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Storing data in flash memory

Data is written in blocks of n cells with g charge levels available in each cell

e Reading vs. writing
e To decrease the charge in a cell, need to erase the whole block
e Multistage writing procedures



Storing data in flash memory

Alternative: Rank modulation scheme (I1SIT'08 Jiang/Mateescu/Bruck)
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Store information as relative values of charges of cells:
charges can take continuous values; easier write procedure
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5=(4,6,1,5,2,7,3)



Storing data in flash memory

Alternative: Rank modulation scheme (I1SIT'08 Jiang/Mateescu/Bruck)

Error process: charge leaks
c=(4,6,1,5,2,7,3) > ¢'=(6,4,1,5,2,7,3)



Rank modulation

Data protection in channels with impulse noise:
Xi=YiSitn,
where y; is a gain constant

Transmit s;=Cr;, where r=(r,r,,...,r) is the rank vector (permutation)

Elementary errors: transpositions of adjacent symbols

H. Chadwick and L. Kurz, Rank permutation group codes based
on Kendall's correlation statistics, IEEE Trans. Inform. Theory 15,1969




Codes in permutations

S, ={permutations on n symbols}
CodeCC &, o=(c(1),6(2),...,6(n))

1234 1 2 .. n
1324 c(1)o(2)...c(n)
Permutations form a group &,

multiplication: (1324)(2413)=(2143)
inverse: (3421)(4312)=(1234)

Transposition: 135462 +— 135264
135462 +— 315462



Codes in permutations

Discrepancy measures (metrics):

Hamming distance d(oc,t)=#{i: o(i)=t(i)} Blake-Cohen-Deza 1979;
Tarnanen 1989;

Colbourn-Klove-Ling 2004;
Cameron

Cayley distance (min number of transpositions)
many more

Our problem: Kendall tau distance (Maurice Kendall, 1930s
"Advanced Statistics" Vol.1, 1946)

d(c,,0,)=FFtranspositions of adjacent symbols
d(2431,2314)=2 243123412314

Coding in G,, for the Hamming distance is a well-studied problem.
Coding for the Kendall distance is new



Coding for the Kendall distance

Properties
e 0< d(.,.) <%n(n-1) d(1234,4321)=6

e Right invariance: d (c,,0,)=d.(c,0,6,0) forallc,c ,0 €6,
e "Weight” of permutation w(c)=d_ (c,e), e=identity permutation

¢ d (n,0)=d (nt,c1)

Rate ofacode C C G, R(C) = II:]\/{ 0<R<1
mn:

Capacity of rank permutation codes

¢(d) = lim M4

n—0oo In n!

where A(n,d)=max (|C|: CC &,, d.>d)



Coding for the Kendall distance

e Theorem . The capacity of rank permutation codes is as follows

1 if d=0(n)
€d)={1—¢ ifd=060MmIT), 0<e<1
0 if d = O (n?).

e Theorem:
Let m = ((n — 2)71 —1)/(n — 3), where n — 2 is a power of a prime. There
exists a t-error-correcting rank permutation code in &, whose size satisfies

s {n!/(t(t +1)m) (¢ odd)
| nt/@@E+2)m) (¢t even).

Sphere packing bound gives M=O(n!/n") for a code CC&,, of length n that
corrects t errors

e Singleton-type bound on A(n,d)
Proofs: arXiv0908.4094



Coding for the Kendall distance

e Theorem : The capacity of rank permutation codes is as follows

Margolius '01;
1 if d=0(n) known Louchard/Prodinger '03
€d)={1—¢ ifd=060MmIT), 0<e<1 @& \EW

0 if d = O (n?). known

e Theorem:
Let m = ((n — 2)71 —1)/(n — 3), where n — 2 is a power of a prime. There
exists a t-error-correcting rank permutation code in &, whose size satisfies

s {n!/(t(t +1)m) (¢ odd)
| nt/@@E+2)m) (¢t even).

Sphere packing bound gives M=O(n!/n") for a code CC&,, of length n

Known: t=1: M>%(n-1)! (Jiang/Mateescu/Bruck, ISIT 2008)
(by the Varshamov-Tenenholtz construction)



Tools |: Basics on Permutations

Inversion in permutation: 1<2 3 4
c 2>1 43

Inversion vector of a permutation:

c 216437598
X, 010120201

(¢
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Tools |: Basics on Permutations

Inversion in permutation: 1<2 3 4
c 2>1 43

Inversion vector of a permutation:
c 216437598 X_ 010120201

(¢

X, 010120201 c 216437598

(¢



Tools |: Basics on Permutations

Inversion in permutation: 1<2 3 4
c 2>1 43
Inversion vector of a permutation:
c 216437598
X. 010120201

(¢

Inversion vector
(=7 J: i<i A 6(j)>a(i) }
X € G, = {0}xZy X Zig X...X 7
The mapping &, —G, Is injective

n

Proposition. Let I(c) be the total number of inversions in . Then

n—1

w(o) £ dr(o,e) = 1(0) = Y 20 (i)

1—1



Direct attempt to construct sphere packing bounds:

Let K,(K)={cC&,,: I(c)=K}| Eg, Kn(K)=n(n-1)/4, Var(K(k))~n3/36
n+k-2 n+k-3
For 1<k<n K,(k)= ( ’ J—( ‘> j+

K(z)= Y Kn(k)2" = ] 11__2
k=0 ]

=1

n

Kn(k) = ij{ 11 (i:zg)zkldz.

271 CE:l

Theorem (Margolius '01; Louchard/Prodinger '03)
K,(K)< exp(c,n) if k=O(n)
K. (kK)=nl/exp(c, n) if k=0(n?)



Isometric embeddings?

1.(6,,d) —— binary Hamming space of dimension n(n-1)/2

(2,7)C[n]X[N] 1 if (z,7) forms an inversion, 0 o/w
1<) Chadwick/Reed, 1970
2. D(04,0,)=2i-,"|o,()-0,(1)] "Spearman's footrule"

Y¥2D(6,,0,)<d.(c,,0,)<D(5,,0,) Diaconis-Graham '77



Tools II: Existence of Good Codes

1. Construct codes in the space A, =7Z,"!that correct t additive errors
Xye C x+ezy+e, if ) |e;l<t, i=1,2
j=1

(the errors are "symmetric", i.e., the known constructions of asymmetric
ECCs do not apply.)

qt+1 _1
qg-1

Theorem (Bose-Chowla '62): Let g be a power of a prime and m=
There exist g+1 integers |,=0, J;,..., J4€ Zy, Such that the sums

Jiy T Jis + g, (0<ip <in <o <4y <q)
are all different mod m.
2. Consider the space G,=7Z, x Z3 x...x Z,of inversion vectors. Compute

the average intersection of the transaltions of the code constructed above
with G,,.



Coding for the Kendall distance

¢ \We establish the exact scaling law for code rate for codes with
Kendall distance d (capacity of rank permutation codes)

e We prove existence of good codes (a constant factor away from the
sphere packing bound) for any fixed number of Kendall errors

e Singleton-type bound for rank permutation codes



