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Nonlinear Self-Sustained Drift-Wave Turbulence
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Numerical simulations of 3D collisional drift-wave turbulence in a sheared magnetic field are
presented which demonstrate that fluctuations are self-sustaining even though the linear eigenmodes
of the system are all damped. An analytic calculation reveals that the source of the turbulence is a
nonlinear streaming instability in which radial flows extract energy from the ambient density gradient
and drive drift waves which then amplify the radial flow.

PACS numbers: 52.35.Ra, 52.35.Qz, 52.55.Fa
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Energy confinement in tokamaks and other plasma fu- < 4+ y—=0, (3)
sion experiments is always lower than can be explained by di 9z
transport by classical interparticle collisions. The sourcavhereT; = 0, T, is assumed to be a constant, and
of the anomalous transport has been attributed to mea- 5 9 9 \2 92
sured fluctuations in the density and potential. Drift Vi = <£ + Z@) a—yz,
waves and, in particular, the so-called universal mode
were for many years believed to be the source of these 4 _ 9 +35X Ve -V, (4)
fluctuations and transport. This idea was, however, dis- dt at

counted after it was shown that magnetic shear comwith p = p,/L, andy = c,ty/L;. The equations have
pletely stabilizes the universal mode [1] and its collisionalbeen normalized using the magnetic shear length
counterpart [2]. Later it was shown that magnetic cur-as the parallel scale length, the perpendicular length
vature could destabilize drift waves in a toroidal plasmaL , = (veprﬁ/QeL,l)l/3, and the diamagnetic time scale
[3]. On the other hand, there has never been any proaf; = L,L, /psc;. In the absence of magnetic shear
that a nonlinear system of equations describing drift-waveéhe term proportional taz in (4) is absent. In these
turbulence in a sheared magnetic field could not sustainormalized units:/ny ~ e¢ /T, ~ v,/cs ~ L, /L, and
turbulence. Indeed, 2D simulations [4,5] indicated thathe transport scales like
drift-wave turbulence could be nonlinearly self-sustaining. 2
In neither case was the nature of the non?i/near drive megh- Dy~ Li/ta = psesLi/La. )
anism clear. That the nonlinear behavior of a 3D drift-Small diffusive dissipation terms are added to each
wave system differs greatly from the 2D case was recentlgquation to model ion viscosity and classical transport.
demonstrated by Biskamp and Zeiler [6] who showed thafhe ambient density gradient which has been absorbed
nonlinearly driven convective cellB(- V = 0) were re- into the normalization of the variables enters the equations
sponsible for extracting energy from plasma confined by ghrough thed¢/dy term in (1). The energy equation
straight, nonsheared magnetic field. In the unsheared casenstructed from (1)—(3) yields
collisional drift waves are always unstable so the question | - ) ) R
of nonlinearly sustained turbulence in a 3D linearly stable Y f dX(pPIViel” + n* + v2) =
system was not addressed. In this paper we present 3D2
simulations of drift-wave turbulence in a sheared mag- _ Azj d 3<3_€0 _ 9_">2 _ fd 3 d¢

- ) | p X X’ n , (6)
netic field which demonstrate the persistence of turbu- 9z 9z Ay
lence even in the absence of linear instability. We alsQuhere the perpendicular dissipation terms are ignored.
present a simple picture of the nature of the nonlineagyhile the parallel dissipation term on the right side of
drive mechanism which is supported by analytic calculathe equation is negative, the remaining term, which arises

tions and simulations. . ~ from the ambient density gradient, has no definite sign.
In a magnetic field aligned coordinate system, in whichThys nonlinear instability is not precluded.
z lies alongB, the ambient density gradient is in the In the simulations (1), (2), and (3) are stepped in time

direction and they direction is defined byB - Vy =0,  with the 92/9z2 operators approximated with a second or-
the coupled equations for perturbations of the density ger finite difference scheme and advanced implicitly. Pe-
potential ¢, and parallel flowv; in a straight sheared riodic boundary conditions are imposed in the transverse

magnetic field are givgn by directions with convection terms treated either with a
dn o)’ .0 0
=+ 2 4

2L (o —n) +y v, _ 0 ) fourth-order, finite difference, or a pseudospectral scheme.

dt ady 972 0z ’ In the z direction the system is split into modules of length
d _, 92 27r. This is necessary because the flux tube coordinate
I Vie + 922 (p —n) =0, () system becomes increasingly distorted with respect to the
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physical system as becomes large and structures in theshown in Fig. 3(b). The potential perturbations of the
physical system can no longer be correctly resolved. Thdrift-wave amplify the originak-directed flows shown in
solutions at the; boundaries of each module are mappedrig. 3(a). The mechanism shown in Fig. 3(c) is basically
to the adjacent module by untwisting them and retwistinghe vortex peeling process presented previously for the
them to match the adjacent module. The grid consists a$elf-generation of sheared poloidal rotation [9]. Thus the
up to128 X 128 X 90 cells. entire process is self-amplifying and is apparently insensi-
If the simulations are initialized by applying small, ran- tive to the magnetic shear.
dom perturbations of and ¢, the fluctuations die away  To estimate the growth of this streaming instability we
since there is no linear instability. To facilitate the growthpresent a simple analytical model which describes the
of the turbulence to finite amplitude, we include magneticnonlinear interaction of a truncated set of modes. For
curvature in Egs. (1) and (2) [7,8], which gives rise tosimplicity, the calculation is carried out in an unsheared
linear drift-ballooning instability similar to the Raleigh- system, although magnetic shear should not alter the
Taylor instability of a system with a gravitational field act- qualitative picture. Previous investigations of sheared
ing on a neutral fluid. Shown in Fig. 1 is the total energyflow generation focused on how stable vortices [9] or
versus time from a simulation with, = 9.8, L, = 10.2,  drift waves [10] interacted to drive sheared flow. We
L, = 189,andp = 0.79. The parameters correspond to extend this approach by allowing the drift waves to
a regime where the diamagnetic frequency exceeds thee self-consistently amplified by self-generated gradients.
local interchange growth rate and the ballooning effectThe flows are described by three interacting potential
is weak. Attt = 666 we turned off the magnetic cur- perturbations
vature, so that the equations reduced to (1)—(3) above, .
making the system Iinqearly stable. Neverth(el)es(s,)the wr- ¢ = bocodmy) + (i cosmy + $rsimdamy)
bulence remains at a quasisteady finite level. Figure 2 X sink,z explikyx), @)

shows a typical density perturbation in the plane from where ¢, describes the radial sheared flow agg and

the same simulation. The important question is why the . )
- ; e . ¢, are drift waves whose phase ynhas been chosen so
nonlinear equations produce finite fluctuations and trans;: . : .
. that they interact to driveby. The modeg,, which has

port even though all modes are linearly stable. A clue .
. . .a shorter wavelength, is taken to be damped by perpen-

comes from the occasional appearance of regions of inj

. dicular viscosity. We také, > k, ~ 1 so that the two
tense transport, where radially extended flowsform, drift waves essentially propagate alonglue to the den-
strengthen, and then break up. We show now that the tur- Y propag

; e sity gradientdn/dy as shown in Fig. 3, i.e., the configura-

bulence results from the nonlinear amplification of these. 2 * - ) .
; . ) . ion is rotated by /2 compared with a conventional drift
x-directed flows. Figure 3 illustrates the physical mecha-

: . : wave. At the same time the sheared flow which is gen-
nism. The floww,(y) convects the ambient density up and X X ) ; ;
down the density(ézadient and therefore producei, tEe defrated is radial rather than poloidal, and this flow drives

sity perturbatiomo(y), Fig. 3(a). When this density per- the nonlinear instability. The corresponding density per-

turbation becomes sufficiently large, it destabilizes driﬁ;ur(b?t'\?v';}?cﬁrfsséj'm:: LO t&f;ﬁ;ggg\'}:é&%ﬁﬁpt?; ;)f
waves withk, > k, and finitek.. These drift waves are "0 y 0/dy

not stabilized by magnetic shear because their wave ve(g)—f the initial ambient density gradient. The drift waves

tor is essentially oriented in thex plane and the mag- n
netic shear acts primarily on disturbances with lakge
The growing potential perturbation of this drift wave is

Energy
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X

FIG. 1. The total energy versus time from a simulation withFIG. 2. A grey scale plot ofi perpendicular taB with light
magnetic shear including magnetic curvature et 666. shading corresponding to high density.
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where y| = kzz/kil, kti= ki + k;zm Ag = kf(kiz -
k1) (K1) — klo)8kTavag, Arg = Ao2m?/k11, Ain =
k272 /4vy,, and v, and vy, are the damping rates of
: n, and ¢,. In the absence of radial flow, (9) and (10)
(a) are linear, yielding the local dispersion relation for the

complex growth ratey,

2
y(l + kf_lﬁz + *y%) = —ikyngy, (12)
z
of drift waves driven unstable byy,. An initial small
radial flow ¢, increasesng, in (8). The drift waves
described by (9) and (10) go unstable, amplifyigg in
(11), which then further increases,. As ¢, grows, the
shear flow damping terms in (9) and (10), proportional to
(b) #2, become important and the system evolves in such a
way that the drift waves remain near marginal stability,
the drive due tong, balancing the damping due fig,.
The balance gives (assumingRe= 0)

T
w
NS

= ;)\/1 noy - (13)

o = A1y + A1) (A1nA1p)'2

Inserting this result into (8) yields a nonlinear evolution
equation forn,,

(c) angy /ot = 277?11/4n(1)§4, (14)
with the algebraically growing solutiomy, ~ ¢*/3.

To test this picture of nonlinear instability, we have
performed 3D simulations of drift-wave turbulence in the
case of no magnetic shear. The system is initialized
with ng(y) of the lowest order mode of the system of
sufficiently large amplitude to locally drive drift-wave
turbulence. The parameters of the simulation Are=

FIG. 3. Physical mechanism of the nonlinear instability. 18, L, = 36, L, = 72, and p = 1.0. In the nonlinear
instability the extraction of energy from the ambient
gradient arises from thé&, = 0 component ofv, in

gtrOWInlg on ttrr:e Ict)cal gr?dlertrtoyf tEh an‘)/ad.y g{ovyrrr]nost Icontrast with the usual linear drift-wave theory wherés
strongly on the steepest part ot the gradient. e resuligite. To focus on the nonlinear instability, we artificially

mrga d(?gr?tsn;gfc?rrw flat(te)n{(r;q[;kfetr:)en ietr:i?\%/ Elrgr'fhgvgnviimeeliminatekz # 0 components of thée /dy drive term in
9 nt, forcingoly . languiar snap the continuity equation, which makes the system linearly
ngy being piecewise constant, i.ey, is a positive (neg-

ative) constant between (outside) the vertical flow line stable. In Fig. 4 time traces of the energy in all modes
in Fig. 3(a). To evaluate the time dependence:@f we S(th|ck solid), k. = 0 modes (short-dashed), artd # 0

take they derivative of (1) and average overx, and the modes (long-dashed) are shown. At aroung 25 the
y interval (- 1/2, 1/2), which yields modes withk, # 0 (drift waves) grow strongly at the

expense ofk, = 0[ny(y)]. After this initial transient, all

Ingy/dt = 2 o, @) of the energies begin to grow steadily with no apparent

with ng, a piecewise constant. Note that the averageaturation. A 2D slice of the potential during this later
eliminates both the convective transport and compressiophase is shown in Fig. 5. The large scale radial flow

terms in (1). The remaining interactions between the, (y) dominates. This flow has been amplified from
modes can be evaluated without further approximationnoise. Time sequences of such plots (not shown) reveal
The final equations are that the peeling of the drift-wave vortices is the dominant

dp1/at + yi(d1 — m) + Aigdpids =0, (9)  mechanism for amplifying the radial flow at late time.

The corresponding 2D plots of the density are similar

an /ot + yik3 p2(ny — 1) + Anadin and reveal that(y) has also been amplified during the

) simulation. Finally, the thin solid curve in Fig. 4 is the

— iknoydy =0, (10)  time history of the energy with the usual linear drift-wave

Ao/t = Aogld1 o, (11) drive included. The qualitative features are similar. Thus
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is that the source of energy of density fluctuations is
all modes k. ~ 0 modes rather than finité, modes as would be
(lin. drive included) expected from a traditional linear drift wave model. A
1 spectral analysis of Eq. (1) as carried out in Ref. [6]
reveals that the source of energy is indeed the longest
wavelength (smalk,) density disturbances in the system.
The primary reason that the nonlinear instability remains
robust in a sheared magnetic field is that the drift waves
driven by ng(y) are not stabilized by magnetic shear
because these modes have> k, andk, is not affected
by magnetic shear, i.e., magnetic shear drops out of (1)
0 20 40 60 80 100 120 140 and (2) ifk, = 0. The fundamental difference between
t a sheared and nonsheared system is therefore not the
FIG. 4. Energy versus time from a simulation with no mechanism which drives the turbulence but the saturation
magnetic shear. mechanism. In the unsheared magnetic field the energy
runs away as the radial flows continue to amplify, while
in a sheared system the radial flows always break up
as a result of Kelvin-Helmholtz instability, leading to a
saturated nonlinear state.
H In conclusion, we have found that the drift-wave
. . ) . urbulence in a plasma confined by a magnetic field
described gnderhes the dynamics of su_stalned turbulenc,]g driven by a nonlinear streaming instability. This
observed in the presence of magnetic shear. At the N : . .
qualitative level, regions where the transport occasionaIImStalbIIIty 'S essentially independent of the magnetic
’ o . ¥hear. While the present results are based on a collisional
becomes very large exhibit radially extended flows. The

. A -description of drift waves, the basic mechanism for
analytlf: qalculatlon IS aIm(_)st unchanged when magnet'(fhe nonlinear instability presented in Fig. 3 does not
shear is mclude(_j. _There Is no exdgt=0 mode in a depend on the collisionality of the system. Collisionless
sheared magnetic field. A radial flow at some Iocatlondrhct waves would grow on the density gradient
along the flux tube in a sheared magnetic field twists inand then reinforce gthe radial Shearedyflgw ThLS it
the x-y plane and is compressed in thedirection as :

it projects down the flux tube [11]. As a conse uence SEEMS possible that the core confinement region of a
proj . ! S q tokamak would also be subject to nonlinear instability,
radial flows are localized in the direction and develop

a finite k, and the associated damping which must beand this mechanism would compete with trapped particle

overcome by the nonlinear drive. A crucial test of themStalbIIItIes in driving transport.
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the usual linear drift-wave instability plays no significant
role in the nonlinear evolution of the system.

[1] T.M. Antonsen, Phys. Rev. Letd1, 33 (1978).

[2] P.N. Guzdar, L. Chen, P.K. Kaw, and C. Oberman, Phys.
Rev. Lett.40, 1566 (1978).

[3] C.Z. Cheng and L. Chen, Phys. Flui@8, 2242 (1989).

[4] D. Biskamp and M. Walter, Phys. Lett09A, 34 (1985).

[5] B.D. Scott, Phys. Rev. Letb5, 3289 (1990).

[6] D. Biskamp and A. Zeiler, Phys. Rev. Le#4, 706 (1995).

[7] P.N. Guzdaret al., Phys. FluidsB3, 3712 (1993).

[8] J.F. Drakeet al., in Plasma Physics and Controlled
Nuclear Fusion ResearcflAEA, Vienna, 1994), paper

D-P-1-8.
X [9] J.F. Drakeet al., Phys. FluidsB4, 488 (1992).
FIG. 5. A grey scale ofp perpendicular tdB illustrating the  [10] P.N. Guzdar (to be published).
development of the radial flow. [11] K.V. Roberts and J. B. Taylor, Phys. Fluiis315 (1965).

4225



