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Pulse propagation through optical fibers is studied for two different phenomena: (i) the

evolution of four-wave-mixing and (ii) the interplay between self- and cross-phase modulation

for ultra-short pulses in a polarization maintaining fiber.

For the four-wave-mixing case, we present the results of a study of the dynamical evo-

lution of multiple four-wave-mixing processes in a single-mode optical fiber with spatially and

temporally δ-correlated phase noise. A nonlinear Schrödinger equation (NLSE) with stochastic

phase fluctuations along the length of the fiber is solved using the Split-Step Fourier method.

Good agreement is obtained with previous experimental and computational results based on a

truncated-ODE model in which stochasticity was seen to play a key role in determining the nature

of the dynamics. The full NLSE allows for simulations with high frequency resolution (60 MHz)

and frequency span (16 THz) compared to the truncated ODE model (300 GHz and 2.8 THz),



thus enabling a more detailed comparison with observations. Fluctuations in the refractive index

of the fiber core are found to be a possible source for this phase noise. It is found that index fluc-

tuations as small as 1 part per billion are sufficient to explain observed features of the evolution

of the four-wave-mixing sidebands. These measurements and numerical models thus may pro-

vide a technique for estimating these refractive index fluctuations which are otherwise difficult to

measure.

For the case of self- and cross-phase modulation, the evolution of orthogonal polarizations

of asymmetric femtosecond pulses (810 nm) propagating through a birefringent single-mode op-

tical fiber (6.9 cm) is studied both experimentally (using GRENOUILLE) and numerically (using

a set of coupled NLSEs). A linear optical spectrogram representation is derived from the electric

field of the pulses and juxtaposed with the optical spectrum and optical time-trace. The simula-

tions are in good qualitative agreement with the experiments. Input temporal pulse asymmetry

is found to be the dominant cause of output spectral asymmetry. The results indicate that it is

possible to modulate short pulses both temporally and spectrally by passage through polarization

maintaining optical fibers with specified orientation and length.
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Chapter 1: Introduction

1.1 Source of Nonlinearity in an Optical Fiber

The response of any dielectric to light becomes nonlinear for intense electromagnetic fields.

Standard optical fibers are made of fused silica which is a dielectric. The total polarization P is

nonlinear in the electric field E and is given by [1-5]

The figure below was originally made using the TIKZ package.

Intersection point

P = ϵ0
(
χ(1) : E+ χ(2) : EE+ χ(3) : EEE+ . . .

)
, (1.1)

where ϵ0 is the permittivity of free-space, and χ(j) is the j -th order susceptibility of the dielectric.

The linear susceptibility χ(1) represents the dominant contribution to P and its effects are in-

cluded through the refractive index n(ω) and the attenuation coefficient α(ω). χ(2) is responsible
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for nonlinear effects such as sum-frequency generation and second harmonic generation [1, 3].

Fused silica does not manifest these effects as it is centro-symmetric [6]. Hence, the dominant

nonlinear contribution to P is due to χ(3) which results in effects such as third harmonic gener-

ation, four-wave-mixing, self- and cross-phase modulation. The cubic nonlinearity results in an

intensity dependent refractive index

122 23333

1114 14444

ñ(ω, |E|2) = n(ω) + n2|E|2, (1.2)

where n(ω) is the linear part given by the Sellmier equation which takes into account the reso-

nance frequencies (ωj) of fused silica [1, 7],

n2(ω) = 1 +
m∑
j=1

Bjω
2
j

ω2
j − ω2

(1.3)

and n2 is given by

n2 =
3

8n
Re(χ3

xxxx) (1.4)

for an optical wave assumed to be linearly polarized along one of the axes of a polarization

maintaining fiber. The tensorial nature of χ(3) needs to be considered for the case in which the

light is not polarized along one of the fiber axes.1

The following is an equation array to ensure the long equation does not go outside the

1This is my footnote. I started playing the piano when I was eight years old. This is my footnote. I started playing
the piano when I was eight years old. This is my footnote. I started playing the piano when I was eight years old.
This is my footnote. I started playing the piano when I was eight years old.
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margins.

W =
∫

d3r

[∑
s

(∫
d3v

T0s⟨h2
s⟩r

2F0s

− q2sφ
2n0s

T0s

)
+

|δB|2

8π

]

=
∫

d3r

(∑
s

∫
d3v

T0sδf
2
s

2F0s

+
|δB|2

8π

)
. (1.5)

The experimentally measured value of n2 for fused silica ranges from 2.2−3.4×10−20 m2/W,

which is small compared to most other nonlinear media by at least 2 orders of magnitude [1].

Despite this, nonlinear effects are easily observed for silica fibers for relatively low input power

levels due to the fact that the effective fiber core areas are small and the fiber losses are low. Sin-

gle mode fibers (those which propagate a single transverse mode of light for a given wavelength)

have effective fiber core diameters of the order of 5µm thus causing the light intensities within

the fiber to be large despite the smallness of the input power. The low loss in the fiber (<10

dB/km) allows one to use long fibers to observe nonlinear phenomena.

1.2 Physics of Pulse Propagation

Mathematically speaking, in the classical limit, pulse propagation in an optical fiber is

governed by Maxwell’s equations [8, 9],

∇⃗ × E⃗ = −∂B⃗

∂t

∇⃗ × H⃗ = J⃗ +
∂D⃗

∂t

∇⃗ · D⃗ = ρf

∇⃗ · B⃗ = 0, (1.6)
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where E⃗ and H⃗ are electric and magnetic field vectors, and D⃗ and B⃗ are electric and magnetic

flux densities, respectively. J⃗ is the current density and ρf is the free charge density.

This is the second equation array.

W =
∫

d3r

[∑
s

(∫
d3v

)
Ts⟨h2

s⟩r
2F0s

]
+

|δB|2

8π

=
∫

d3 (1.7)

Under the following assumptions [8] -

(a) there are no free charges (J⃗ = ρf = 0), a good approximation for an optical fiber,

(b) the medium is non-magnetic (M⃗ = 0), which an optical fiber is,

(c) the wavelength of light propagated is away from any material resonances (0.5 - 2 µm), the

results described in this thesis lie in this wavelength range, i.e., the results presented in

Chap. 2 and Chap. 3 lie in the 600-700 nm regime and the results presented in Chap. 4 lie

in the 800 nm regime,

(d) the electric-dipole approximation is valid, due to which the second-order parametric pro-

cesses such as three-wave-mixing and second harmonic generation can be neglected (in

practice they do occur because of quadrupole and magnetic-dipole effects but with a very

low efficiency),

(e) the medium only responds locally, which is a valid approximation for the projects consid-

ered herein,

(f) the nonlinear polarization P⃗NL can be taken as a perturbation to the total induced polar-

4



ization P⃗ , which is justified as the nonlinear effects are relatively weak for the results

presented in this thesis,

(g) only 3rd order nonlinear effects need to be taken into account, which is valid up to 5th

order in E since the 2nd and 4th order effects are absent due to the centrosymmetric nature

of the disordered liquidlike state of fused silica,

(h) the imaginary part of the dielectric constant ϵ(ω) is small compared to the real part (low

loss, which is a good approximation for the wavelength regimes and fiber lengths consid-

ered here),

(i) the wavelength of light is higher than the cutoff wavelength of the fiber so that the single

transverse mode condition is satisfied (or else there would be multimode propagation and

nonuniform modal dispersion would have to be taken into account),

(j) the optical fiber is polarization maintaining and the light pulse is traveling along one of

the 2 principal axes of the fiber, a very good approximation for the results of Chap. 2, and

Chap. 3, in the case of Chap. 4, this approximation is relaxed as the incident light travels

along both axes of the fiber, thus requiring a set of two coupled NLSEs for simulation, one

for each axis,

(k) the slowly varying envelope approximation is valid, i.e., ∆ω/ω0 ≪ 1 where ∆ω is the

spectral width of the pulse spectrum which is centered at ω0, this approximation is valid

for the studies considered in Chap. 2 and Chap. 4, in Chap. 3, the Raman Stokes wave is

considered as a separate slowly varying envelope from the pump wave, as the two taken

together would not satisfy this condition,

5



(l) the nonlinear response of the medium is instantaneous, an approximation valid for pulse

widths greater than ∼70 fs, which amounts to neglecting the contribution of molecular

vibrations to χ(3) (the Raman effect), which have been included in the study presented in

Chap. 4 since the pulse width was ∼ 140 fs.

The propagation of the slowly varying envelope A(z,t) of a light pulse along an optical fiber is

governed by the nonlinear partial differential equation [8] -

∂A

∂z
+ β1

∂A

∂t
+

iβ2

2

∂2A

∂t2
= iγ|A|2A, (1.8)

where vg = 1/β1 is the group velocity of the pulse, β2 is the group velocity dispersion coefficient,

and γ is the nonlinearity coefficient given by

γ =
n2ω0

cAeff

. (1.9)

Here ω0 is the central angular frequency of the pulse and Aeff , the effective core area of

the fiber.

Under transformation to a frame of reference moving at the group velocity of the pulse, the

above equation takes the form of the so-called ‘nonlinear Schrödinger equation’ (NLSE), i.e.,

∂A

∂z
+

iβ2

2

∂2A

∂τ 2
= iγ|A|2A, (1.10)

where

τ = t− z

vg
(1.11)
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is time measured in a frame of reference moving at the group velocity vg of the pulse.

1.3 Numerical Pulse Propagation

The NLSE, like most nonlinear partial differential equations, is not amenable to analytical

solution except in certain special cases where the inverse scattering transform can be used [10].

Thus a numerical approach is necessary for understanding the physics of phenomena governed

by the NLSE. The numerical methods available can be classified as finite-difference techniques

and pseudo-spectral techniques. Usually pseudo-spectral methods are an order of magnitude

faster, the most popular method being the Split-Step Fourier Method (SSFM) [8, 11, 12]. The

speed of the SSFM can be partly attributed to the use of the finite fast-Fourier transform (FFT)

algorithm [13].For an algorithmic description of the SSFM the reader is referred to Chap. 2, Sec.

2. Therein is also described an unconditionally stable scheme for including linear multiplicative

noise into the SSFM without disturbing the conservative properties of the NLSE. In the projects

described in Chap. 3, simulations were carried out using a combination of the SSFM and finite

difference schemes. The SSFM is also used to arrive at the simulated results described in Chap.

4.

1.4 Experimental Pulse Diagnostics

With the advent of frequency resolved optical gating (FROG) [14–16], it has become possi-

ble to not only measure the optical spectrum and optical time trace of a light pulse but to measure

the full electric field envelope (intensity and phase) of the light pulse. The two fields of nonlinear

fiber optics and frequency resolved optical gating (FROG) are yet to undergo cross pollination

7



to their fullest potential since the inception of FROG 10 years ago. This novel experimental

technique adds new dimensions to pulse measurement techniques, one of which is the ability

to measure how asymmetric a pulse is, i.e., measure its skewness, kurtosis and all higher or-

der moments. Asymmetric pulse propagation is a subject of interest in Chap. 4, where a highly

simplified version of FROG [17] is used to measure pulse characteristics before and after a fiber.

1.5 Group Velocity Dispersion

Group velocity dispersion [18] (GVD) involves the temporal broadening of a pulse as it

propagates through an optical fiber. From the NLSE (Eq. 1.6) one can derive length scales rele-

vant to linear dispersion (LD=T2
0/β2) and nonlinearity (LNL=1/γP0). Here T0 is the pulse width

and P0 is the peak power of the pulse. The regime in which the effects of GVD dominate and the

effects of nonlinearity are negligible is given by -

LD

LNL

=
γP0T

2
0

|β2|
≪ 1. (1.12)

In this regime, optical pulses propagate as they undergo symmetric temporal broadening

and linear chirping without any spectral broadening. The sign of the GVD parameter β2 deter-

mines the sign of the induced chirp. If the input pulse is chirped, then it may undergo some initial

pulse compression followed by temporal broadening. Unlike the second-order dispersion asso-

ciated with GVD, third-order dispersion causes asymmetric temporal broadening with leading

and trailing edges. It becomes important, when the operating wavelength is near the zero disper-

sion wavelength of the fiber (the wavelength at which β2=0). GVD starts to limit optical fiber

communication systems when consecutive pulses broaden so much that they start to overlap.
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1.6 Self-Phase Modulation

Self-phase modulation [19] (SPM) is a phenomenon that leads to spectral broadening and

modulation of optical pulses. In the absence of GVD, SPM induced spectral broadening occurs

without change in the temporal pulse shape. The spectral broadening occurs as a consequence

of an intensity dependent phase-shift. The project described in Chap. 2 has the property that

LNL < L ≪ LD, i.e., the nonlinear term representing SPM dominates. In the regime where

both SPM and GVD are non-negligible (as in Chap. 4), phenomena qualitatively different from

those described in this section and the previous section can occur. Both temporal and spectral

broadening can occur simultaneously. In the regime of femtosecond pulse propagation (as in

Chap. 4), GVD, third-order dispersion, intrapulse Raman scattering (discussed in Chap. 2) and

higher order nonlinear effects have to be taken into account. If the input pulse is asymmetric,

then SPM effects dominate over all other effects, as is observed in Chap. 3. In some cases SPM

can lead to pulse compression, and in the anomalous dispersion regime (β2 < 0), the balance

between GVD and SPM can lead to soliton formation.

1.7 Four-wave-mixing

Four-wave-mixing (FWM) [20] is a parametric process involving the interaction between

four photons at different frequencies. Two different kinds of four-wave-mixing processes are

possible -

ω4 = ω1 + ω2 + ω3 (1.13)
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ω3 + ω4 = ω1 + ω2. (1.14)

The former process results in third harmonic generation for the special case when ω1 =

ω2 = ω3. Both processes require phase matching to occur, in order to be efficient. For the latter

case, with the partial degeneracy of ω1 = ω2, it is relatively easy to satisfy the phase matching

condition of

∆k = k3 + k4 − k1 − k2 = 0. (1.15)

This process is of great interest to nonlinear dynamicists as the evolution of the FWM

process could constitute a route to chaos further down-stream in the fiber. It is also of great

interest to people working in the field of optical communication systems, as it can cause cross-talk

between neighboring channels in a wavelength division multiplexing scheme of communication.

1.8 Cross-Phase Modulation

Cross-phase modulation (XPM) [21] occurs in optical fibers when two or more optical

pulses having different central wavelengths propagate simultaneously inside a fiber, interacting

through the fiber nonlinearity which couples the two pulses nonlinearly. The evolution of the two

pulses depends on the group velocity mismatch between them by virtue of their being centered at

different wavelengths, although this is a linear phenomenon. The group velocity mismatch also

exists between light pulses traveling along orthogonal polarization axes of a fiber, and centered

around identical wavelengths, since the slow axis and fast axis of the fiber have different group

velocities. In this case, too, the two polarizations interact nonlinearly [22] through degenerate

XPM (degenerate since the central wavelengths are the same). In the case of degenerate XPM the

10



2nd order and higher dispersion parameters, and the nonlinear parameters (all of which depend

only on the wavelength), are also the same unlike in general XPM. The effects of XPM are more

pronounced when one of the pulses (the pump) has much higher power than the other (the probe).

Otherwise, the effects of self-phase modulation (SPM) tend to dominate.

1.9 Stimulated Inelastic Scattering

Other nonlinear effects (apart from those due to the cubic χ(3) nonlinearity) arise due to the

interaction between the light traveling in the fiber and the fiber medium. Interactions between the

light field and the vibrational levels of the fiber medium lead to stimulated Brillouin scattering

(SBS) and stimulated Raman scattering (SRS). SRS and SBS were among the first nonlinear

effects studied in optical fibers [23–25]. In a simple quantum mechanical picture [1] applicable

to both SRS and SBS, a photon of the incident field (called the pump) is annihilated to create a

photon at a lower frequency (belonging to the Stoke’s wave) and a phonon to conserve energy

and momentum. SBS involves an acoustic phonon whereas SRS involves an optical phonon, thus

they have qualitatively different dispersion relations. SBS has a much lower threshold power and

manifest itself through a backward propagating wave in contrast to SRS which can involve both

forward and backward traveling waves. SBS has a maximum gain at a frequency 10 GHz [26]

(down-shifted with respect to the pump) and requires a very narrow bandwidth pump to manifest

itself. SRS, in contrast, has a maximum gain at a frequency 13 THz [27] downshifted with respect

to the pump. For pulse-bandwidths larger than 13 THz, the phenomenon of Intrapulse Raman

Scattering (IRS) manifests itself, involving a self-frequency shift within the pulse from higher

frequency components to lower frequency components. Thus, SRS becomes more important for
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shorter pulses (larger bandwidth) unlike SBS which nearly ceases to occur for pulses shorter than

10 ns. In both SRS and SBS, the optical fiber plays an active role in the nonlinear process, unlike

the case of cross- and self-phase modulation, four-wave-mixing and third harmonic generation,

where the fiber plays a passive role by mediating the interaction between several optical waves.

1.10 Outline of Thesis

In Chap. 2, we present the results of a computational study of the influence of stochasticity

on the dynamical evolution of multiple four-wave-mixing processes in a single mode optical fiber

with spatially and temporally δ-correlated phase noise. A generalized nonlinear Schrödinger

equation (NLSE) with stochastic phase fluctuations along the length of the fiber is solved using

the Split-step Fourier method (SSFM). Good agreement is obtained with previous experimental

and computational results based on a truncated-ODE (Ordinary Differential Equation) model in

which stochasticity was seen to play a key role in determining the nature of the dynamics. The full

NLSE allows for simulations with high frequency resolution (60 MHz) and frequency span (16

THz) compared to the truncated ODE model (300 GHz and 2.8 THz, respectively), thus enabling a

more detailed comparison with observations. A physical basis for this hitherto phenomenological

phase noise is discussed and quantified.

In Chap. 3, we discuss the implications of spontaneous and stimulated Raman scattering on

the project discussed in Chap. 2, namely, the dynamical evolution of stochastic four-wave-mixing

processes in an optical fiber. The following question is asked - can stimulated Raman scattering

be a mechanism by which adequate multiplicative stochastic phase fluctuations are introduced

in the electric field of light undergoing four-wave-mixing as? Adequately checked numerical
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algorithms of stimulated Raman scattering (SRS), spontaneous Raman generation and intrapulse

Raman scattering (IRS) are used while exploring this issue. The algorithms are described in

detail, as also are the results of the simulations. It is found that a 50-meter length of fiber (as

used in the experiments), is too short to see the influence of Raman scattering, which is found to

eventually dominate for longer fiber lengths.

In Chap. 4, self- and cross-phase modulation (XPM) of femtosecond pulses (∼ 810 nm)

propagating through a birefringent single-mode optical fiber (∼ 6.9 cm) is studied both exper-

imentally (using GRENOUILLE - Grating Eliminated No Nonsense Observation of Ultrafast

Laser Light Electric Fields) and numerically (by solving a set of coupled nonlinear Schrödinger

equations or CNLSEs). An optical spectrogram representation is derived from the electric field

of the pulses and is linearly juxtaposed with the corresponding optical spectrum and optical time-

trace. The effects of intrapulse Raman scattering (IRS) are discussed and the question whether it

can be a cause of asymmetric tranfer of pulse energies towards longer wavelengths is explored.

The simulations are shown to be in good qualitative agreement with the experiments. Measured

input pulse asymmetry, when incorporated into the simulations, is found to be the dominant cause

of output spectral asymmetry. 2 The results indicate that it is possible to modulate short pulses

both temporally and spectrally by passage through polarization maintaining optical fibers with

specified orientation and length. The modulation technique is very direct and straightforward.

No frequency components of the broadband pulse have to be rejected as the entire spectrum

is uniformly modulated. The technique is flexible as the modulation spacing can be varied by

varying the fiber length.

2These averages are reported for 45 ‘detailed occupational codes’, which is an intermediate occupational classi-
fication (between two and three-digit codes) given by the Current Population Survey (CPS).
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Chapter 5 provides the conclusion to the thesis.

1.11 Theorems

Theorem 1.1 This is my first theorem.

1.12 Axioms

Axiom 1.1 This is my first axiom.

Axiom 1.2 This is my second axiom in chapter 1.

1.13 Tables

This is my table.

Table 1.1: Overview of test cases used in this study.

Test Quality Setpoint Manipulated
case variable (QV) for QV variables (MVs)

TE G/H ratio 1.226 D-feed SP and Reactor Level SP
AZ xB(H2O) Reflux flow and 5th Tray temperature SP

My table is shown above. Normally it is double-spaced but I have inserted a command

(marked in blue) to make it single-spaced and then inserted a command (again in blue) to change

the text back to double-spacing.
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1.13.1 Adding Extra Space between Text and Horizontal Lines

Table 1.2: Table with Extra Space between the Text and Horizontal Lines.

Test
case

Quality vari-
able QV)

Setpoint for QV Manipulated variables (MVs)

TE G/H ratio 1.226 D-feed SP and Reactor Level SP

AZ xB(H2O) Reflux flow and 5th Tray temper-
ature SP

The line

\usepackage{tabls}

must be inserted in the preamble of your document. The table is set up to be single-spaced by

\renewcommand{\baselinestretch}{1} \small\normalsize

before

\begin{table}

. I set the first, second, and fourth columns as paragraphs, .5in, 1in, and 2.25in wide, respectively.

I then adjusted the separation between the words and the horizontal lines to 5ex by also adding

\setlength{\tablinesep}{5ex}

before the
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\begin{table}

command.

After typing the table I change the document to be double-spaced from this point on.
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Present time Predicted output (y)
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Set−point (Target)
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^

Figure 1.1: This figure caption is indented and single-spaced. Comparison between the exper-
imental measurements [28] (black), the random initial condition NLSE model excluding phase
noise (dashed curves) and the stochastic phase noise NLSE model (solid curves) showing the first-
and second-order sideband evolution as a function of fiber length for P0 = 5.5W, Ω = 366GHz,
∆ν = 0.5GHz, γ = 0.019W−1m−1, and β(2) = 55 ps2/km: dynamical evolution of the: (a)
power in the first-order blue-shifted sideband, (b) power in the first-order red-shifted sideband, (c)
fluctuations in the first-order blue-shifted sideband, (d) fluctuations in the first-order red-shifted
sideband, (e) power in the second-order blue-shifted sideband, (f) power in the second-order
red-shifted sideband.

1.14 Figures

The figure on the following page is centered and the figure caption is indented and single-

spaced. Make sure you copy the last two lines

\renewcommand{\baselinestretch}{2}\\

\small\normalsize

to return to double-spacing of your text.

The first figure is Fig.1.1. Please note that the figure label should be placed inside the figure
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caption.
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The next figure is placed landscape. It is Fig. 1.2.

19



T
im

e

k
k+

M

C
on

tr
ol

 H
or

iz
on

 (
M

)

P
re

di
ct

io
n 

H
or

iz
on

 (
P

)

C
on

tr
ol

 m
ov

e 
( 

  u
)

∆

k+
P

k+
1

k−
3

M
ea

su
re

d 
ou

tp
ut

 (
y) P

re
se

nt
 ti

m
e

P
re

di
ct

ed
 o

ut
pu

t (
y)

P
A

S
T

F
U

T
U

R
E

In
pu

t c
on

st
ra

in
ts

O
ut

pu
t c

on
st

ra
in

ts

S
et

−
po

in
t (

T
ar

ge
t)

M
an

ip
ul

at
ed

 in
pu

t (
u)

^

Fi
gu

re
1.

2:
Sc

he
m

at
ic

ill
us

tr
at

in
g

re
ce

di
ng

ho
ri

zo
n

co
nt

ro
l.

20



This is a my second figure which was placed landscape. Although I have used the same

figure, I have renamed the label to fig:mpc-1. The second figure now becomes Figure 1.3.
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The following is an example of three subfigures with their figure captions and one single

caption defining the three subfigures.

(a) First subfigure. (b) Second subfigure. (c) Third subfigure.

Figure 1.4: Creating subfigures in LATEX.

1.14.1 Numbering Figures

If you wish your figures to be numbered 1-100 without any reference to the chapter (e.g.,

Figure 1.1, 2.1, etc.), change the first line of your mainthesis.tex file to read

"\documentclass[12pt]{thesis-2}".

1.14.1.1 This is a Subsubsection

This is my first subsubsection in Chapter 1.

1.15 Short Titles in the Table of Contents, List of Figures, or List of Tables

The Table of Contents, List of Figures, or List of Tables usually show the entire title of a

section, subsection, etc. or table, or the entire caption of a figure. If you put a short title in square
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brackets after

\section, \table, or \figure,

the short title will show in your Table of Contents or lists.

\section[Short Title]{Title of Section}
\subsection[Short Title]{Title of Subsection}

or when using a caption in a figure or table

\caption[Short Caption]{Full text of the caption.}

1.16 Figures on Text Page

Normally figures in the thesis are placed on a page by themselves. The following figure is

placed on the page with text before and after the figure by adding [!!h] after

\begin{figure}[!!h]

. Please note that the figure label is placed within the caption.

\begin{figure}[!!h]
\begin{center}

\includegraphics[width=5in]{mpc.eps}
\end{center}
\caption[Short title]{Schematic illustrating receding horizon control.
\label{fig:mpc-2}}
\end{figure}

This does not necessarily mean that the text before and after the figure will be exactly what

you want. Remember Latex will place the figure where it will fit on the page the best. The

previous figure is Figs. 1.5.

1.17 Wrapping Text around Figure
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Figure 1.5: Schematic illustrating receding horizon control.

Time

k k+M

Control Horizon (M)

Prediction Horizon (P)

Control move (   u)∆
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Measured output (y)
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Figure 1.6: Text wrap around figure.
Text wrap around figure. Text wrap
around figure. Text wrap around fig-
ure. Text wrap around figure. Text
wrap around figure. Text wrap around
figure.

By way of summary, at the end of the activity, I

reminded the class of what we’d done: by considering

relatively nearby galaxies whose distance we had mea-

sured by some other means, we were able to establish

a relationship locally between redshift and distance. By

way of summary, at the end of the activity, I reminded

the class of what we’d done: by considering relatively

nearby galaxies whose distance we had measured by

some other means, we were able to establish a relation-

ship locally between redshift and distance. By way of summary, at the end of the activity, I

reminded the class of what we’d done: by considering relatively nearby galaxies whose distance

we had measured by some other means, we were able to establish a relationship locally between

redshift and distance. By way of summary, at the end of the activity, I reminded the class of what
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we’d done: by considering relatively nearby galaxies whose distance we had measured by some

other means, we were able to establish a relationship locally between redshift and distance. See

Fig. 1.6.

1.18 LaTeX – A Typesetting Program

A 13-page explanation of some of the features of LaTeX can be downloaded from http://www.jgsee.kmutt.ac.th/exell/General/LaTeX.html.

1.19 Using Bibtex

Using Bibtex with Latex documents is not difficult. The bulk of the work is organizing

your bibtex file, which is a data base compiled by you of the articles, books, etc. which you use

in the bibliographies or reference sections of your publications.

I have linked several files to this webpage, which will be helpful when you are using Bib-

tex. These files can be downloaded from

http://www.ireap.umd.edu/ireap/theses/bibtex. Please read the file ”BibtexInstructions.pdf”. The

first two pages explain how to set up and run Bibtex; the remaining pages were taken from a

published article and show how the references were cited in the .tex file. The files

BibtexInstructions.tex, Galactic.bib, Dottie.bib are the original .tex files used for

BibtexInstructions.pdf. The file BibtexSamples.tex contains examples of the information needed

for the various publications you wish to reference (e.g., articles in refereed journals, books, un-

published articles, conference proceedings, etc.).

If you have questions concerning Bibtex, please contact me at 301-405-4955 or dbrosius at

umd.edu.
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1.20 Using Natbib

Another option of citing references in the bibliography is using Natbib instead of Bibtex.

You must still create a bibtex file, as noted above. The command ”backslash cite” cannot be used

with natbib; instead ”backslash citet” and ”backslash citep” must be used. ”backslash citet” is

used to show references in the text (e.g., Eq. 8 in Reiser,1996 shows ...); ”backslash citep” is used

in the parenthetical (e.g., Eq. 8 (Reiser, 1996) shows ...).

Add in preamble -- \usepackage[option]{natbib} -- A list of

options to be used with Natbib can be found at

"http://merkel.zoneo.net/Latex/natbib.php".

Add at bottom of mainthesis.tex file --

\bibliography{name of your bibtex file}

\bibliographystyle{plainnat, abbrnat, or unsrtnat} (I usually use

unsrtnat)

Typesetting: pdflatex, Bib, pdflatex, pdflatex

I use MikTex with WinEdt.

The reference sheet for natbib usage can be found at

”http://merkel.zoneo.net/Latex/natbib.php”.
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1.21 APS Physical Review Style and Notation Guide

The following style guide may be downloaded from The American Physical Society at

http://forms.aps.org/author/styleguide.pdf: Physical Review Style and Notation Guide, published

by The American Physical Society, compiled and edited by Anne Waldron, Peggy Judd, and

Valerie Miller, February 1993. It may be old, but it is very useful.
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