the quantity is ; so we also have

Note that and both
vanish as and that in the limit for

and otherwise. The idea
is to replace equation (64) in the segment by an
equation with a constant coefficient; its solution
will approximate the required distance.

More specifically, let

(typically, the extrema are attained at the endpoints of the
segment since has at most a constant number of sign
changes). Applying Theorem 15, we obtain

In particular, this implies that the distance between consecutive
zeros falls as . Let be a point such that

. Then we have

Substituting this into (63) and letting , we observe that
the sum in (63) converges to the integral in (24). Using this in
(62), we obtain the required expression.

Note that this argument gives the exact value for the main
term of the exponent of for all .

C. Proof of Theorem 4

As above, let be zeros of . Let
. We consider only the case

since the case is almost identical. In

the computations below we have suppressed superscripts.
We have

so

and

(65)
This gives

Now consider (60) in a segment wherehas no zeros. Then it
can be rewritten as

Let and . Then we obtain

This is a quadratic with respect to. Let us use (58) and (59) to
compute

On the other hand, taking in the form of the equation shown
at the bottom of this page, we compute

To establish that the choice of the sign in the solution of the
quadratic equation is uniform over , observe
that the only zero of the expression under the square root in this
interval converges to . So the second term in the formula
for does not (for large) become zero for ;
hence by continuity of the choice of the sign is uniform.

Now observe that
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whence we get for

(66)

The final answer is obtained by invoking the boundary condition
(59) and collecting the terms.

D. Proof of Theorem 5

First let . We know that in this segment
is monotone increasing. Let us partition the segment

into equal subsegments and denote their end-
points by . Note that in
this segment is a falling function (recall that ). For

we have

the last inequality by (20). Now assume thatgrows, for in-
stance linearly, in . Then if there is a point at
which (26) is violated, the lower Darboux sum will also expo-
nentially exceed , a contradiction.

The argument for is a slight variation of
the above since the segment may contain the maximum of.
Then one must be careful in choosing the pointsto substitute
in the Darboux sum above; otherwise, the logic is the same.

Now let and let
be the zeros of . Likewise, let , be the
zeros of . Let be the values of
the maxima of (58). Obviously,

.
From (60) we have for

i.e., at these points and have the same sign. Hence for
every interval the function is concave either
for or for . We will treat only the first
case; the second one is analogous.

By Theorem 3, the function converges
pointwise to the limit function (24), which is continuous for all

. Therefore, the quotient tends
to as grows. Then by (22) we see that grows
slower that any exponential function in. This is sufficient to
bound above.

Indeed, consider the function

i.e., a segment of the straight line connecting the points
and . Since by assumption for is con-
cave, in this segment we have . So letting

we obtain for

where is of order or less. This gives

proving the theorem.

E. Proof of Theorem 6

To obtain part a) from (27) let us break the integral in (24)
into two terms

Changing the variable in the integral over and
simplifying, we arrive at

This leads to the integral in (27). To complete the proof of part
a) we have to derive an asymptotic expression for the leading
coefficient . For it is easy to see that ,
so

Part b) follows directly from (25) upon substituting .
In (28), we have moved the to the denominator to underline
that the integral does not have a singularity at .

Part c) follows upon writing the asymptotic expression for
. From (21) we obtain

From the Stirling formula we obtain the following asymptotic
equality :

So, neglecting the vanishing terms

(67)

This completes the proof.
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