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Abstract. A linear code can be thought of as a vector matroid represented by the columns of
the code’s generator matrix; a well-known result in this context is Greene’s theorem on a connection
of the weight polynomial of the code and the Tutte polynomial of the matroid. We examine this
connection from the coding-theoretic viewpoint, building upon the rank polynomial of the code.
This enables us to obtain bounds on all-terminal reliability of linear matroids and new proofs of two
known results: Greene’s theorem and a connection between the weight polynomial and the partition
polynomial of the Potts model.
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1. Introduction. A linear matroid M together with a chosen representation
over a finite field Fq is the same object as a linear code. The most well-known result
underlining this connection is Greene’s theorem on the relation of the weight polyno-
mial of the code and the Tutte polynomial of the matroid. In this paper we further
examine the relation between the polynomial invariants of codes, matroids, and some
other combinatorial objects. Our point of view is coding-theoretic. We begin with
listing basic definitions for linear codes and some very simple linear-algebraic proper-
ties of subcodes. These properties lead almost immediately to a relation between the
weight polynomial of a linear code and the rank polynomial of the corresponding ma-
troid. This relation is equivalent to Greene’s theorem which is shown to be a purely
linear-algebraic fact. An advantage of the coding-theoretic point of view is deter-
mined by the fact that the weight polynomial enjoys more structural properties than
more general matroid invariants; when this structure translates to other problems, it
sometimes produces interesting insights.

As an example, we relate the reliability polynomial of a linear matroid to an eval-
uation of the weight polynomial of the code. The corresponding functional on linear
codes turns out to be well studied under the name of the probability of undetected
error of the code. Together with some related ideas this enables us to derive upper
and lower bounds on the matroid reliability. As another application of the weight-
rank connection, we give a direct proof of the link between the partition function of
the Potts model and the weight polynomial of the cocycle code of the graph.

General sources for coding theory are the books [17], [19]. Relevant applications
of the Tutte polynomial are covered in [6], [24]. All the necessary information on
interaction models is contained in [24].

2. The rank polynomial of the code.
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2.1. Definitions. A linear code C of length n is a linear subspace of F
n
q . Let Ai

be the number of vectors of Hamming weight i in it, 0 ≤ i ≤ n. Clearly, A0 = 1. The
minimal i ≥ 1 such that Ai �= 0 is called the minimum distance of the code, denoted
d(C). The polynomial

A(x, y) =

n∑
i=0

Aix
n−iyi

is called the weight polynomial of C. The matrix G whose rows form a basis of C as
an Fq-linear space is called a generator matrix of the code.

Let E = {1, 2, . . . , n} be the set of code coordinates. For any subset F ⊂ E
denote by G(F ) the submatrix of G formed by columns with numbers in F . Let
F̄ = E \ F.

Let Z ⊂ E be the set of all-zero columns in G. The number n− |Z| is called the
effective length of C, denoted el(C).

By (a,b) =
∑n

i=1 aibi we denote the standard dot product in F
n
q . The dual code

of C is defined as C⊥ := {c ∈ Fq | (c, c′) = 0 for all c′ ∈ C}. Denote by H the
generator matrix of C⊥. (This matrix is also called the parity-check matrix of C.)
Let k := dimC, so dimC⊥ = n − k. The weight polynomial of C⊥ is denoted by
A⊥(x, y). The minimum distance of C⊥ is also called the dual distance of C.

Let CF := projF C, CF := {c ∈ C | ce = 0 for all e ∈ F̄}. In coding literature the
subcode CF is called the shortening of C and the subcode CF the puncturing of C,
both with respect to F̄ . Clearly, dimCF = rk(G(F )). Standard properties of these
subcodes are given in the following obvious lemma.

Lemma 2.1.
(i) CF

∼= C/CF̄ ; dimCF = k − dimCF̄ ,

(ii) dimCF = |F | − rk(H(F )).

The rank polynomial of C is defined as U(x, y) =∑n
u=0

∑k
v=0 Uv

ux
uyv, where

Uv
u = |{F ⊆ E | |F | = u, rk(G(F )) = v}|.

The code C can be also thought of as a (vector) matroid M represented by the
column space of G; so given C we speak of a matroid of the code, denoted M(C),
and vice versa; given M , we call C the code of M , denoted C(M). If el(C) = n, then
M(C) is loopless. The interest for us in pursuing this connection, besides establishing
new links between linear codes and combinatorics, is that methods of coding theory
enable one to derive absolute bounds on evaluations of A(x, y) which can be useful in
other areas.

2.2. Greene’s theorem. The rank polynomial of C, essentially, is an invariant
of M(C). Another matroid invariant that appears in numerous contexts in combina-
torics is the Tutte polynomial of M, defined as follows:

T (M ;x, y) =

n∑
u=0

k∑
v=0

Uv
u(x− 1)k−v(y − 1)u−v,

where k = dimC is the rank of M . The following theorem relates A(x, y) and
T (M ;x, y).

Theorem 2.2 (see [8]).

A(x, y) = yn−k(x− y)kT
(
M ;

x+ (q − 1)y

x− y
,
x

y

)
.(2.1)
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The proof, as given in [8] and reproduced in [23], [6], first shows that a certain
polynomial related to A(x, y) is a (Tutte–Grothendieck) invariant of M , and then
invokes Brylawski’s theorem that states that every invariant is an evaluation of the
Tutte polynomial, defined completely by its values on loops and isthmuses. We shall
show that this theorem follows from Lemma 2.1.

The polynomials A(x, y) and U(x, y) are connected by the following relation.
Theorem 2.3.

A(x, y) = yn|C|U
(

x− y

y
,
1

q

)
.(2.2)

Proof. Let us count in two ways the size of the set{
(F, c)|F ⊆ E, |F | = w and c ∈ CF , 0 ≤ wt(c) ≤ w

}
.

Taking into account Lemma 2.1, we obtain

w∑
i=0

(
n− i

n− w

)
Ai =

∑
|F |=w

|CF | =
∑

|F |=w
qk−rk(G(F̄ ))(2.3)

=

k∑
u=0

qk−uUu
n−w (0 ≤ w ≤ n).(2.4)

Now let Bw =
∑w

j=0

(
n−j
n−w

)Aj . We then have

A(x, y) =

n∑
w=0

Bw(x− y)n−wyw =

n∑
w=0

k∑
u=0

qk−uUu
n−w(x− y)n−wyw(2.5)

=

n∑
α=0

k∑
u=0

qk−uUu
α(x− y)αyn−α = ynqkU

(
x− y

y
,
1

q

)
.

Note that Theorem 2.3 already relates A(x, y) to a polynomial with coefficients
Uv
u . Therefore, Theorem 2.2 should be a mere reformulation of (2.2), which it is.
Proof of Theorem 2.2. Starting with the definition of T , we obtain

yn−k(x− y)kT
(
M ;

x+ (q − 1)y

x− y
,
x

y

)

= yn−k(x− y)k
n∑

u=0

k∑
v=0

Uv
u

( qy

x− y

)k−v(x− y

y

)u−v

= ynqkU
(

x− y

y
,
1

q

)
.

Equation (2.3) together with Lemma 2.1(ii) also enables us to relate the weight
polynomial of C and the rank polynomial of C⊥, denoted U⊥(x, y).

Theorem 2.4 (see [4]).

A(x, y) = (x− y)nU⊥
(

qy

x− y
,
1

q

)
,(2.6)

U⊥(x, y) = xnydimC⊥U
(

1

xy
, y

)
.(2.7)
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The only known application of Theorem 2.2 in coding theory [8], [23], [6] is to de-
rive MacWilliams-type theorems on the relation of A and A⊥. The classical MacWilli-
ams equation has the form

A⊥(x, y) =
1

|C|A(x+ (q − 1)y, x− y).(2.8)

This was proved in [8] by using (2.1) together with the relation T (M(C);x, y) =
T (M(C⊥); y, x), which is implied by the definition of the Tutte polynomial. We have
shown that this argument is the same as one of the two proofs in the original paper
[16].

2.3. Support weight distributions. Let us also mention a generalization of
Theorem 2.2 observed in [3]. It is related to the notion of support weight distributions
of linear codes.

The support of a subset A ⊂ C is defined as suppA =
⋃

c∈A supp(c), where

supp(c) =
{
e ∈ {1, 2, . . . , n} : ce �= 0

}
.

Definition. The rth support weight distribution of a code C is the set of n numbers
Ar
i , 0 ≤ i ≤ n, where

Ar
i =

∣∣{A : A a linear subcode of C, dimA = r, | suppA| = i
}∣∣.

In particular, for r = 1 we obtain the “support distribution” of the projective
code PC. So Ai = A0

i + (q − 1)A1
i , 0 ≤ i ≤ n. The following theorem relates the

support weight distributions of C to its Tutte polynomial.
Theorem 2.5 (see [3]).

n∑
i=0

(
r∑

m=0

[r]mAm
i

)
xn−iyi = (x− y)kyn−kT

(
M,

x+ (qr − 1)y

x− y
,
x

y

)
,

where k = dimC and [r]m :=
∏m−1
j=0 (qr − qj).

The proof method of [3] parallels that of [8]. Without going into details we remark
that it is possible to give a proof of Theorem 2.5 similar to that of the previous section.
The proof is based on the following generalization of Lemma 2.4.

Lemma 2.6 (see [21]).

w∑
i=0

(
n− i

n− w

)
Ar
i =

n−k∑
v=0

[
w − v

r

]
(U⊥)vw (0 ≤ w ≤ n, 0 ≤ r ≤ k).

Another proof of Theorem 2.5 is given in [20].

3. The reliability polynomial of linear matroids.

3.1. Definitions. LetM be a linear matroid of rank k on the ground set E of size
n defined by its representation over Fq and let fi := U i

i be its number of independent
sets of size i. The (all-terminal) reliability polynomial of M , by definition, is

R(M ;x, y) :=

k∑
i=0

fix
n−iyi.(3.1)

The terminology is motivated by the special case of cographic matroids. Namely, let
G(V,E) be a connected graph and let M be a matroid whose independent sets are
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given by subsets of edges whose removal does not make G disconnected. The rank k
of M equals |E| − |V | + 1. Further, suppose that G is subjected to an edge removal
process under which each edge in E is independently left intact with probability p
and removed with probability 1 − p. Then the probability that upon completion of
this process the graph remains connected is given by R(M ; p, 1−p). If G is thought of
as a network in which each link is operational with probability p, then R(M ; p, 1− p)
gives the probability for G to be operational. Below we use the notation Rel(M,p) :=
R(M ; p, 1− p).

One of the main problems related to the reliability polynomial in the general case
is deriving bounds on Rel(M,p) in terms of other numerical parameters of M. The
aim of this section is to use results from coding theory to derive bounds on Rel(M,p).

3.2. Upper bounds. Let (A0,A1, . . . ,An) be the weight distribution of a linear
k-dimensional code C(M). The reliability Rel(M,p) is related to the weight polyno-
mial A(·, ·) of C(M), via the following inequalities.

Theorem 3.1.

Rel(M,p) ≤
n∑

w=n−k+1

pw(1− p)n−w
w∑
j=1

(
n− j

n− w

)
Aj + fkp

n−k(1− p)k,(3.2)

Rel(M,p) ≤ A(1, p)− 1 + fkp
n−k(1− p)k.(3.3)

Proof. We have

Rel(M,p)− fkp
n−k(1− p)k =

k−1∑
i=0

U i
ip
n−i(1− p)i

≤
k−1∑
i=0

pn−i(1− p)i
i∑

u=0

(qk−u − 1)Uu
i

=

n∑
w=n−k+1

pw(1− p)n−w
k∑

u=0

(qk−u − 1)Uu
n−w.

Now proceeding as in (2.3), (2.5) we see that

Cw :=

k∑
u=0

(qk−u − 1)Uu
n−w =

w∑
j=1

(
n− j

n− w

)
Aj .

Substituting this proves (3.2). To prove (3.3), we extend the summation on w on the
right-hand side of (3.2) to the range 1 ≤ w ≤ n and note that

n∑
i=1

Aix
n−iyi =

n∑
w=1

Cw(x− y)n−wyw.

Thus

n∑
w=1

pw(1− p)n−w
w∑
j=1

(
n− j

n− w

)
Aj =

n∑
i=1

Aip
i.

This completes the proof.
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In general, bounds (3.2)–(3.3) are good only for small values of p. We give one
simple example.

Example. Consider the “ladder” graph Γ from [7].

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

Its cocycle matroid M has rank 8 and can be represented over F2 by the columns
of the matrix G whose rows are (13014), (12012012), and their three right shifts by
four positions. The code C generated by G has parameters [n = 17, k = 8, d = 3] and
weight distribution A0 = 1,A3 = 8,A4 = 7,A5 = 6, . . . . Its dual code C⊥ (the cycle
code of Γ) has parameters [17], [9], [2]. We have [7] f0 = 1, f1 = 17, f2 = 134, f3 =
641, f4 = 2041, f5 = 4447, . . . . On the other hand, estimate (3.2) gives f0 = 1, f1 ≤
17, f2 ≤ 136, f3 ≤ 688, f4 ≤ 2499, f5 ≤ 7013 . . . . For small p this results in reasonably
good estimates of Rel(M,p). We note that the well-known Ball–Provan bounds give in
this case better results: f0 = 1, f1 ≤ 17, f2 ≤ 134, f3 ≤ 651, f4 ≤ 2184, f5 ≤ 5369, . . .
and hence better estimates of Rel(M,p).

An advantage of the estimate (3.2) is that the weight coefficients of any linear
code satisfy a set of Delsarte inequalities, i.e., linear inequalities of the form

n∑
u=0

(−1)j−u
(
n− u

n− j

)
qu

n−u∑
i=0

(
n− i

u

)
Ai ≥ 0 (0 ≤ j ≤ n).

This enables one to upper bound the right-hand side of (3.2) using the methods of
[1], [2]. Note that absolute bounds on the reliability Rel(M(C), p) that are obtainable
under this approach involve the minimum distance of the code C as a parameter.

Another way to bound above the right-hand side of (3.3) is by estimating evalu-
ations of A(x, y). For them, let us look at the problem of error detection in coding
theory. More specifically, given a linear code C, its probability of undetected error is

Pue(C, ε) :=

n∑
i=1

Ai

( ε

q − 1

)i
(1− ε)n−i = A

(
1− ε,

ε

q − 1

)
− (1− ε)n.

The motivation for this definition is the following scenario of information transmission.
Suppose a q-ary code C is used to send messages over the q-ary symmetric channel.
The channel is memoryless, and if a is a q-ary letter on the input, then the probability
of getting a letter b on the output is given by

P (b|a) = ε

q − 1
(1− δa,b) + (1− ε)δa,b

for some fixed ε ∈ [0, (q−1)/q]. Suppose that at the receiving end the code is used for
error detection. Namely, the received vector y is tested for containment in C, and, if
the test fails, the decoder “detects an error.” The probability that the error will be
missed (not detected) is then given by Pue(C, ε).

Therefore, we can formulate the following proposition.
Proposition 3.2.

Rel(M,p) ≤ (1 + p(q − 1))nPue

(
C(M),

p(q − 1)

1 + p(q − 1)

)
+ fkp

n−k(1− p)k.(3.4)
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Proof. By Theorem 3.1 we have

Pue(C(M), ε) = (1− ε)n
n∑
i=1

Aip
i ≥ (1− ε)n[Rel(M,p)− fkp

n−k(1− p)k],

where p = ε/(q − 1)(1− ε).

In the context of information transmission one assumes that ε ∈ [0, (q − 1)/q]
since for greater ε the probability of undetected error is usually close to 0. Then p
varies in the entire segment [0, 1]; so inequality (3.4) covers all the interval of values
of p.

Among the problems that present interest in coding theory are the behavior of
Pue(C, p) for a given code (for instance, the question whether Pue(C, p) is monotone
in p, and, if not, what is the number of its maxima), and absolute bounds on Pue.
More specifically, let

Pue(n,R, p) = min
C∈Fn

q ,|C|=qnR
Pue(C, p)

be the smallest possible probability of undetected error over linear codes of fixed length
n and size qnR. A number of lower and upper bounds on Pue(n,R, p) are known in
the literature; see [12]. Together with Proposition 3.2 and the obvious Uk

k ≤ (nk) this
enables us to formulate bounds on the reliability polynomial. For simplicity let us
put q = 2. Let

Rel(n, k, p) = min
M is a linear matroid on E

|E|=n,rkE=k

Rel(M,p).

Proposition 3.3.

Rel(n, k, p) ≤ 2k−n((1 + p)n − 1) +

(
n

k

)
pn−k(1− p)k,(3.5)

(3.6) Rel(n, k, p) ≤ (1 + p)n
(
2k − 1

2n − 1

[
(pu + (1 + p)u)n

(1 + p)nu
− (1 + p)−un

]) 1
u

+

(
n

k

)
pn−k(1− p)k (0 < u ≤ 1).

Proof. The proof follows upon substituting in (3.4) known bounds on Pue, those
of [13] and [14], respectively.

Note that (3.5) is the special case of (3.6) for u = 1. Although the quantity
A(1, p) includes many more (nonnegative) terms than Rel(M,p), the estimates of the
last proposition are nontrivial for some values of the rank k and of p. To see this, let
n → ∞, k = Rn, 0 < R < 1. Let us rewrite (3.5) as follows:

Rel(n, nR, p) � 2−nmin[1−R−log2(1+p),D(R‖1−p)],
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where

D(x‖y) = x log2(x/y) + (1− x) log2(1− x)/(1− y).

Thus for large n the estimate (3.5) is nontrivial if p < 21−R−1, and roughly the same
holds true for (3.6).

Because of the connection to linear codes the problem of bounding Pue(n,R, p)
generally seems easier than that of bounding Rel(n, k, p). However, the exact asymp-
totic behavior of Pue(n,R, p) is also not known, let alone the exact value of Pue for
finite n, k.

3.3. Lower bounds. Results from coding theory can also be used to derive
lower bounds on Rel(M,p). Let us quote a result from [10].

Proposition 3.4. Let M be a binary matroid of rank k on the ground set of
size n and suppose that the distance of the code C(M) is d. Then fk ≥ 2dim(k,d),
where dim(k, d) is the minimum dimension of a binary linear code of length k and
dual distance d.

Together with known bounds on the minimal dimension of linear codes of given
length and dual distance [15] this gives lower bounds on fk and hence also on Rel(M,p)
since Rel(M,p) ≥ fkp

n−k(1− p)k.
Note that it is easy to understand the average behavior of the coefficients fi if the

code is chosen randomly with uniform probability from the ensemble of linear codes.
This amounts to a study of coranks of submatrices of a random matrix, which is a
fairly standard subject in the study of linear codes; see, e.g., [10]. A similar technique
was used in the study of the average, over the ensemble of linear codes of given length
and dimension, probability of undetected error [12, sect. 3.2].

4. The partition function of the Potts model. Let Γ = (V,E) be a finite
graph with |E(Γ)| = n edges and c(E) connected components. Consider the Potts
model of interaction for a physical system represented by Γ [5], [24]. Under this model
each vertex in V (Γ) can be in one of q possible states; an allocation of states to all
the vertices defines a state σ of the system or a coloring of V (Γ) with q colors. Two
adjacent vertices interact with nonzero energy when they have the same color; the
interaction energy is equal to a constant−J independent of the specific pair of vertices.
Thus, the Hamiltonian of a state σ, or its total energy, equals H(σ) = −J |U(σ)|, where
U(σ) is the subset of edges with both ends of the same color. The partition function
of the model is defined as Z =

∑
σ e−H(σ)/kT , where k is the Boltzmann constant

and T is the temperature. Under random interaction, the probability of finding the
system in a state σ equals exp(−H(σ)/kT )/Z.

Letting y = e−J/kT , we can rewrite Z as a rational function of y as follows:

Z(y) :=
∑
σ

y−|U(σ)|.

We intend to relate Z(y) to the cocycle code of Γ. Let q be a prime power and consider
the representation of the cycle matroid M(Γ) over the field Fq by the columns of a
matrix G. The cocycle code C(Γ) [9] is the row space of G. The length of C(Γ) equals
n; the dimension is |V | − c(E).

The main result of this section is given in the following theorem.
Theorem 4.1. Let A(x, y) be the weight polynomial of C(Γ). Then

A(1, y) = q−c(E)ynZ(y).
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Proof. We have the following chain of equalities:

Z(y) =
∑
σ

y−|U(σ)| =
∑
σ

(
1 +

1− y

y

)|U(σ)|
=
∑
σ

∑
F⊆U(σ)

(1− y)|F |y−|F |

(a)
=
∑
F⊆E

(1− y)|F |y−|F |qc(F ) =

n∑
i=0

(1− y)iy−i
∑
|F |=i

qc(F )

(b)
=

n∑
i=0

(1− y)iy−i
∑
|F |=i

q|V |−rk(G(F ))

(c)
= qc(E)

n∑
i=0

(1− y)iy−i
∑
|F |=i

|CF |

(d)
= qc(E)

n∑
j=0

(1− y)n−jy−(n−j)Bj

(e)
= qc(E)y−nA(1, y),

where c(F ) is the number of connected components in the subgraph (V, F ) formed on
the vertices of Γ by the edges in F . Here (a) follows by counting in two ways the size
of the set{

(F, σ) | F ⊆ E, connected components of (V, F ) are monochromatic
}
;

in (b) we use the fact that the cocycle rank of the graph (V, F ) equals rk(G(F )) =
|V | − c(F ); (c) follows by Lemma 2.1(i); (d) relies on (2.3); and (e) is implied by the
first equality in (2.5).

Together with Theorem 2.2 this theorem implies the relation between the Tutte
polynomial and the function Z, which is, of course, a well-known fact [11], [24, p. 64].
Therefore, although Theorem 4.1 was not explicitly stated in the literature, it can be
deduced from Greene’s theorem.

Theorem 2.3 enables us relate Z(y) to the rank polynomial of C(M) as follows:

Z(y) = q|V |U
(
1− y

y
,
1

q

)
.

This implies an interpretation of the coefficients of Z(y) in terms of the number
of subsets of E of a given size and rank, and, in particular, of the number fi of
independent subsets of size i.

Further connections between spin models and combinatorial theory of codes (the-
ory of association schemes) are covered in the survey [18].

5. Concluding remark. The results of this paper can be extended from linear
matroids to a somewhat broader class of almost affine matroids introduced in [22].
To define almost affine representability of a matroid M with the rank function ρ on
the ground set E of size n, consider an N × n matrix D with entries from a finite set
of size q. As above, for F ⊆ E let D(F ) be the submatrix of D formed by columns
with numbers in F . Let

r(F ) = logq |{number of different rows in D(F )}|.
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We say that M is almost affinely represented by D if r(F ) is integer for every F ⊆ E
and ρF = r(F ) for every F ⊆ E. A matroid is called almost affine if it allows an
almost affine representation. Linear matroids form a subset of the class of almost
affine matroids; as proved in [22], this inclusion is proper.
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