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Abstract

Let C be a code of length n over a q-ary alphabet. An n-word y is called a descendant of a set

of t codewords x1;y; xt if yiAfx1
i ;y; xt

ig for all i ¼ 1;y; n: A code is said to have the

t-identifying parent property (t-i.p.p.) if for any n-word y that is a descendant of at most t

parents it is possible to identify at least one of them.

An explicit construction is presented of t-i.p.p. codes of rate bounded away from zero, for

which identification can be accomplished with complexity polyðnÞ:
r 2003 Elsevier Inc. All rights reserved.
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1. Introduction: I.P.P. and traceability codes

Consider the set of n-words over an alphabet Q of size q: Let dða; bÞ denote the
Hamming distance and sða; bÞ ¼ n � dða; bÞ denote the number of agreements
between the vectors a and b: A subset C of Qn is called a code. Let d ¼ dðCÞ be the
distance of C; i.e., the minimum distance between distinct codewords. We write
Cðn;M; dÞ to denote a code of length n; size M; and distance d; and Cðn;MÞ if the
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value of the distance is of no importance. By R ¼ RðCÞ we denote the code rate
R ¼ ð1=nÞ logq M:

Finally, if Q forms a finite field, we use the notation C½n; k; d	 for a linear code of
length n; dimension k and distance d (occasionally omitting the distance).

For a subset X ¼ fx1;y; xtgCQn define its envelope eðXÞ by
eðXÞ ¼ fxAQn : xiAfx1

i ;y; xt
ig; i ¼ 1;y; ng:

Elements of the envelope eðXÞ will be called descendants of X: If yAeðXÞ; we will
call any of the elements of X parents of y:
The union of the envelopes of all the subsets of C of sizept is called the t-envelope

of the code

EtðCÞ ¼
[

XCC; jXjpt

eðXÞ:

The parent–descendant relation gives rise to several classes of codes that have
recently gained considerable attention in the literature.

Definition. An ðn;MÞ code C has the t-identifying parent property if for any
yAEtðCÞ;

PCðyÞ :¼
\
XCC

yAeðXÞ; jXjpt

Xa|: ð1Þ

For brevity we call such codes t-i.p.p. codes. Informally, given a t-i.p.p. code it is
possible for every vector yAEtðCÞ to identify with certainty at least one of its parents.

t-i.p.p. codes and codes for related cryptographic problems received considerable
attention in the recent years [1–8,10] (paper [10] introduced i.p.p. codes for the case
t ¼ 2), [13,14].
For qX3; existence of 2-i.p.p. codes with rate R bounded away from 0 for n-N

was proved in [10]. For the case of general t; existence of i.p.p. codes of nonzero rate
for any qXt þ 1 was first proved in [4]. These papers also provided a
characterization of 2- and 3-i.p.p. codes, respectively.
Let RqðtÞ denote the maximum asymptotically attainable rate of q-ary t-i.p.p.

codes:

RqðtÞ ¼ lim inf
n-N

max
CCQn; C is t-i:p:p:

RðCÞ:

The following results are known about RqðtÞ:

Theorem 1.1 (Barg et al. [4]). Let u ¼ Iðt=2þ 1Þ2m: Then

RqðtÞX
1

u � 1
logq

ðq � tÞ!qu

ðq � tÞ!qu � q!ðq � tÞu�t:

This result was proved by introducing ðt; uÞ hashing codes (functions) [4] and using
the probabilistic method to derive an existence bound on their number. In particular,
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for t ¼ 2 Theorem 1.1 coincides with an earlier result of Hollmann et al. [10].
Generally, we see that for t-i.p.p. codes to exist it is sufficient that tpq � 1: This is
also a necessary condition because for qpt there are only trivial identifying codes:
the maximal size of a t-i.p.p. code, tXq; is M ¼ t:
The probabilistic argument for ðt; uÞ hashing was refined in [1] resulting in the

following estimate which improves the result of Theorem 1.1 for q ¼ t þ 1 and all t

except t ¼ 2; 3:

Theorem 1.2 (Alon et al. [1]).

Rtþ1ðtÞX
1

u � 1

t!ðu � tÞu�t

uu lnðt þ 1Þ:

The procedure of finding a codeword x in an i.p.p. code C which necessarily is a
parent of a given word y; i.e., xAPCðyÞ; is called identification (or tracing traitors) [7].
It is clear that for any yAEtðCÞ; we can identify at least one of its parents by

examining all the ðM
t
Þ subsets of C of size t: For codes of large size this requires

prohibitively long computation. Therefore, the following open problem was raised
in [13]:

Given a t-i.p.p. code, traceability can be done in time OððM
t
ÞÞ: Can this be

improved, perhaps, for certain subclasses of t-i.p.p. codes?

Before stating our results, let us isolate the range of parameters where this problem
can be addressed by a straightforward application of error-correcting properties of
codes. For that note that there is a subclass of i.p.p. codes, called t-traceability codes,
for which identification can be performed more efficiently than in the general case.
For a code C and a vector yAQn let

dðy;CÞ ¼ min
xAC

dðy; xÞ:

For a vector yAQn let

SCðyÞ ¼ fcAC : dðy; cÞ ¼ dðy;CÞg
be the set of the nearest neighbors in C of y:

Definition. A t-i.p.p. code is said to have the t-traceability property if for every
yAEtðCÞ; there holds

SCðyÞCPCðyÞ; ð2Þ
i.e., if c is a nearest (in C) codevector to y then it is also one of its parents. Hence, in a
traceability code a parent of a given word yAEtðCÞ can be identified by finding a
closest codeword to y: This requires examining at most M codewords; thus,
identification for traceability codes can be performed faster than for i.p.p. codes in
general.
One simple sufficient condition for a code to possess the t-traceability property

was given in [7].
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Proposition 1.3 (Chor et al. [7]). Let C be a q-ary code with minimum code distance d;

where d4nð1� 1=t2Þ for some t40: Then C is a t-traceability code. In particular, for

any vector yAEtðCÞ there exists a vector xASCðyÞ such that sðy; xÞXn=t; any such

vector also satisfies xAPCðyÞ:

Proof. Let X ¼ fx1;y; xtgCC be a t-coalition and let yAeðXÞ: By the definition of
the envelope, for some xAX;

sðx; yÞXn=t:

On the other hand, for any codevector w outside X;

sðy;wÞp
Xt

j¼1
sðw; x jÞ ¼

Xt

j¼1
ðn � dðw; x jÞÞon=t: &

This proposition together with some known results on error-correcting codes leads
to a more accurate formulation of the above problem. Namely, it is clear that a
solution to it can be obtained if we can construct a sequence of t-traceability codes
equipped with an efficient algorithm of finding a nearest codeword to a vector yAQn

(hence, in particular, to a vector yAEtðCÞ). By Proposition 1.3 such a sequence can
be obtained from any family of error-correcting codes with large minimum distance.
A natural candidate is a family of q-ary ½N;RN; dN	 linear algebraic–geometric (AG)
codes whose relative distance d can be made arbitrarily close to one for sufficiently
large q [15]. Moreover, a polynomial-time list decoding algorithm of Guruswami and
Sudan [9] enables us to find a nearest codeword x to a given point y provided that

sðy; xÞXN
ffiffiffiffiffiffiffiffiffiffiffi
1� d

p
: Choosing d sufficiently close to 1; we obtain a sequence of

efficient t-i.p.p. codes with the traceability property.3

However, to construct codes of large size following this approach, one has to
employ codes over an alphabet of a fairly large size. Namely, recall that by the
Plotkin upper bound (see [15]) for any q-ary ðn;MÞ code with distance d its
cardinality

Mp
qd

qd � ðq � 1Þn:

Substituting d4nð1� 1=t2Þ; we see that for qot2 the denominator is a positive

integer, and therefore, the size of the code Mpqn: Thus, for qot2 it is not possible to
construct codes whose rate R remains bounded away from zero as n grows.
Therefore, the nontrivial part of the above problem can be formulated as follows:

For t2XqXt þ 1 construct a sequence of q-ary t-i.p.p. codes with rate R40 and
an identification algorithm of complexity polynomial in the code length n:

A solution to this problem is given in this paper. Moreover, the family of
codes which we present is also polynomial-time constructible, and affords a
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polynomial-time algorithm of assigning fingerprints to registered users. We will call a
code family with these properties a polynomial-complexity code family. Our main
result is given by the following theorem.

Theorem 1.4. For any qXt þ 1 and any rate

0pRo
1

t2
RqðtÞ;

there exists a polynomial-complexity family of q-ary ðn; qRnÞ t-i.p.p. code.

2. Proof: a polynomial-complexity family of t-i.p.p. codes

Now we will construct a family of q-ary codes Cðn;MÞ by concatenating a q-ary t-

i.p.p. code Vðm; qmRðVÞÞ and a Q-ary linear ½N;K ;D	 code W;Q ¼ qmRðVÞ: The
parameters of the code C are: length mN; rate RðCÞ ¼ RðVÞRðWÞ: By carefully
choosing the parameters of the constituent codes we will ensure that RðCÞXconst40
for an infinite sequence of values of the code length. The value of q is fixed,
independent of the code length. Finally, t can be any number such that t þ 1pq:
First, we recall the concatenated construction. There are two codes: the inner q-ary

ðm;MÞ code V and the outer Q-ary ½N;K 	 code W; where QpM ¼ qmRðVÞ: For the
reasons which will become clear later we take Q to be the largest even power of a

prime less than or equal to qmRðVÞ: Let us fix an arbitrary injective mapping f from

FQ to V: The code C can be viewed as a composite mapping C : ðFQÞK-ðFqÞmN

formed of the following two mappings. First, a K-vector from FQ is encoded by the

code W into a vector w in ðFQÞN : Next, every coordinate of w is ‘‘encoded’’ with the

code V; i.e., mapped by f to a vector in Fq: This results into a codeword in ðFqÞNm;

which is a word of the concatenated code C: It is convenient to have in mind a
representation of this codeword as a matrix with N columns and m rows. Clearly, C

is an ðn;QKÞ code with n ¼ mN; QKEqmNRðVÞRðWÞ and hence of rate
RERðVÞRðWÞ:
Let tpq � 1 be fixed.V is taken to be a t-i.p.p. ðm; qmRðVÞÞ code whose existence is

proved in Theorems 1.1 and 1.2. We also take W to be a Q-ary one-point AG code
with the parameters ½N;K ¼ RðWÞN;D ¼ dN	: To obtain as high rate RðCÞ as
possible, we take AG codes from asymptotically maximal curves so that their
parameters for large N attain the bound [15]

dX1� RðWÞ � ð
ffiffiffiffi
Q

p
� 1Þ�1 þ oð1Þ: ð3Þ

Let yAEtðCÞ be an n-word, which is represented as an ðm  NÞmatrix over Fq: Let

y1;y; yN denote the columns of y; where yiAEtðVÞ; i ¼ 1;y;m: A column yi can be

‘‘decoded’’ with the codeV; where by decoding we mean finding a parent of yi inV:
Our decoding algorithm of the code C is a two-stage procedure which in the initial
stage employs N parallel, independent decodings of the columns in y with the code
V; and uses the Guruswami–Sudan (GS) algorithm [9] in the second stage to find a
codeword from PCðyÞ:
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Guruswami–Sudan decoding [9]. Let W be a Q-ary Reed–Solomon or an (one-

point) AG code with the parameters ½N;RN; dN	: Then for any vector zAFN
Q the

algorithm outputs a subset (also called a list) YzCW formed of all the vectors wAW

such that the distance dðw; zÞ satisfies dðw; zÞpNð1�
ffiffiffiffiffiffiffiffiffiffiffi
1� d

p
Þ or, equivalently the

number of agreements sðw; zÞXN
ffiffiffiffiffiffiffiffiffiffiffi
1� d

p
: The size jYzj of this list is bounded above

by a polynomial function of N: The implementation complexity of the algorithm is
also polynomial in N:

Given a number TXN
ffiffiffiffiffiffiffiffiffiffiffi
1� d

p
and an input vector y; the GS algorithm can be

trivially modified to output a list YzðTÞ ¼ fwAW: sðw; zÞXTg: This can be
accomplished either by discarding from the full list codevectors that are farther away
from y than N � T or by an appropriate modification (and simplification) of the
original GS algorithm. We will call this reduced decoding procedure the reduced GS

algorithm.
Relying on t-i.p.p. codes and GS decoding, we will show that under certain

conditions, the concatenated code C admits an efficient identification algorithm
described as follows.
Identification Algorithm for the code C:

* Input: An ðmNÞ-vector y ¼ ðy1; y2;y; yNÞAEtðCÞ; where yi ¼ ðyi
1; yi

2;y; yi
mÞ for

i ¼ 1; 2;y;N:
* Inner decoding: For every i; 1pipN find a vector viAPVðyiÞ: Form a vector

z ¼ ðz1; z2;y; zNÞAF N
Q ; where zi ¼ f�1ðviÞ:

* Outer decoding: Decode z with the code W using the reduced GS algorithm
producing the list YzðN=tÞ:

* Output: Take an arbitrary vector w from the list YzðN=tÞ (we will show that the
list is not empty). Encode w with the map f as described in the beginning of this
section to obtain a vector xAC: Output x:

Proposition 2.1. Consider a code Cðn; qRnÞ constructed by concatenating a q-ary t-

i.p.p. ðm; qmRðVÞÞ code V and a Q-ary ½N;RðWÞN; dN	 code W; d41� 1=t2: The

code C is t-i.p.p., and for every yAEtðCÞ the Identification Algorithm will output a

vector xAPCðyÞ:

Proof. Let X ¼ fx1;y; xtgCC be the coalition which generated y; i.e.,

yAeðXÞ: Denote by w1;y;wt the codewords of W that correspond to x1;y; xt;
respectively.

Denote by xi;jAV the ith column of the codeword x j; 1pjpt: Then

yiAeðxi;1;y; xi;tÞ; 1pipN:

Furthermore, since V is a t-i.p.p. code, for each 1pipN there exists an

algorithm (for instance, exhaustive search) that outputs vi which is one of the

parent codewords of the column yi: Let jðiÞ be a number such that vi ¼ xi;jðiÞ: Then
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z ¼ ðw jð1Þ
1 ;y;w

jðNÞ
N Þ and hence

Xt

j¼1
sðz;w jÞXN:

Therefore there exists at least one vector ŵAfw1;y;wtg; such that

sðz; ŵÞXN=t: ð4Þ
This vector ŵ will be included in the list YzðN=tÞ produced by the outer (reduced GS)
decoding since d41� 1=t2: On the other hand, repeating the corresponding part of

the proof of Proposition 1.3 shows that for any vector wAW\fw1;y;wtg; the
number of agreements with z will be smaller than N=t and hence such vectors are not
contained YzðN=tÞ:
This proves that the Algorithm always produces a vector in PCðyÞ; and therefore

also the fact that C is t-i.p.p. &

The rate of the concatenated code C equals RðCÞ ¼ m�1 ðlogq QÞRðWÞ ¼
RðVÞRðWÞ: If the inner and outer codes are chosen as described, then it is possible
to construct a code whose rate RðCÞ is

RðCÞXðRqðtÞ � e1Þ 1� d� 1ffiffiffiffi
Q

p
� 1

� e2

� �
Xt�2RqðtÞ � e1 þ

1ffiffiffiffi
Q

p
� 1

þ e2

� �
;

where both e1 and 1ffiffiffi
Q

p
�1

tend to zero when m tends to infinity, and e2 tends to zero

when N grows. Next, given the value of RðCÞ ¼ R we choose the length m of the

inner code V sufficiently large (but fixed) so that e1 þ 1ffiffiffi
Q

p
�1

þ e2p1=2ð1
t2

RqðtÞ � RÞ:

This proves the estimate on the rate RðCÞ from Theorem 1.4.
It remains to prove the claims about the complexity of the codes C: The

construction, encoding, and decoding of the code V whose length is fixed, are of
constant complexity. Therefore, the construction and the encoding complexity of the
codes C up to a constant factor are equal to the construction (resp., encoding)
complexity of the sequence of AG codes, which is known to be polynomial (in fact, a
very recent result of Shum et al. [11] provides for them a construction algorithm of

low complexity ðN logQ NÞ3). The complexity of identification is governed by the

decoding complexity of the GS algorithm which is known to be polynomial [9]. This
concludes the proof of Theorem 1.4.

3. Tracing traitors

This section is devoted to an application of the above result to the ‘‘tracing traitors
problem’’ [7,8]. Following these papers, we give a short description of how i.p.p.
codes fit into a broader context of data distribution schemes that have to deal with
pirate decoders. A more complete description is given in the introductory part of the
paper [8].
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Informally speaking, a traitor tracing scheme ‘‘helps trace the source of leaks when
sensitive or proprietary data is made available to a large set of parties’’ [8]. More
precisely, information is distributed in an encrypted form over a public channel and
‘‘any captured pirate decoder (which decrypts with success probability which is
better than the probability of breaking the encryption scheme that is used) will
correctly identify a traitor and will protect the innocent user if up to t traitors collude
and combine their keys’’ [8].

Denote by M the number of users of the system. The information can be
decrypted using a secret key s which is transmitted over the same channel in an
encrypted form. For encryption of the vector s the vectors s1;y; sn�1 are chosen
randomly by the distributor, and the vector sn is determined by the following

condition: s ¼
Pn

i¼1 siðmod 2Þ: Then the vectors si; i ¼ 1;y; n are encrypted in an

enabling block (which is sent along with the encrypted information through the
channel) in such a way that registered users can access them using their personal keys

k j; j ¼ 1;y;M; where k j ¼ ðk j
1 ;y; k j

n Þ: The personal keys of the users are kept

secret and known only to the distributor. The jth user gets an access to the enabling

block and uses the ith segment k
j

i of the key k j to decipher si: Finally, the user

recovers the secret key since s ¼
Pn

i¼1 si ðmod 2Þ: It is convenient to think of this

procedure as applying decoder to the enabling block and obtaining s as a result.

A strategy of the coalition of traitors can be to produce a pirate decoder relying on
the knowledge of all their personal keys in an attempt to hide their identities. The
task of the distributor is to design these keys in such a way that as long as the size of
the coalition of traitors does not exceed a certain value t; it is always possible to
retrieve at least one member of the coalition.

Let us enumerate the segments k
j

i (for a given i) by elements of some finite

alphabet Q of size q: For every personal key k j ¼ ðk j
1 ;y; k j

n Þ we substitute a q-ary

vector c j ¼ ðc j
1 ;y; c j

n Þ; where c
j

i AQ: Denote by C the code formed by all the vectors

c j; j ¼ 1;y;M: A tracing traitor scheme is called open if the corresponding code C is
known to all the users. In order to create a working pirate decoder the coalition
should provide it with some key k ¼ k1;y; kn with no position i left blank
(otherwise the decoder cannot recover the corresponding si and hence, s). Recall that
despite the code C being public, the members of the coalition of users j1;y; jt know

only their own keys k
j

i : Therefore, every key segment ki in the pirate decoder should

be contained in the set fk
j1

i ;y; k
jt

i g: This means that the key of a pirate decoder lies
in the envelope of the secret keys of the coalition members.

Thus, to construct an open t-resilient traceability scheme it is sufficient to
construct a t-i.p.p. code over an alphabet of a suitably chosen size q: Traceability
schemes are characterized by the key length n and the length r ¼ nq of the enabling
block (and, generally, the number of decryptions performed by a user, although in
our context it always equals n). Such schemes are optimized to achieve small values
of n and r as functions of the number of users M:

The paper [8] presents two open fully t-resilient tracing traitor schemes, i.e.
schemes that enable the distributor to locate with certainty at least one traitor (and a
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few more schemes that allow for a nonzero probability of misidentification). The
approach to traitor tracing described above corresponds to the first of these two
schemes (the second scheme is a bit more complicated and does not corresponds
directly to i.p.p. codes)
The parameters of the traitor tracing scheme in [8] are obtained by an application

of the probabilistic method. In our notation they are summarized in the following
theorem.

Theorem 3.1 (Chor et al. [8]). There exists an open t-traceability scheme with n ¼
4t2 ln M and q ¼ 2t2:

Proposition 1.3 together with a relation to i.p.p. codes outlined above implies that
any code with a large minimum Hamming distance defines a traceability scheme.
Therefore, it makes sense to compare the existence result of Theorem 3.1 to the
parameters of the scheme obtained by choosing a code with minimum distance at

least nð1� 1=t2Þ whose rate attains the Gilbert–Varshamov bound. In this way we

obtain a t-traceability scheme with q ¼ 2t2 and n ¼ 2t2 ln M=ð2 ln 2� 1Þ; which is

only by a factor ð4 ln 2� 2Þ�1E1:29 inferior to Theorem 3.1.
We will use t-i.p.p. codes to present constructive alternatives to the existence

results just cited.
In coding terms the problem can be formulated as follows: given t and M construct

a q-ary t-i.p.p. code of size M so that the length n and the value r ¼ qn are as small as

possible. One obvious avenue to follow is again to take a code with a stronger
property, a t-traceability code. For instance, let us take Q-ary AG codes with relative

distance d41� 1=t2 assuming that for large length N the code parameters attain

bound (3). For Q ¼ ð2t2Þ2 we obtain

1� 1

t2
od ¼ 1� R � 1

2t2 � 1
� oð1Þ:

Omitting small terms, we obtain the following rate: R ¼ 1=ð2t2Þ; or

ln M ¼ lnðQnRÞ ¼ n

t2
ln 2t2:

Therefore, n ¼ t2 ln M=ln 2t2; and the length of the enabling block equals r ¼
4t6ðln MÞ=ðln 2t2Þ:

Proposition 3.2. There is a constructive t-traceability scheme with n ¼ t2 ln M=ln 2t2

and r ¼ 4t6 ln M=ln 2t2 and with an identification algorithm of complexity polynomial

in n:

The comparison of the parameters of this scheme with Theorem 3.1 shows that
from AG traceability codes we obtain a shorter key length but a longer enabling
block. Recall that Theorem 3.1 is only an existence result. The parameters of

constructive schemes cited in [8] are n ¼ Oðt6 ln MÞ; r ¼ Oðt8 ln MÞ; so Proposition
3.2 gives a substantial improvement of that result.
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Now let us use t-i.p.p. codes constructed in this paper to construct traceability
schemes. Let

v ¼ ðq � tÞ!qu

ðq � tÞ!qu � q!ðq � tÞu�t:

Let us take a code of length n and rate R such that R ¼ ðlogq vÞ=t2ðu � 1Þ obtained
by combining Theorems 1.1 and 1.4. We have

n ¼ ðu � 1Þt2 ln M=ln v:

Assuming that qct; after a series of simplifications, we obtain

n ¼ t2ðu � 1Þðetu=q � 1Þln M:

Choosing q ¼ t3; we get for the code length the inequality np2t2ðu � 1Þln M and

consequently, rp2t5ðu � 1Þln M: Again the parameters of this scheme are better
than constructive schemes previously known.

4. Concluding remarks

(1) Traceability codes: As discussed above, traceability codes form a subclass of
i.p.p. codes. Similarly to the problem addressed in this paper, one can ask if there

exist t-traceability codes with t2XqXt þ 1 and code rate bounded away from zero
for growing length n: This problem so far remains open.
(2) Digital fingerprinting: The technique of this paper can be employed to construct

codes for a more difficult problem, that of digital fingerprinting. Codes for digital
fingerprinting satisfy the same condition (1) as i.p.p. codes except that the envelope

eðXÞ is formed under a more relaxed rule: if x1
i ¼ x2

i ¼ ? ¼ xt
i ; then also yi takes on

the same value; however, if jfx1
i ;y; xt

igjX2; then yi can be any letter of the alphabet

Q: This problem was suggested in [6], where it was also observed that unless we allow
some probability pe of identification error, there are no binary fingerprinting codes
of rate R40: Binary fingerprinting codes with positive rate R and pe ¼ expð�OðnÞÞ
are constructed in [2]. These codes afford a polyðnÞ-time identification of a vector
from the set of parents of a given vector y: The decoding (identification) algorithm of
Barg et al. [2] also relies upon list decoding algorithms of one-point AG codes,
although some additional arguments are involved to estimate the probability pe of
identification error.
The construction [2] makes use of a more powerful version of the GS algorithm

associated with soft decision, or weighted decoding of the outer codes. Weighted
decoding is proposed in the same paper [9] as the version of list decoding (the so-
called hard decoding) employed in this paper. The difference between weighted
decoding and hard decoding in our context can be briefly explained as follows. In the
first step of our identification algorithm, for a given column i; we find an element zi

of the field FQ that corresponds to a member of the coalition X: The vector z thus

formed is then submitted to the decoding algorithm of the outer code. Note however
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that to find zi we first find a t-subset of vectors of the inner code (or of elements of
the field) that supposedly forms the coalition. This t-subset may contain more
information about the parents of y than just one element. The purpose of weighted
decoding is to make use of just this information. In other words, instead of decoding

from one vector z we attempt to decode from a subset of vectors of ðFQÞN obtained

by taking a product of the N t-subsets that correspond to the coordinates i ¼
1;y;N:
While in the problem of digital fingerprinting the use of weighted decoding yields

an improvement in the rate and error bounds of the codes constructed, it does not
seem to improve over hard decision decoding in the problem of identification with
i.p.p. codes.
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