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Storing data in flash memory

Data is written in blocks of n cells with q charge levels available in each cell
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1
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• Reading vs. writing
• To decrease the charge in a cell, need to erase the whole block

Multistage writing procedures• Multistage writing procedures



Storing data in flash memory

Alternative: Rank modulation scheme (ISIT’08 Jiang/Mateescu/Bruck)
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Storing data in flash memory

Alternative: Rank modulation scheme (ISIT’08 Jiang/Mateescu/Bruck)
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Store information as relative values of charges of cells: 
h t k ti l i it d

23 475 6

charges can take continuous values; easier write procedure



Storing data in flash memory

Alternative: Rank modulation scheme (ISIT’08 Jiang/Mateescu/Bruck)
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Storing data in flash memory

Alternative: Rank modulation scheme (ISIT’08 Jiang/Mateescu/Bruck)
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Error process: charge leaks
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p g
σ=(4,6,1,5,2,7,3) a σ’=(6,4,1,5,2,7,3)



Rank modulation

Data protection in channels with impulse noise:

xi=γisi+ni

where γi is a gain constantγi

Transmit si=Cri, where r=(r1,r2,…,rn) is the rank vector (permutation)

Elementary errors: transpositions of adjacent symbolsElementary errors: transpositions of adjacent symbols

H. Chadwick and L. Kurz, Rank permutation group codes based
on Kendall’s correlation statistics, IEEE Trans. Inform. Theory 15,1969



Codes in permutations

Sn={permutations on n symbols} 
Code C ⊂ Sn σ=(σ(1),σ(2),…,σ(n))Code C ⊂ Sn σ (σ( ),σ( ), ,σ( ))

1234              1     2  …   n
1324            σ(1)σ(2)…σ(n)

Permutations form a group Sn:
multiplication: (1324)(2413)=(2143)
inverse: (3421)(4312)=(1234)inverse: (3421)(4312)=(1234)

Transposition: 135462 a 135264
135462 a 315462



Codes in permutations

Discrepancy measures (metrics):
Hamming distance  d(σ,τ)=#{i: σ(i)≠τ(i)}   Blake-Cohen-Deza 1979;

Tarnanen 1989;
Colbourn-Klove-Ling 2004;
Cameron

Cayley distance (min number of transpositions)
many more

Our problem: Kendall tau distance (Maurice Kendall 1930sOur problem: Kendall tau distance (Maurice Kendall, 1930s
"Advanced Statistics" Vol.1, 1946)

d(σ1,σ2)=#transpositions of adjacent symbols
d(2431 2314)=2 2431→2341→2314d(2431,2314) 2       2431→2341→2314

Coding in Sn for the Hamming distance is a well-studied problem.
Coding for the Kendall distance is newCoding for the Kendall distance is new 



Coding for the Kendall distance

Properties
• 0≤ dτ(. , .) ≤ ½ n(n-1)            d(1234,4321)=6

• Right invariance: d (σ σ )=d (σ σ σ σ) for all σ σ σ ∈S• Right invariance: dτ(σ1,σ2)=dτ(σ1σ,σ2σ)   for all σ,σ
1
,σ

2
∈Sn

• "Weight’’ of permutation w(σ)=dτ(σ,e), e=identity permutation

1 1• dτ(π,σ)=dτ(π-1,σ-1)

Rate of a code C ⊂ Sn 0≤R≤1

Capacity of rank permutation codes

where  A(n,d)=max (|C|: C⊂ Sn, dτ≥d)



Coding for the Kendall distance

• Theorem : The capacity of rank permutation codes is as follows

• Theorem :

Sphere packing bound gives M=O(n!/nt) for a code C⊂Sn of length n that 
corrects t errors

• Singleton type bound on A(n d)• Singleton-type bound on A(n,d) 

Proofs: arXiv0908.4094



Coding for the Kendall distance

Margolius '01;
• Theorem : The capacity of rank permutation codes is as follows

known

NEW
known

Louchard/Prodinger '03

• Theorem :

Sphere packing bound gives M=O(n!/nt) for a code C⊂Sn of length n

Known: t=1:  M≥½(n-1)! (Jiang/Mateescu/Bruck, ISIT 2008)
(by the Varshamov-Tenenholtz construction)(by the Varshamov Tenenholtz construction)



Tools I: Basics on Permutations

Inversion in permutation:       1<2 3 4
σ 2>1  4 3

Inversion vector of a permutation:
σ 216437598     
xσ 010120201



Tools I: Basics on Permutations

Inversion in permutation:       1<2 3 4
σ 2>1  4 3

Inversion vector of a permutation:
xσ 010120201 



Tools I: Basics on Permutations

Inversion in permutation:       1<2 3 4
σ 2>1  4 3

Inversion vector of a permutation:
xσ 010120201 

8



Tools I: Basics on Permutations

Inversion in permutation:       1<2 3 4
σ 2>1  4 3

Inversion vector of a permutation:
xσ 010120201 

98



Tools I: Basics on Permutations

Inversion in permutation:       1<2 3 4
σ 2>1  4 3

Inversion vector of a permutation:
xσ 010120201 

598



Tools I: Basics on Permutations

Inversion in permutation:       1<2 3 4
σ 2>1  4 3

Inversion vector of a permutation:
xσ 010120201 

7598



Tools I: Basics on Permutations

Inversion in permutation:       1<2 3 4
σ 2>1  4 3

Inversion vector of a permutation:
xσ 010120201 

37598



Tools I: Basics on Permutations

Inversion in permutation:       1<2 3 4
σ 2>1  4 3

Inversion vector of a permutation:
xσ 010120201
σ 216437598



Tools I: Basics on Permutations

Inversion in permutation:       1<2 3 4
σ 2>1  4 3

Inversion vector of a permutation:
σ 216437598                xσ 010120201
xσ 010120201                σ 216437598



Tools I: Basics on Permutations

Inversion in permutation:       1<2 3 4
σ 2>1  4 3

Inversion vector of a permutation:
σ 216437598
xσ 010120201

Inversion vector

(i) #{ j j i (j) (i) }xσ(i)=#{ j: j<i Æ σ(j)>σ(i) }
xσ∈ Gn , {0}×Z2 × Z3 ×…× Zn

The mapping Sn →Gn is injective

Proposition. Let I(σ) be the total number of inversions in σ. Then



Direct attempt to construct sphere packing bounds:

Let Kn(k)=|{σ⊂Sn : I(σ)=k}|            ESnKn(k)=n(n-1)/4, Var(Kn(k))≈n3/36

For 1≤k≤n K (k)=
32
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Theorem (Margolius '01; Louchard/Prodinger '03)
Kn(k)≤ exp(c1n)              if k=O(n)
Kn(k)=n!/exp(c2 n)           if k=Θ(n2)



Isometric embeddings?

1. (Sn,dτ)                    binary Hamming space of dimension n(n-1)/2

(i,j)⊂[n]x[n]            1 if (i,j) forms an inversion, 0 o/w
i<j Chadwick/Reed, 1970

2. D(σ1,σ2)=∑i=1
n|σ1(i)-σ2(i)|                 "Spearman's footrule"

½D(σ1,σ2)≤dτ(σ1,σ2)≤D(σ1,σ2)           Diaconis-Graham '77 ( 1 2) τ( 1 2) ( 1 2)



Tools II: Existence of Good Codes

1. Construct codes in the space An=Zn
n-1 that correct t additive errors

∑
n

x,y∈ C   x+e1≠ y+e2           if        |ei,j|≤ t, i=1,2

(the errors are "symmetric", i.e., the known constructions of asymmetric
ECCs do not apply )

∑
=j 1

ECCs do not apply.)

Theorem (Bose-Chowla '62): Let q be a power of a prime and 
There exist q+1 integers j0=0, j1,…, jq∈ Zm such that the sums 1

11

−
−

=
+

q
qm

t

are all different mod m.

2. Consider the space Gn=Z2 × Z3 ×…× Zn of inversion vectors. Compute
the average intersection of the transaltions of the code constructed above 
with Gn.



Coding for the Kendall distance

W t bli h th t li l f d t f d ith• We establish the exact scaling law for code rate for codes with 
Kendall distance d   (capacity of rank permutation codes)

• We prove existence of good codes (a constant factor away from the• We prove existence of good codes (a constant factor away from the
sphere packing bound) for any fixed number of Kendall errors

• Singleton-type bound for rank permutation codesg yp p


