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1.  EARLY THEORIES OF GASES

The kinetic theory of gases originated in the ancient idea that matter consists of tiny
invisible atoms in rapid motion.  In the 17th century this idea was revived and used to explain,
among other phenomena, the properties of gases.  

The British chemist and physicist Robert Boyle (1627-1691), building on the work of
several other 17th-century scientists, showed that air is "elastic": it resists compression and
expands to fill the available space.  The mechanical pressure P exerted by a given amount of gas
at a particular temperature is inversely proportional to the volume V of its container, a relation
now known as "Boyle's Law."  

Boyle mentioned two alternative atomistic explanations for air pressure: (1) air is
composed of particles that repel each other, like coiled-up pieces of wool or springs; (2) air is
composed of whirling particles that push each other away by impacts.  The first hypothesis was
taken up by Isaac Newton, who proved mathematically that if air pressure is due to the repulsion
of neighboring particles, then the repulsive force must be inversely proportional to their
distances.  The second hypothesis, which Boyle associated with Descartes' etherial vortices,
lacked a quantitative foundation in the 17th century, though it gained qualitative support from the
common idea that heat is related to atomic motion and the observation that air pressure increases
with temperature.  
 

The Swiss mathematical physicist Daniel Bernoulli (1700-1782) formulated a
quantitative kinetic theory in his book on hydrodynamics.  He derived Boyle's law for gas
pressure by computing the force exerted on a movable piston by the impacts of n particles
moving with speed v, in a closed space of total volume V.  If V is smaller the pressure will be
greater because the particles strike the piston more frequently.  If the space occupied by the
particles themselves is small compared to the volume V, the pressure P should be inversely
proportional to V; so, as stated by Boyle's law, the product PV is constant (see Bernoulli, 1738).  

Bernoulli also showed that the pressure will be proportional to the kinetic energy of the
particles (½nmv², where m is the mass of a single particle) since the frequency of impacts is
proportional to the speed v and the force of each impact is proportional to the momentum mv. 
This, he remarked, explained the observed fact that increases of pressure arising from equal 

increases of temperature are proportional to the density, and suggested that temperature itself
could be defined in terms of the pressure of air at a standard density.   Although other scientists
had not yet accepted the concept of an absolute temperature scale, Bernoulli's theory introduced
the idea that heat or temperature could be identified with the kinetic energy of particles in an
ideal gas. 
  

Experimental work on gases around 1800 confirmed the simple relation between
pressure, volume and temperature assumed by Bernoulli.  The French chemist Joseph Gay-
Lussac (1778-1850) and others showed that pressure increases in proportion to temperature if the
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volume is held constant, or volume increases in proportion to temperature if pressure is held
constant; these relations can be summarized in the equation PV = NR(t+273), where N is
proportional to the total mass of gas present, t is the temperature in degrees Celsius (centigrade)
and R is a universal constant.  But it was not yet known whether the equation would be valid
down to temperatures so low that (t + 273) is zero, or whether all gases would condense before
that point of "absolute cold" is reached so the equation would no longer apply.  

The kinetic theory was not widely accepted in the 18th century; most scientists preferred
the Newtonian repulsion theory, which was compatible with the idea that heat is a fluid,
"caloric," rather than the energy of atomic motion.  Caloric was sometimes thought to be
composed of particles that repel each other and are attracted to the atoms of ordinary matter. 
Thus gas pressure increases with temperature because the gas acquires more of the self-repelling
caloric fluid.  Temperature itself could be defined as the density of caloric (amount of the caloric
fluid divided by volume).  

With this definition of temperature, the caloric theory could explain why compression can
increase the temperature of a gas even though no heat is added from outside (the same amount of
caloric is concentrated in a smaller volume), or expansion can decrease the temperature even
though no heat is lost (the same amount of caloric is spread over a larger volume).  But there was
one anomalous observation, whose significance was not appreciated until much later:  Gay-
Lussac found that in the free expansion of a gas (into a vacuum rather than pushing back a
piston) there is practically no change in temperature. 

The caloric theory could also explain phenomena such as the latent heat of phase
transitions (solid to liquid or liquid to gas) and the heat absorbed or released in chemical
reactions, by postulating that some caloric is "bound" to the individual atoms or compounds. The
ordinary pressure-volume relations of gases are determined by the unbound or "free" caloric that
fills the space between particles.  The kinetic theory seemed to offer no plausible account of
these phenomena, and moreover its hypothesis that the atoms move at constant speed between
collisions seemed incompatible with the generally-accepted idea that all space is filled with an
ethereal fluid. 

Finally, the caloric theory gained credibility in the early 19th century from Laplace's use
of it to calculate the speed of sound in gases, resolving a long-standing discrepancy between
theory and observation; and it was indirectly supported by the acceptance of the particle theory of
light, since light and heat were widely viewed as qualitatively identical phenomena.
  

2.  CHEMICAL ATOMIC THEORY

 An essential feature of the modern kinetic theory of gases is that the particles (atoms or
molecules) of a gas occupy a relatively small part of the total volume, and are thus able to move
most of the time in straight lines through empty space, unaffected by the presence of other
particles or by any resisting ethereal fluid.  This model is radically different from the one
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proposed at the beginning of the 19th century by the English chemist John Dalton (1766-1844),
founder of the modern chemical atomic theory.  Dalton explicitly adopted Newton's hypothesis
that gas pressure is due to short-range repulsive forces between particles, and envisioned these
particles as being surrounded by caloric atmospheres in contact with those of their neighbors. 
Moreover, particles of different elements should have different sizes, so an equal number would
occupy different amounts of space.  

Dalton also adopted a supplement to Newton's hypothesis, perhaps inspired by 18th-
century electrostatic theories: atoms of different elements do not repel each other, they may even
attract.  He used this idea to explain why air, now known to be a mixture of oxygen and nitrogen,
did not separate into its components under the influence of gravity (so that the denser oxygen
would sink to the bottom).  Self-repulsion of each kind of atom would tend to disperse each
among the others rather clustering with their own kind.  Another consequence of this idea is
Dalton's "law of partial pressures": the total pressure of a gas mixture is simply the sum of the
pressures each kind of gas would exert if it were occupying the entire space by itself.  (This law
can also be derived from kinetic theory without invoking differential forces between like and
unlike atoms.)  

When Dalton prepared his famous table of "atomic weights" he assumed the simplest
possible formula for each chemical compound.  Thus a water molecule was assumed to contain
one atom of oxygen and one of hydrogen.  If that were true, then (using modern data) since one
gram of hydrogen reacts with 8 grams of oxygen to form 9 grams of water, the atomic weight of
oxygen relative to hydrogen would be 8.

Gay-Lussac's discovery of the "Law of Combining Volumes" did not fit comfortably with
Dalton's ideas.  The Law states that in gaseous reactions the volumes of the reactants and
products are related to each other by ratios of small integers; thus for example two liters of
hydrogen combine with one liter of oxygen to form two liters of water.  The most plausible
atomistic interpretation of this Law is that the volume of each gas is proportional to the number
of particles it contains.  Then two particles of hydrogen would combine with one of oxygen to
form two particles of water.  That would imply that a "particle" of oxygen can split into two
parts, one for each of the resulting water particles; thus gases may be composed of particles each
of which is made of two or more atoms. It would also imply that the atomic weight of oxygen is
16, not 8. 

 
Dalton rejected Gay-Lussac's conclusions; while he criticized the accuracy of Gay-

Lussac's measurements, it appears that his major objection was that the results contradicted his
own theory.  As noted above, the volume of a gas cannot be proportional to the number of
Daltonian particles since they have different sizes and are in contact; worse, the idea of a
molecule composed of two oxygen atoms violates the principle that atoms of the same kind repel
each other.    

The Italian physicist Amedeo Avogadro (1776-1856) was the first to fully articulate and
explore the consequences of Gay-Lussac's results and put the chemical atomic theory into its
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modern form.  The ultimate particles with which kinetic theory deals are not atoms but
molecules, each of which may contain one or more atoms of the same or different kinds. 
"Avogadro's hypothesis" asserts that every kind of gas contains the same number of molecules in
a given volume under the same conditions.  The hypothesis, when generally adopted by chemists
after 1860, allowed the definitive calculation of atomic weights of elements if they formed
gaseous compounds.  The gaseous forms of many common elements such as hydrogen, nitrogen,
oxygen, and chlorine are composed of diatomic molecules, though others like mercury were later
found to be monatomic.  

Avogadro's hypothesis is favorable to the kinetic theory of of gases insofar as it implies
that the volume occupied by a certain number of molecules is independent of their size and
shape, which suggests they are not ordinarily in contact.  But it was not until 1859 that Maxwell
showed that the hypothesis could be derived from the kinetic theory; the earlier version of kinetic
theory we are now doing to consider is actually inconsistent with it.  That proves nothing except
perhaps that the relation between physics and chemistry in the 19th century was not as close as it
might have been.

3  NEGLECTED PIONEERS: 
HERAPATH AND WATERSTON

John Herapath (1790-1868) was an Englishman who might be called an amateur scientist
except that the distinction between amateur and professional was not very significant at the time. 
But he was definitely an outsider, a clever eccentric who never enjoyed any recognition from the
scientific community but lived to see his ideas vindicated.  

Herapath was initially interested in developing an explanation of gravity in terms of the
impacts of particles of an ethereal fluid, somewhat along the lines of the "kinetic theory of
gravity" proposed by G. S. LeSage and many others.  Herapath's version was somewhat different:
he proposed to take account of the effect on the gravific particles of the high temperatures in the
space near the Sun.  In this way he came to consider the relation between temperature and
particle velocity.

Herapath was puzzled by the old paradox of collisions between atoms: if they meet head-
on they must stop at least for an instant before rebounding.   Is the collision elastic or inelastic? 
It can't be elastic, since an atom by definition has no smaller parts and cannot change its size, so
how can it store its kinetic energy during that instant?  But if it were inelastic, both atoms would
have to stop; then what happens to their energy?   

To avoid the paradox, Herapath decided to adopt momentum instead of energy as the
fundamental measure of motion, since momentum is always conserved whether collisions are
elastic or inelastic.  Herapath simply assumed that the scalar momentum mv of a particle is a
measure of its absolute temperature and that the total momentum of a system is conserved in
collisions while individual momenta tend to be equalized.  (One consequence of this unorthodox



6

definition was that temperature of a mixture of hot and cold fluids should be somewhat lower
than one would expect using the ordinary definition of temperature.)  

Herapath arrived at the same relation between pressure, volume, and particle velocity that
Bernoulli had derived (he apparently did not know of Bernoulli's work).  But he expressed it

H Hsomewhat differently: PV is proportional to T ², since T , which he called "true temperature," is
proportional to mv rather than to mv².
(I have added the subscript "H" to avoid confusion with the absolute temperature T used
elsewhere in this chapter.)

Herapath submitted his first paper on kinetic theory to the Royal Society of London in
1820, hoping to get it published in the Philosophical Transactions.  That would have given his
views wide circulation in the international scientific community; moreover, as Herapath himself
frankly admitted, it would have enhanced his personal reputation so that he could embark on a
career of teaching and scientific research.

Humphry Davy (1778-1829), a well-known chemist, became president of the Royal
Society shortly after the submission of Herapath's paper and was mainly responsible for its fate. 
Davy had earlier supported the general idea that heat is molecular motion rather than a substance,
and thus he might have been expected to be receptive to a theory that gave this idea a precise
mathematical formulation.  But his reaction was negative, for several reasons.  The only one he
made explicit to Herapath was his reluctance to consider heat as a simple quantity that could be
completely extracted from a body by annihilating the motion of its molecules, thus implying the
existence of a lowest temperature ("absolute zero").  It is also evident that he found Herapath's
derivations difficult to follow and would have preferred a less abstract, less mathematical
approach emphasizing instead the correspondence between concepts and observations at each
step: that seems to be a persistent difference in the attitudes of chemists and physicists.  

Finally, we may conjecture that Davy had a metaphysical repugnance for the basic
assumption of kinetic theory -- that particles move through empty space with no interactions
except when they collide.  By this time Davy had adopted some of the sentiments of Romantic
nature philosophy; for example, seeing the world as an interconnected system dominated by all-
pervading forces rather than by push-pull mechanisms.

Herapath was told that his paper would not be published in the Philosophical
Transactions and he was advised to withdraw it, since according to the custom of the Royal
Society once a paper was "read" (formally presented, if only by title or abstract, at a meeting) it
became the property of the Society and could not be returned to its author.  Herapath complied
with this advice and sent his paper to an independent scientific journal, the Annals of Philosophy,
where it was published in 1821.  Later he attacked Davy and the Royal Society in a series of
letters in the Times of London.  

Denied recognition by the scientific establishment, Herapath nevertheless did have an
opportunity to present his ideas to a larger public.  The Annals of Philosophy, though now
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forgotten, was not by any means an obscure journal in the early 19th century.  Michael Faraday
and other reputable scientists published there.  It was similar in content and circulation to the
major physical science journals  Philosophical Magazine (with which it merged in 1826), the
Annalen der Physik und der Chemie, or the American Journal of Science.   So if Herapath's
theory was ignored by most scientists in the 182Os, we cannot simply blame Davy and the Roval
Society but must recognize that the theory was out of harmony with prevailing ideas about the
nature of gases and heat, and failed to convince its readers that those ideas should be revised.

Herapath later became editor of the Railway Magazine, a position that give him an
opportunity to publish his scientific work though to a limited and perhaps unappreciative
audience.  In 1836 he presented a calculation of the speed of sound, which he had completed four
years earlier.  This was in fact the first calculation of the average speed of a molecule from the
kinetic theory of gases.  (J. P. Joule, was is usually credited with this accomplishment, was
simply following Herapath's method.)  Herapath found that the speed of sound in air at 32°F
should be about 1090 feet per second, in good agreement with the experimental results available
at that time.  

In the 1840s, stimulated by the publications of Thomas Graham on gas diffusion and of
Regnault on compressibility, Herapath revised and elaborated his kinetic theory and published
the two-volume treatise Mathematical Physics (1847).  He claimed that he had calculated from
his theory in 1844 a formula for the time required for a given volume of gas to pass through a
small hole into a vacuum, and that this formula was subsequently confirmed by the experimental
results of Graham.

Herapath also claimed to have predicted in advance Regnault's result (1846) that the
pressure of very dense gases is greater than that given by Boyle's law.  This is indeed what the
model of atoms as impenetrable spheres would lead one to expect if one ignores short-range
attractive forces.  However, earlier experiments had indicated deviations in the opposite
direction, suggesting that attractive forces are more important than repulsive.  (Later kinetic
theories managed to account for the fact that attractive forces dominate at low temperatures,
repulsive at high.)

The British physicist James Prescott Joule (1818-1889), one of the founders of the law of
energy conservation, is the only scientist known to have read Herapath's Mathematical Physics
during the first few years after its publication.  Joule presented a short paper on kinetic theory,
based on Herapath's work, at scientific meetings in 1848, but very few scientists learned about it.  

Herapath lived long enough to see the kinetic theory revived by others.  In 1860, after
Maxwell's first paper was reported in a British magazine, Herapath published a letter calling
attention to his own earlier work, and thus helped to ensure that he would be remembered as one
of the pioneers of kinetic theory -- though by this time he could not be credited with the first
kinetic theory, since Daniel Bernoulli's chapter in Hydrodynamica had also been rediscovered.
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As I mentioned at the beginning of this section, Herapath's version of kinetic theory is
inconsistent with Avogadro's hypothesis, a fact that passed unnoticed in the 1820s but would
have called for revision if anyone had tried to integrate it with chemical atomic theory after 1860.

The other neglected pioneer was the Scottish scientist John James Waterston (1811-
1883); his theory was more nearly correct than Herapath's but had no influence at all because it
remained unknown until long after the modern kinetic theory had been established by Clausius
and Maxwell.  

Like Herapath, Waterston was interested in the problem of explaining gravity by impacts
of particles, and his efforts on this problem led him to develop a kinetic theory of gases. 
Waterston was employed as a Naval Instructor to the East India Company's cadets at Bombay,
India.  In 1843 he published a book that included some of his early results on the kinetic theory
of gases.  His most significant conclusion was that "equilibrium of temperature depends on
molecules, however different in size" having the same kinetic energy.  This was a special case of
what later became known as the "equipartition theorem."  There is no evidence that any physical
scientist read the book; perhaps it was overlooked because of its misleading title, Thoughts on
the Mental Functions.

Two years later Waterston submitted a long manuscript, presenting a detailed account of
the kinetic theory of gases, to the Royal Society of London.   Two members of the Society, asked
to review the paper, recommended that it should not be published -- primarily because they
disagreed with its fundamental premises.  But no one had told Waterston, still far away in India,
that once his paper had been officially "read" to the Society (i.e. presented by title or abstract, not
read word for word) it would not be returned to him; and Waterston had not retained a copy for
himself.  Thus he could not easily follow Herapath's course of publishing the original paper in an
independent journal, although he did try to call attention to his theory by circulating shorter
versions, and by mentioning it when he published papers on related subjects. 

In 1851 Waterston presented a short paper on his kinetic theory at the annual meeting of
the British Association for the Advancement of Science.  The published abstract of that paper
clearly states that in gas mixtures, the average kinetic energy of each kind of molecule is the
same; thus he established his priority for the first statement of the equipartition theorem.  He also
indicated in this abstract that Avogadro's hypothesis follows from the kinetic theory.

The German chemist and physicist August Karl Krönig (1822-1879), who published a
short paper proposing a kinetic theory of gases in 1856, was probably familiar with the published
abstract of Waterston's 1851 paper and may have been influenced by it (see Daub, 1971).

pWaterston also attempted to calculate the ratio of the two specific heats (c , at constant

v p vpressure, and c , at constant volume).  Because of a numerical mistake he obtained the value c /c
= 4/3 for a monatomic gas instead of the correct theoretical value 5/3.  Since his value was fairly
close to the observed ratios for air and other gases he didn't realize his error.  
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In 1858 Waterston published a paper arguing that Laplace's calculation of the speed of
sound from the caloric theory of adiabatic compression and expansion could be based equally
well on Waterston's own kinetic theory of gases and thus did not provide evidence for the caloric
theory of heat.

In 1891 the British physicist Lord Rayleigh, surveying the literature on acoustics for his
comprehensive treatise on that subject, came across Waterston's 1858 paper on the theory of
sound, which referred to his unpublished manuscript lying in the Royal Society Archives. 
Rayleigh was Secretary of the Royal Society at that time, and had no difficulty in retrieving the
manuscript and arranging for its belated publication in the Philosophical Transactions.  In his
introduction to the paper, Rayleigh remarked: "the history of this paper suggests that highly
speculative investigations, especially by an unknown author, are best brought before the world
through some other channel than a scientific society, which naturally hesitates to admit into its
printed record matter of uncertain value.  Perhaps one can go further and say that a young author
who believes himself capable of great things would usually do well to secure the favourable
recognition of the scientific world by work whose scope is limited, and whose value is easily
judged, before embarking on greater flights"  (see Waterston 1892).  

These remarks of Lord Rayleigh do not justify the original refusal of the Royal Society to
publish Waterston's brilliant paper, but they hint at one of its failures as an organization for
advancing scientific knowledge.  By rejecting work by authors without established reputations, or
theories that contradict established doctrines, a scientific society shirks one of its most important
functions.  In the case of the kinetic theory of gases, the net result of the Royal Society's refusal
to publish the works of Herapath and Waterston was to retard the progress of molecular physics
by a decade or two, this permitting the German scientists August Krönig and Rudolf Clausius to
gain the major share of credit as founders of the theory and damaging the Society's own
reputation.  

4.  REVIVAL OF THE KINETIC THEORY BY CLAUSIUS  

The "kinetic theory of heat" -- the old idea that heat is directly related to the kinetic
energy of atomic motion -- had to be given serious consideration as soon as energy conservation
and thermodynamics had been introduced in the middle of the 19th century (see Chapter 14). 
Additional evidence that gas pressure is not caused by repulsive intermolecular forces
(previously associated with the caloric fluid) came from experiments on the free expansion of
gases by J. P. Joule and William Thomson; they confirmed that (as Gay-Lussac had found
earlier) there is essentially no temperature change; more accurate measurements suggested that
long-range forces are attractive, not repulsive.   
Another reason for favoring a kinetic theory of heat was the general adoption of the wave theory
of light which -- combined with the view that heat and light are qualitatively the same
phenomenon -- suggested that heat, like light, is a form of motion rather than a substance. 
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It was still logically possible to reject the kinetic theory of heat, as did J. R. Mayer and
later Ernst Mach, by denying the need to reduce heat to any other form of energy.  This
antireductionist or positivist stance was the basis for the "energetics" movement at the end of the
19th century, but it was uncongenial to most scientists.

Having accepted the kinetic theory of heat, one still had several possible hypotheses to
choose from.  The molecular motion might be translational, rotational, or vibrational, or a
combination of all three; the molecules might be small relative to the space in which they move,
or large and thus crowded together; the motion might be similar for each molecule in the system
or differ according to a definite pattern.  Physicists still believed that an ether is needed to
transmit energy between bodies in the form of light or radiant heat; if the ether also fills the space
between molecules inside a body, it should have some effect on their motion.  The old idea that
molecules "swim" in the ether, or are suspended by it at definite equilibrium points around which
they may vibrate, was not yet dead.

Among these possibilities the kinetic theory of gases was perhaps the simplest but by no
means the most plausible.  In fact, it seemed too simple to be true.  It required that one ignore the
ether and assert that molecules move through space at constant velocity, encountering no
resistance except when they collide with each other or a boundary surface.  The first scientist
who was able to overcome the general reluctance to give serious consideration to this idea was
the German physicist Rudolf Clausius (1822-1888).  

In his first paper on kinetic theory, published in 1857, Clausius stated that he had been
thinking about molecular motion even before writing his first article on thermodynamics in 1850,
but had abstained from publishing his ideas because he wanted to establish the empirical laws of
heat without making them appear to depend on any molecular hypothesis.  Now that Krönig had
taken the lead with his 1856 paper, there was no question of priority, but the time seemed
auspicious to attempt a unified description of several phenomena from the kinetic viewpoint. 
Krönig had assumed that the molecules have only translatory motion (and, as Clausius was
perhaps too polite to point out, had not even given the correct numerical factor in the pressure
equation for that simple case).  Clausius concluded that one must also include other kinds of
molecular motion, such as rotation, and showed how one could estimate the fraction of the total
energy which is translational by using heat data.

By including rotational motion in his kinetic theory, Clausius was compromising not with
alternative theories but with empirical knowledge of gas properties.  But the result of this
compromise was damaging to the kinetic theory all the same: the ratio of translational energy to
total energy came to be 0.6315 for the common gases whose ratio of specific heats is 1.421. 
Now 0.6315, as Maxwell and others intuitively realized, is not a very nice number.  It is unlikely
(though not impossible) that a direct calculation based on a plausible molecular model would
lead to such a number.  Perhaps the best that can be said for 0.6315 is that, despite the accuracy
implied by its four significant figures, it is not too far away from 3/5, and we will see later there
is some hope of making sense out of 3/5.
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Clausius did take one step in this direction by reviving Avogadro's proposal that gaseous
molecules may contain two or more atoms of the same kind.  Some chemists had already come to
the same conclusion, but Clausius was probably the first to introduce the idea into mid-19th
century physics.

Another assumption dictated by experimental data was the extremely small size of
molecules: Clausius stipulated that "the space actually filled by the molecules of the gas must be
infinitesimal in comparison to the whole space occupied by the gas itself."  Moreover, "the
influence of the molecular forces must be infinitesimal" [Clausius 1857/1965, p. 116].  This
means not only that the forces between molecules at their average distances are negligible but
also that the short-range repulsive forces that cause molecules to rebound at collisions must act
over a very small portion of the path of the molecule.  If these conditions were not satisfied the
gas would not obey the ideal gas laws.  By this time it was well known from Regnauit's experi-
ments that real gases do not obey the ideal gas laws, but Clausius was unable in 1857 to carry out
the complex calculations needed to compute the deviations using a molecular model, so he
limited his theory to ideal gases.

While the strict mathematical deductions of his theory were thus limited to crases obeying
the laws of Boyle and Gay-Lussac - - that is, temperatures and pressures not too far from those of
the atmosphere -- Clausius did not hesitate to propose a qualitative description of molecular
motion in other states of matter.  In solids, the molecules vibrate about fixed equilibrium
positions, while their constituent atoms vibrate and rotate within the molecule.  In liquids the
molecules no longer vibrate around fixed positions but may move around, yet without
completing separating themselves from their neighbors.  In the gaseous state the molecules move
in straight lines, going beyond the reach of the attractive forces of other molecules but
occasionally undergoing elastic collisions with them.

From this qualitative picture Clausius was able to develop a theory of changes of state. 
Thus, the evaporation of a liquid can be explained by assuming that even though the average
motion of its molecules may not be sufficient to carry them beyond the range of the attractive
forces of their neighbors, "we must assume that the velocities of the several molecules deviate
within wide limits on both sides of this average value" (Clausius 1857/1965, p. 118) and
therefore a few molecules will be moving fast enough to escape from a liquid surface even at
temperatures below the boiling point.  

The phenomena of latent heat could also be explained by the kinetic theory, if one
adopted Clausius' description of the three states of aggregation:

In the passage from the solid to the liquid state the molecules do not, indeed, recede
beyond the spheres of their mutual action; but, according to the above hypothesis, they
pass from a definite and, with respect to the molecular forces, suitable [ordered] position,
to other irregular positions, in doing which the forces which tend to retain the molecules
in the former position have to be overcome.
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[Clausius 1857/1965: 121]

Whenever a body is moved against the action of a force, mechanical work must be done, and
therefore, according to the law of conservation of energy, heat must be supplied.

"In evaporation, the complete separation which takes place between the several molecules
and the remaining mass evidently again necessitates the overcoming of opposing forces."  

[Clausius 1857/1965, p. 121]

and so heat must again be provided (latent heat of vaporization).

Near the end of his 1857 paper Clausius calculated the average speeds of molecules of
oxygen, nitrogen, and hydrogen at the temperature of melting ice and found them to be 461
m/sec, 492 m/sec, and 1,844 m/sec respectively.  A Dutch meteorologist, C.H.D. Buys-Ballot,
looked at these numbers and realized a consequence that had escaped the notice of Herapath,
Joule, Waterston, and Clausius: if the molecules of gases really move that fast, the mixing of
gases by diffusion should be much more rapid than we observe it to be.  For example, if you
release an odorous gas like ammonia or hydrogen sulfide at one end of a room it may take a
minute or so before it is noticed at the other end; yet according to the kinetic theory all the
molecules should have traversed the length of the room several times by then.

Buys-Ballot apparently thought he had refuted the new theory by pointing out an obvious
contradiction between its predictions and the real world.   To meet this objection, Clausius had to
make an important change in the theory.  Abandoning his earlier postulate that the gas molecules
have infinitesimal size, he now assumed that they have a large enough diameter or "sphere of
action" so that a molecule cannot move very far without hitting another one.

Clausius now defined a new parameter: the mean free path (L) of a gas molecule, to be
computed as the average distance a molecule may travel before interacting with another
molecule.  He argued that L may be large enough compared with molecular diameters so that the
basic concepts of kinetic theory used in deriving the ideal gas law are unimpaired, yet small
enough so that a molecule must change its direction many times every second, and may take a
fairly long time to escape from a given macroscopic region of space.  In this way the slowness of
ordinary gas diffusion, compared with molecular speeds, could be explained.

The mean free path is inversely proportional to the probability that a molecule will collide
with another molecule as it moves through the gas.  For spheres of diameter d this probability is
proportional to the collision cross section (Bd²) and to the number of molecules per unit volume
(N/V).  Thus the mean free path is determined by the formula

L = k V/Nd²

where k is a numerical constant of order of magnitude 1 (its precise value was a matter of dispute
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for some time).

When Clausius introduced the mean free path in 1858 it may have looked like only an ad
hoc hypothesis invented to save the theory, since he did not have any independent method for
estimating the parameters N and d in the above formula.  But before anyone had a chance to
criticize it on those grounds, Maxwell incorporated the mean free path into his own kinetic
theory and showed that it could be related to gas properties such as viscosity (see next section). 
As a result it soon became a valuable concept, not only for interpreting experimental data, but
also for determining the size of molecules and thus justifying its own existence.

5.   MAXWELL'S TRANSPORT THEORY AND THE SIZE OF ATOMS

The kinetic theory of Clausius was quickly taken up and developed into a powerful
mathematical research instrument by the Scottish physicist James Clerk Maxwell (1831-1879).  

Clausius had used probability concepts in his derivation of the mean-free-path formula,
but it was Maxwell who converted the kinetic theory of gases into a fully statistical doctrine.  

Clausius and earlier kinetic theorists had assumed that all molecules in a a homogeneous
gas at a given temperature have the same speed, but Maxwell asserted that the collisions among
molecules will instead produce a statistical distribution of speeds.  To describe this distribution
he borrowed a mathematical formula from the social sciences.  The crucial step was his trans-
lation of the "normal distribution law" or "law of errors," discovered by Adrain and Gauss and
extensively applied by Quetelet, into a distribution law for molecular velocities.  Maxwell's
velocity distribution law, and its extension by Boltzmann to include the effects of forces, will be
discussed in Chapter 15.2.  Here we need note only that according to Maxwell's law, the average
speed is proportional to %T as in earlier kinetic theories, but a gas at a high temperature contains
molecules moving at all speeds, including very low speeds, and a gas at a low temperature also
contains (in different proportions) molecules moving at very high speeds.      

Maxwell greatly extended the scope of the kinetic theory by showing how it could be
used to calculate not only the thermal and mechanical properties of gases in equilibrium, but also
their "transport properties": diffusion, viscosity, and heat conduction.  
In his first paper, published in 1860, he used the Clausius mean-free-path idea to obtain
unexpected results for the viscosity of a gas; and he analyzed the collisions of systems of
spherical or nonspherical bodies, attempting to find a theoretical model that could account for the
observed ratios of specific heats of gases.  

Maxwell calculated the viscosity of a gas by estimating on the mutual friction of
neighbouring layers of gas moving at different speeds.  One might expect, on the basis of
experience with liquids, that a fluid will have higher viscosity (will flow less freely) at lower
temperatures, and that a denser fluid will be more viscous than a rarer fluid, since in both cases
the motion will be more strongly obstructed by intermolecular forces.  Maxwell showed that if
the kinetic theory of gases is correct, both expectations will be wrong, because the mechanism
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that produces viscosity is different.  In a gas, viscous force originates not in the forces between
neighboring molecules but in the transfer of momentum that occurs when a molecule from a
faster-moving stream wanders over to a slower-moving stream and collides with a molecule
there.  The rate of momentum transfer increases with the average molecular speed, so (1) the
viscosity increases with temperature.  

The momentum transferred by each collision is also proportional to the difference in each
speeds of the two layers, and if we assume that this difference is simply proportional to the
distance between the layers (linear velocity gradient) then it is proportional to the mean free path
between collisions.  The rate of collisions is proportional to the density, but the mean free path is
inversely proportional to the density according to Clausius' formula (see above), hence the
density term cancels out and (2) the viscosity is independent of density.  It is, like the mean free
path, inversely proportional to the molecular diameter.

At that time the only experimental data on gas viscosity appeared to indicate that it
increases with density.  Maxwell therefore expected, when he published his theoretical
calculation in 1859, that it would lead to a refutation of the kinetic theory.

Maxwell also obtained disappointing results from his analysis of the distribution of
energy in systems of colliding nonspherical particles.  In such systems he found that a
generalized equipartition theorem should apply: the average kinetic energy of translational
motion of the particles should be equal to the average kinetic energy of rotation around each of
the three principal axes of the particle.  This led to a ratio of specific heats equal to 4/3, clearly
different from the observed value of about 1.4 for common gases.  Hence, he concluded, "a
system of such particles could not possibly satisfy the known relation between the two specific
heats of all gases"  (Maxwell 1860, p. 318).     

According to the kinetic theory, assuming equipartition of energy, the ratio of specific

p vheats should be c /c  = (2+n)/n, where n is the number of mechanical "degrees of freedom."  Thus
a point-mass has 3 degrees of freedom because it can move in any of the 3 spatial dimensions, so
its specific heat ratio should be 5/3; the ratios for monatomic gases such as mercury and argon
actually have this value.  A nonspherical body, or a diatomic molecule composed of two point-
masses bound together by conservative forces, has an additional 3 degrees of freedom, so its ratio
should be 4/3, whereas diatomic molecules such as hydrogen and oxygen have the ratio 1.4 or
1.41.  

Boltzmann later suggested that a diatomic molecule may really have only 5 effective
degrees of freedom because rotation around the axis of symmetry (the line joining the two atoms)
is not changed by collisions between molecules and therefore does not contribute to the specific
heat.  This would make the ratio 1.4.  Maxwell did not accept this hypothesis and continued to
regard the problem as unsolved; fortunately the refutation of his initial predictions about specific
heats and viscosity did not discourage him from pursuing the kinetic theory.  (The specific heat
problem was not satisfactorily resolved until the 20th century, when it was found to be a quantum
effect.)
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Maxwell himself initiated the experimental test of his predictions for the effect of
temperature and density on viscosity.  He found that the viscosity coefficient of air is indeed
constant over a wide range of densities, contrary to the alleged experimental facts mentioned
above.  Later it was pointed out by 0. E. Meyer and others that the analysis of the pendulum data
had been based on the assumption -- natural enough before Maxwell's theory was known -- that
the viscosity coefficient does go smoothly to zero as the density goes to zero.  While it is true that
its value must be zero at zero density (if there is no gas left, it can't exert any viscous resistance
to the swing of the pendulum), the drop occurs quite suddenly at a density lower than that
reached in most experiments before 1850.

Crudely speaking, the theory refuted the experiment in this case.  One might argue that it
was not the experiment itself but only its interpretation that was refuted.  But in ordinary
scientific discourse the term "experimental fact" is commonly applied to data inferred from ex-
periments with the help of some kind of interpretation or theoretical assumption.  As Einstein
observed (quoted by Heisenberg 1971, p. 63), our theories determine what we observe; hence
experiments can never furnish a completely impartial test of a theory.

The investigation of the temperature dependence of viscosity did not yield such a clear-
cut result.  According to the original "billiard ball" model (elastic spheres with no forces except
at contact) the viscosity coefficient : ought to be proportional to the square root of the absolute
temperature.  But Maxwell and others found a stronger temperature variation, : % T , where xx

ranges from about .75 to 1.O.

At about the same time (early 1860s) Maxwell developed a much better formulation of
transport theory, which avoided the mean-free-path approximation.  All the results of the new
theory depended on the velocity  distribution function for a gas not in thermal equilibrium -- a
function that Maxwell was unable to determine -- except in the special case of repulsive forces
inversely proportional to the 5th power of the distance between two particles.  For this case the
velocity-distribution function did not have to be known, and Maxwell found that the viscosity
coefficient is directly proportional to the absolute temperature, : % T.  Maxwell's own
experimental results agreed with this, and so he concluded by 1866 that the kinetic theory gave
completely accurate predictions for gas viscosity. The viscosity coefficient is still independent
of density for the inverse 5th-power force law, as long as the density is not so high or so low that
the gas properties do not depend mainly on binary collisions of particles; at very low densities
interactions with the surface of the container dominate the flow behavior, whereas at very high
densities simultaneous interactions of three or more particles must be taken into account.

A few years later, the Austrian physicist Ludwig Boltzmann (1844-1906) developed a
different version of transport theory, equivalent to Maxwell's theory insofar as it leads to the
same formulas for the coefficients of diffusion, viscosity and heat conduction, but more
convenient for some other applications.  Rather than trying to eliminate the non-equilibrium
velocity distribution function by choosing a special form of the force law, Boltzmann used that
function as the primary object of study.  We will write it f(x,v,t) to indicate that it depends not
only on the molecular velocity (v) but also on spatial position (x) and time (t).  Boltzmann
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computed the change in f(x,v,t) resulting from all relevant physical parameters, including
especially the collisions that changed the numbers of particles having specified velocities.  The
result, published in 1872, was an integrodifferential equation for f(x,v,t), now called
"Boltzmann's transport equation" or simply "the Boltzmann equation."  It plays a major role in
20th century kinetic theory, including theories of ionized gases (plasma physics) and in
calculations of neutron flow in nuclear reactors.  

In the 1910s, the Swedish physicist David Enskog (1884-1947) developed a general
solution of Boltzmann's transport equation, while the British geophysicist Sydney Chapman
(1880-1970) worked out an equivalent general solution for Maxwell's transport equations. 
Enskog and Chapman could then derive formulae for the transport coefficients for a wide variety
of force laws; they also uncovered a new transport process, "thermal diffusion," predicted by
kinetic theory and later used as one of the processes for separating isotopes in the development of
the atomic bomb.  The experimentally-determined temperature dependence of transport
coefficients can now be used to draw conclusions about which law most nearly represents the
actual force between atoms.  

But in the 1860s, when the mere existence of an atomic structure of matter was no more
than a plausible hypothesis, Maxwell's theory was used to accomplish a major advance: the first
reliable estimate of the size of an atom.  For this purpose the earlier result relating : to the
particle diameter d was most useful:

: % L % V/Nd²

(L = Clausius' mean free path, N = number of molecules in volume V.)  Josef Loschmidt (1821-
1895), an Austrian physicist and chemist, pointed out in 1865 that this relation could be used to
determine d if one other equation for N and d were known.  In particular, he suggested that the
volume occupied by the gas molecules themselves, if they were closely packed, should be
approximately the volume of the substance condensed to the liquid state,

liqV  . Nd .3

If the density of a substance is known in both the liquid and gaseous states, the ratio or

liq"condensation coefficient" V/V  = V/Nd  could be combined with the mean free path (L .3

V/Nd²) to obtain a value for d.

In this way Loschmidt concluded that the diameter of an "air molecule" is about d . 10-7

cm.  This value is about four times too large according to modern data, but considerably better
than any other well-founded estimate available at the time.

The corresponding value of the number of molecules in a cubic centimeter of an ideal gas
at standard conditions (O°C, 1 atm pressure) would be

LN  . 2 x 10 .18
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Although Loschmidt himself did not give this result explicitly in his 1865 paper, it can easily be
deduced from his formula, and so this number is now sometimes called "Loschmidt's number." 
Its modern value is 2.687 x 10 .  It should not be confused with the related constant,19

"Avogadro's number," defined as the number of molecules per gram-mole, equal to

A L 0 23N  = N /V   =   6.02 x 10 ,

0where (V  = 22420.7 cm  atm mole .  Avogadro himself did not give any estimate of this3 -1

number, but only postulated that it should have the same value for all gases.

During the next few years, other scientists (the most influential being William Thomson,
Lord Kelvin) made similar estimates of atomic sizes and other parameters with the help of the
kinetic theory of gases.  As a result, the atom came to be regarded as no longer a merely
hypothetical concept but a real physical entity, subject to quantitative measurement, even though
it could not be "seen."  This was one of the most important contributions of the kinetic theory to
19th-century science; yet it was carelessly brushed aside by skeptics like Ernst Mach and
Wilhelm Ostwald, who argued at the end of the century that we still have no convincing evidence
for the existence of the atom and should therefore banish it from the elite company of established
physical theories (Chapters 16.3, 16.5).

6.   THE VAN DER WAALS EQUATION AND
THE CRITICAL POINT

Most of the quantitative results of the kinetic theory mentioned so far are valid only for
gases that are approximately "ideal" -- that is, the density is low enough so that the size of each
molecule is small compared with the space between molecules.  In this case the laws of Boyle
and Gay-Lussac, usually combined in the "ideal gas equation of state" PV = RT, will be valid. 
Moreover, in deriving the Maxwell-Boltzmann transport equations and the formula for transport
coefficients, one needs to include only binary collisions.

Daniel Bernoulli (1738) did realize that modifications to the ideal gas law would be
expected if the space occupied by the particles themselves is not infinitesimally small compared
to the total volume in which the gas is contained.  But it was not until 1873 that the Dutch
physicist Johannes Diderik van der Waals (1837-1923) accurately estimated the theoretical
correction involved, and showed how, by including as well an estimate of the effects of long-
range attractive forces, one could account for some of the peculiar properties of gases at high
densities.

Van der Waals argued that when the molecules occupy a finite space, the volume V in the
equation of state should be replaced by V - b, where b is a small multipled of the space occupied
by spheres of diameter d.  

Interatomic attractive forces had previously been postulated by Laplace and others to
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explain capillarity and surface tension in liquids, but before 1850 it was assumed that such forces
were effective primarily at short distances; it was thought that in gases there must be long-range
repulsive forces (associated with the caloric fluid) to account for the resistance of the gas to the
external pressure.  In the van der Waals theory, the attractive forces were supposed to dominate
at large distances between molecules, whereas repulsive forces were effective only at distances
where the atoms are nearly in contact.  Van der Waals did not specify a particular form for this
force law, but argued that the net effect of the attraction would be to increase the external
pressure in the equation of state by an amount inversely proportional to the square of the density
(i.e., inversely as the square of the volume).

Combining these two corrections, van der Waals arrived at the equation of state

[P + (a/V²)](V - b) = RT,

where a and b are constants characteristic of each gas.

The most interesting feature of the van der Waals equation is not its ability to fit small
deviations from the ideal gas law, but the fact that it gives a remarkably good qualitative
description of the behavior of the system near the gas-liquid critical point.  The critical point had
been discovered in 1822 by a French scientist, Cagniard de la Tour.  He found that when liquid
alcohol was sealed in a glass tube with its own vapor (no air present) and heated, the liquid-gas
meniscus eventually disappears.  Cagniard de la Tour and others showed that for every substance
there is a particular pressure, volume, and temperature, called the critical point, at which the

c c cdistinction between liquid and gas vanishes.  (For water, P  = 218 atm; V  = 3.2 cc/g; T  =
374'C.)  It was initially assumed that the liquid simply changes to a gas above the critical point,
but in 1863 the Irish physical chemist Thomas Andrews demonstrated that the supercritical
substance can be changed continuously into either gas or liquid by appropriate variations of
temperature and pressure.  

As the first successful explanation of phase transitions, van der Waals' theory
demonstrated the fertility of the atomistic approach and stimulated much research on liquid-gas
critical phenomena in the last quarter of the 19th century, especially in Holland.  It was a major
breakthrough to show that the same model could be used to explain two different states of matter,
for some scientists had previously attributed different properties to "gas molecules" and "liquid
molecules" (see Levelt Sengers 1979).  Even though the van der Waals theory was eventually
replaced by more sophisticated theories of the critical point in the 20th century, it played an
important role by demonstrating that qualitative changes on the macroscopic level, such as
changes from the liquid to the gaseous state, might be explained by quantitative changes on the
microscopic level.
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1.7  MAXWELL AND BOLTZMANN ON 
IRREVERSIBILITY AND INDETERMINISM

Having provided a satisfactory molecular interpretation of the First Law of
Thermodynamics, kinetic theorists soon turned their attention to the Second.  As formulated by
Clausius, the Second Law of Thermodynamics implied that useful mechanical work cannot be
obtained from heat except when heat flows from a high temperature to a low temperature in the
special way described by Sadi Carnot; that heat spontaneously flows from hot to cold but not the
reverse; and that a mysterious quantity called "entropy" tends to increase to a maximum.  For the
universe as a whole this state of maximum entropy was called by Clausius the "Heat Death": all
energy is uniformly diffused throughout space at a low temperature, so that no mechanical work
can be done and life cannot exist.  

Along with puzzling about the meaning of entropy, some physicists also wondered about
the implications of the statistical approach in kinetic theory.  It is often stated that this approach
was used only as a matter of convenience in dealing with large numbers of particles whose
precise positions and velocities at any instant are unknown, or, even if known, could not be used
in practice to calculate the gross behavior of the gas.  It appears that, up until the time of
Maxwell, 19th-century physicists always assumed that a gas is really a deterministic mechanical
system.  Thus if the superintelligence imagined by the French astronomer P. S. de Laplace (1749-
1827) were supplied with complete information about all the individual atoms at one time he
could compute their positions and motions at any other time as well as the macroscopic
properties of the gas.  This situation is to be sharply distinguished, according to the usual
accounts of the history of modern physics, from the postulate of atomic randomness or
indeterminism which was adopted only in the 1920s in connection with the development of
quantum mechanics.  Thus, part of the "scientific revolution" that occurred in the early 20th
century is supposed to have been a discontinuous change from classical determinism to quantum
indeterminism.  But, as we will see, discussions about irreversibility in connection with the
kinetic theory of gases led to doubts about determinism several decades before Heisenberg's
Principle was announced.  

Late in 1867, the same year Clausius forecast the Heat Death of the Universe, the P. G.
Tait wrote to his old friend J. C. Maxwell asking for help in explaining thermodynamics in a
textbook he was preparing.  Maxwell responded by imagining a tiny gatekeeper who could
produce violations of the Second Law.  Maxwell's "Demon," as he came to be known, is
stationed at a frictionless sliding door between two chambers, one containing a hot gas, the other
a cold one.  According to Maxwell's distribution law, the molecules of the hot gas will have
higher speeds on the average than those in the cold gas (assuming each has the same chemical
constitution), but a few molecules in the hot gas will move more slowly than the average for the
cold gas, while a few in the cold aas will travel faster than the average for the hot gas.  The
Demon identifies these exceptional molecules as they approach the door and lets them pass
through to the other side, while blocking all others.  In this way he gradually increases the
average speed of molecules in the hot gas and decreases that in the cold, thereby in effect
causing heat to flow from cold to hot.
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In addition to reversing the irreversible, Maxwell's Demon offered a new model for the
fundamental irreversible process: he translated heat flow into molecular mixing.  The ordinary
phenomenon, heat passing from a hot body to a cold one, was now seen to be equivalent (though
not always identical) to the transition from a partly ordered state (most fast molecules in one
place, most slow molecules in another place) to a less ordered state.  The concept of molecular
order and disorder was henceforth to be associated with heat flow and entropy, though Maxwell
himself didn't make the connection explicit.

Maxwell's conclusion was that the validity of the Second Law is not absolute but depends
on the nonexistence of a Demon who can sort out molecules; hence it is a statistical law
appropriate only to macroscopic phenomena.  

To call the Second Law a "statistical law" does not of course imply logically that it is
based on random events -- to the contrary.  If Maxwell's Demon could not predict the future
behavior of the molecules from the observations he makes as they approach the door, he could
not do his job effectively.  And in some of the later discussions it appeared that a relaxation of
strict molecular determinism would make complete irreversibility more rather than less likely. 
(This was indeed the effect of the Burbury-Boltzmann "molecular disorder" hypothesis
mentioned below.)  Nevertheless at a more superficial level of discourse the characterization
"statistical" conveyed the impression that an element of randomness or disorder is somehow
involved.

Boltzmann then provided a quantitative version of Maxwell's argument with the help of
his transport equation for the non-equilibrium velocity distribution function.  He showed that
collisions alwavs push f(x,v,t) toward the equilibrium Maxwell distribution.  In particular, the
quantity H = I f(x,v,t) log f(x,v,t)  always decreases with time unless f is the Maxwell
distribution, in which case H maintains a fixed minimum value.  This statement is now known as
Boltzmann's H-theorem.

For a gas in thermal equilibrium, Boltzmann's H is proportional to minus the entropy as
defined by Clausius in 1865.  While the entropy in thermodynamics is defined only for
equilibrium states, Boltzmann suggested that his H-function could be considered a generalized
entropy having a value for any state.  Then the H-theorem is equivalent to the statement that the
entropy always increases or remains constant, which is one version of the second law of
thermodynamics.  The justification for Maxwell's distribution law is then based on the assertion
of a general tendency for systems to pass irreversibly toward thermal equilibrium.

Boltzmann's Viennese colleague Josef Loschmidt pointed out in 1876 that according to
Newton's laws one should be able to return to any initial state by merely reversing the molecular
velocities.  There seems to be a fundamental contradiction between the reversibility of Newton's
laws and the irreversibility we see in nature.  This contradiction became known as the
"Reversibility Paradox"; it had already been discussed two years earlier by William Thomson, in
a paper that attracted little notice.
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Boltzmann replied by proposing that entropy is really a measure of the probability of a
state, defined macroscopically.  While each microscopic state (specified by giving all molecular
positions and velocities) can be assumed to have equal probability, macroscopic states
corresponding to "thermal equilibrium" are really collections of large numbers of microscopic
states and thus have high probability, whereas macroscopic states that deviate siqnificantly from
equilibrium consist of only a few microscopic states and have very low probability.  In a typical
irreversible process the system passes from a nonequilibrium state (for example high temperature
in one place, low in another) to an equilibrium state (uniform temperature); that is, from less
probable (lower entropy) to more probable (higher entropy).  To reverse this process it is not
sufficient to start with an equilibrium state and reverse the velocities, for that will almost
certainly lead only to another equilibrium state; one must pick one of the handful of very special
microscopic states (out of the immense number corresponding to macroscopic equilibrium)
which has evolved from a nonequilibrium state, and reverse its velocities.  Thus it is possible that
entropy may decrease, but extremely improbable.

The distinction between macro- and microstates is crucial in Boltzmann's theory.  Like
Maxwell's Demon, an observer who could deal directly with microstates would not perceive
irreversibility as an invariable property of natural phenomena.  It is only when we decide to group
together certain microstates and call them, collectively, "disordered" or "equilibrium"
macrostates, that we can talk about going from "less probable" to "more probable" states.  

This is an irreversible process in the same sense that shuffling the deck after dealing a
grand-slam hand in bridge is an irreversible process; the rules of the game single out certain
distributions of cards as "ordered" (all the same suit or all aces, kings and queens in the same
hand), and we call these "rare" distributions although in fact each of the possible distributions of
52 cards among four hands of 13 each has exactly the same probability.

If you play bridge long enough you will eventually get that grand-slam hand, not once but
several times.  The same is true with mechanical systems governed by Newton's laws, as the
French mathematician Henri Poincaré (1854-1912) showed with his recurrence theorem in 1890:
if the system has fixed total energy and is restricted to a finite volume, it will eventually return as
closely as you like to any given initial set of molecular positions and velocities.  If the entropy is
determined by these variables, then it must also return to its original value, so if it increases
during one period of time it must decrease during another.  

This apparent contradiction between the behavior of a deterministic mechanical system of
particles and the Second Law of Thermodynamics became known as the "Recurrence Paradox." 
It was used by the German mathematician Ernst Zermelo in 1896 to attack the mechanistic
worldview.  He argued that the Second Law is an absolute truth, so any theory that leads to
predictions inconsistent with it must be false.  This refutation would apply not only to the kinetic
theory of gases but to any theory based on the assumption that matter is composed of particles
moving in accordance with the laws of mechanics.

Boltzmann had previously denied the possibility of such recurrences and might have
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continued to deny their certainty by rejecting the determinism postulated in the Poincaré-Zermelo
argument.   Instead, he admitted quite frankly that recurrences are completely consistent with the
statistical viewpoint, as the card-game analogy suggests; they are fluctuations, which are almost
certain to occur if you wait long enough.  So determinism leads to the same qualitative
consequence that would be expected from a random sequence of states!  In either case the
recurrence time is so inconceivably long that our failure to observe it cannot constitute an
objection to the theory.

While Boltzmann sidestepped the issue of determinism in the debate on the recurrence
paradox, maintaining a somewhat ambiguous "statistical" viewpoint, he had to face the issue
more squarely in another debate that came to a head at almost the same time.  E. P. Culverwell in
Dublin had raised, in 1890, what might be called the "reversibility objection to the H theorem,"
not to be confused with the "reversibility paradox" discussed by William Thomson, Loschmidt,
and Boltzmann in the 1870s.  Culverwell asked how the H-theorem could possibly be valid as
long as it was based on the assumption that molecular motions and collisions are themselves
reversible, and suggested that irreversibility might enter at the molecular level, perhaps as a result
of interactions with the ether.  

The ether was always available as a hypothetical source and sink for properties of matter
and energy that didn't quite fit into the framework of Newtonian physics, although some
physicists were by this time quite suspicious of the tendency of their colleagues to resolve
theoretical difficulties this way.

Culverwell's objection was discussed at meetings of the British Association and in the
columns of Nature during the next few years.  It was S. H. Burbury in London who pointed out,
in 1894, that the proof of the H-theorem depends on the Maxwell-Boltzmann assumption that
colliding molecules are uncorrelated. While this would seem a plausible assumption to make
before the collision, one might suppose that the collision itself introduces a correlation between
the molecules that have just collided, so that the assumption would not be valid for later
collisions.  Burbury suggested that the assumption might be justified by invoking some kind of
"disturbance from without [the system], coming at haphazard" [Burbury 1894, p. 78].

Boltzmann, who participated in the British discussions of the H theorem, accepted
Burbury's conclusion that an additional assumption was needed, and called it the hypothesis of
"molecular disorder."  He argued that it could be justified by assuming that the mean free path in
a gas is large compared with the mean distance of two neighboring molecules, so that a given
molecule would rarely encounter again a specific molecule with which it had collided, and thus
become correlated (see Boltzmann 1896-1898, pp. 40-41).

"Molecular disorder" is not merely the hypothesis that states of individual molecules
occur completely at random; rather it amounts to an exclusion of special ordered states of the gas
that would lead to violations of the Second Law.  In fact such ordered states would be generated
by a random process, as Boltzmann noted in his discussion of the recurrence paradox.  
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In modern terminology, one makes a distinction between "random numbers" and
"numbers generated by a random process" -- in preparing a table of random numbers for use in
statistical studies, one rejects certain subsets, for example pages on which the frequencies of
digits depart too greatly from 10%, because they are inconveniently-nonrandom products of a
random process.  

Boltzmann recognized that the hypothesis of molecular disorder was needed to derive
irreversibility, yet at the same time he admitted that the hypothesis itself may not always be valid
in real gases, especially at high densities, and that recurrence may actually occur.

In view of Boltzmann's partial abandonment of determinism on the molecular level, we
must reconsider the view that 19th-century physicists always assumed determinism and used
statistical methods only for convenience.  

There is no doubt that some 19th-century thinkers did see determinism as the essence of
science.  Thus W. Stanley Jevons, a philosopher of science, wrote in 1877:

We may safely accept as a satisfactory scientific hypothesis the doctrine so grandly put
forth by Laplace, who asserted that a perfect knowledge of the universe, as it existed at
any given moment, would give a perfect knowledge of what was to happen thenceforth
and for ever after.  Scientific inference is impossible, unless we may regard the present as
the outcome of what is past, and the cause of what is to come.  To the view of perfect
intelligence nothing is uncertain.  
[Jevons 1877, pp. 738-39]

Hence, as Laplace himself had remarked in 1783 (see Gillispie 1972, p. 10), there is really no
such thing as "chance" in nature, regarded as a cause of events; it is merely an expression of our
own ignorance, and "probability belongs wholly to the mind" (Jevons 1877, p. 198).

But was this view really held by scientists themselves?  By the time Jevons wrote the
words quoted above, support for absolute determinism was already beginning to collapse.  In
arguing for some degree of continuity between the 19th and 20th centuries, I do not want to
overstate the case;  20th-century events (including the discovery of radioactive decay, though it
actually occurred just before 19OO) accounted for most of the impetus toward atomic
randomness, while the 19th-century background accounted for a significantly smaller amount. 
Nevertheless the discussion of randomness and irreversibility in connection with kinetic theory
and the Second Law of Thermodynamics was quite familiar to physicists in the early decades of
the 20th century.
 

The claim that 19th-century kinetic theory was based on molecular determinism must rely
heavily on the evidence of the writings of James Clerk Maxwell and Ludwig Boltzmann; though
in the absence of any explicit statements one might legitimately infer that they tacitly accepted
the view of their contemporaries.  In fact as we have already seen in the case of Boltzmann, the
situation is a little more complicated: the words were ambiguous but the equations pushed
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physical theory very definitely in the direction of indeterminism.  As in other transformations of
physical science -- the cases of Kepler, Fresnel, Planck, and Heisenberg might be adduced here --
mathematical calculation led to results that forced the acceptance of qualitatively different
concepts.

Maxwell's earliest work in kinetic theory, in particular his introduction of the velocity-
distribution law, seems to derive from the tradition of general probability theory and social
statistics (as developed by Adolphe Quetelet) rather than from the mechanistic analysis of
molecular motions.  Maxwell's law asserts that each component of the velocity of each molecule
is a random variable, which is statistically independent of every other component of the same and
every other molecule.  Only in his later papers did Maxwell attempt to justify the law by relating
it to molecular collisions, and even then he needed to assume that the velocities of two colliding
molecules are statistically independent.  On the other hand, the computation of gas properties
such as viscosity and thermal conductivity, whose comparison with experimental data provided
the essential confirmation of the theory, did involve the precise dynamical analysis of collisions
of particles with specified velocities, positions, and force laws.  Without determinism in this part
of the theory Maxwell could not have achieved his most striking successes in relating
macroscopic properties to molecular parameters.

Maxwell did not consistently maintain the assumption of determinism at the molecular
level, though he occasionally supported that position, for example, in his lecture on "Molecules"
at the British Association meeting in 1873.  Yet in the same year, in private discussions and
correspondence, he began to repudiate determinism as a philosophical doctrine.  A detailed
exposition of his views may be found in a paper titled "Does the progress of physical science
tend to give any advantage  to the opinion of necessity (or Determinism) over that of the
contingency of events and the Freedom of the Will?" presented to an informal group at
Cambridge University.  The answer was no -- based on arguments such as the existence of
singular points in the trajectory of dynamical systems, where an infinitesimal force can produce a
finite effect. (These arguments have led some contemporary scientists to list Maxwell as one of
the precursors of "chaos theory.")  The conclusion was that "the promotion of natural knowledge
may tend to remove that prejudice in favor of determinism which seems to arise from assuming
that the physical science of the future is a mere magnified image of that of the past" [Campbell &
Garnett 1882, p. 434].

By 1875 Maxwell was asserting that molecular motion is "perfectly irregular; that is to
say, that the direction and magnitude of the velocity of a molecule at a given time cannot be
expressed as depending on the present position of the molecule and the time" (Maxwell 1875a, p.
235).  He also stated that this irregularity must be present in order for the system to behave
irreversibly (Maxwell 1875b).

Two decades later, as noted above, Boltzmann seemed to have reached a similar
conclusion.  But he was not quite satisfied that his hypothesis of molecular disorder resolved the
reversibility and recurrence paradoxes; in response to further criticisms by Zermelo he proposed
a new hypothesis.  Suppose we consider the curve of H as a function of time for the entire
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universe, or for a part of the universe isolated from the rest.  A high value of H will correspond to
a low-entropy highly-ordered state, where life can exist.  If the recurrence theorem is correct then
such a state can be regarded as one of an infinite number of maxima of an oscillating curve.  If
we follow H forward in time from one of these peaks, it will decrease in accordance with the H
theorem; but it must eventually increase again to get to the next peak.  Such an epoch of
increasing H (decreasing entropy) would seem to violate the Second Law.  But, Boltzmann
suggested, if the irreversible processes in our environment and in our own bodies are "running
backwards" then our own sense of the direction of time must also be reversed.  Thus for any
conscious beings who exist during this epoch, H must decrease when measured with respect to
the time-changes of those beings, so for them the Second Law still holds.  

Although Boltzmann did not regard this proposal as any more than a speculative
hypothesis, he justified it as follows:

One has the choice of two kinds of pictures.  One can assume that the entire
universe finds itself at present in a vry improbable state.  However, one may suppose that
the eons during which this improbable state lasts, and the distance from here to Sirius, are
minute compared to the age and size of the universe.  There must then be in the universe,
which is in thermal equilibrium as a whole and therefore dead, here and there relatively
small regions of the size of our galaxy (which we call worlds), which during the relatively
short time of eons deviate significantly from thermal equilibrium.  Among these worlds
the state probability increases as often as it decreases.  For the universe as a whole the
two directions of time are indistinguishable, just as in space there is no up or down. 
However, just as at a certain place on the Earth's surface we can call "down" the direction
toward the centre of the Earth, so a living being that finds itself in such a world at a
certain period of time can define the time direction as going from less probable to more
probable states (the former will be the "past" and the latter the "future") and by virtue of
this definition he will find that this small region, isolated from the rest of the universe, is
"initially" always in an improbable state.  This viewpoint seems to me to be the only way
in which one can understand the validity of the Second Law and the Heat Death of each
individual world without invoking a unidirectional change of the entire universe from a
definite initial state to a final state.  

[Boltzmnn 1897, p. 242]

Boltzmann's hypothesis asserts that irreversibility -- the statement that "entropy increases
with time" is not a law of nature but a tautology: the direction of time is determined by the
direction of entropy increase.  (Curiously this idea had recently been advanced by Ernst Mach,
the most famous critic of Boltzmann's kinetic-atomic theories.)  Alternatively it could be seen as
foreshadowing Einstein's idea that time is not absolute but is somehow relative to the observer.  

During the 19th century the kinetic theory of gases solved some old problems, predicted
some unexpected new facts, and generated some puzzling paradoxes.  It left to 20th century
science a rich legacy of useful knowledge about molecules and gases and provocative conjectures
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about irreversibility and indeterminism.  
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