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Nonlinear Self-Sustained Drift-Wave Turbulence
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(Received 7 March 1995)

Numerical simulations of 3D collisional drift-wave turbulence in a sheared magnetic field
presented which demonstrate that fluctuations are self-sustaining even though the linear eigen
of the system are all damped. An analytic calculation reveals that the source of the turbulence
nonlinear streaming instability in which radial flows extract energy from the ambient density grad
and drive drift waves which then amplify the radial flow.

PACS numbers: 52.35.Ra, 52.35.Qz, 52.55.Fa
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Energy confinement in tokamaks and other plasma
sion experiments is always lower than can be explained
transport by classical interparticle collisions. The sour
of the anomalous transport has been attributed to m
sured fluctuations in the density and potential. Dri
waves and, in particular, the so-called universal mo
were for many years believed to be the source of the
fluctuations and transport. This idea was, however, d
counted after it was shown that magnetic shear co
pletely stabilizes the universal mode [1] and its collision
counterpart [2]. Later it was shown that magnetic cu
vature could destabilize drift waves in a toroidal plasm
[3]. On the other hand, there has never been any pro
that a nonlinear system of equations describing drift-wa
turbulence in a sheared magnetic field could not sust
turbulence. Indeed, 2D simulations [4,5] indicated th
drift-wave turbulence could be nonlinearly self-sustainin
In neither case was the nature of the nonlinear drive me
anism clear. That the nonlinear behavior of a 3D drif
wave system differs greatly from the 2D case was recen
demonstrated by Biskamp and Zeiler [6] who showed th
nonlinearly driven convective cells (B ? === ­ 0) were re-
sponsible for extracting energy from plasma confined by
straight, nonsheared magnetic field. In the unsheared c
collisional drift waves are always unstable so the questi
of nonlinearly sustained turbulence in a 3D linearly stab
system was not addressed. In this paper we present
simulations of drift-wave turbulence in a sheared ma
netic field which demonstrate the persistence of turb
lence even in the absence of linear instability. We al
present a simple picture of the nature of the nonline
drive mechanism which is supported by analytic calcul
tions and simulations.

In a magnetic field aligned coordinate system, in whic
z lies alongB, the ambient density gradient is in thex
direction and they direction is defined byB ? ===y ­ 0,
the coupled equations for perturbations of the densityn,
potential w, and parallel flowyz in a straight sheared
magnetic field are given by

dn
dt

1
≠w

≠y
1 r̂2 ≠2

≠z2
sw 2 nd 1 g

≠yz

≠z
­ 0 , (1)
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­ 0 , (3)

whereTi ­ 0, Te is assumed to be a constant, and

=2
' ­

µ
≠

≠x
1 z

≠

≠y

∂2

1
≠2

≠y2 ,

d
dt

­
≠

≠t
1 ẑ 3 =w ? = , (4)

with r̂ ­ rsyL' andg ­ cstdyLs. The equations have
been normalized using the magnetic shear lengthLs

as the parallel scale length, the perpendicular lengt
L' ­ sneL2

sr2
s yVeLnd1y3, and the diamagnetic time scale

td ­ LnL'yrscs. In the absence of magnetic shear
the term proportional toz in (4) is absent. In these
normalized unitsnyn0 , ewyTe , yzycs , L'yLn and
the transport scales like

D' , L2
'ytd , rscsL'yLn . (5)

Small diffusive dissipation terms are added to each
equation to model ion viscosity and classical transport
The ambient density gradient which has been absorbe
into the normalization of the variables enters the equation
through the≠fy≠y term in (1). The energy equation
constructed from (1)–(3) yields

1
2

≠

≠t

Z
dx3

°
r̂2j='wj2 1 n2 1 y2

z

¢
­

2 r̂2
Z

dx3

µ
≠w

≠z
2

≠n
≠z

∂2

2
Z

dx3 n
≠w

≠y
, (6)

where the perpendicular dissipation terms are ignored
While the parallel dissipation term on the right side of
the equation is negative, the remaining term, which arise
from the ambient density gradient, has no definite sign
Thus nonlinear instability is not precluded.

In the simulations (1), (2), and (3) are stepped in time
with the≠2y≠z2 operators approximated with a second or-
der finite difference scheme and advanced implicitly. Pe
riodic boundary conditions are imposed in the transvers
directions with convection terms treated either with a
fourth-order, finite difference, or a pseudospectral schem
In thez direction the system is split into modules of length
2p. This is necessary because the flux tube coordina
system becomes increasingly distorted with respect to th
© 1995 The American Physical Society
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physical system asz becomes large and structures in th
physical system can no longer be correctly resolved. T
solutions at thez boundaries of each module are mapp
to the adjacent module by untwisting them and retwisti
them to match the adjacent module. The grid consists
up to128 3 128 3 90 cells.

If the simulations are initialized by applying small, ran
dom perturbations ofn and w, the fluctuations die away
since there is no linear instability. To facilitate the grow
of the turbulence to finite amplitude, we include magne
curvature in Eqs. (1) and (2) [7,8], which gives rise
linear drift-ballooning instability similar to the Raleigh
Taylor instability of a system with a gravitational field ac
ing on a neutral fluid. Shown in Fig. 1 is the total energ
versus time from a simulation withLx ­ 9.8, Ly ­ 10.2,
Lz ­ 18.9, andr̂ ­ 0.79. The parameters correspond t
a regime where the diamagnetic frequency exceeds
local interchange growth rate and the ballooning effe
is weak. At t ­ 666 we turned off the magnetic cur-
vature, so that the equations reduced to (1)–(3) abo
making the system linearly stable. Nevertheless, the
bulence remains at a quasisteady finite level. Figur
shows a typical density perturbation in thex-y plane from
the same simulation. The important question is why t
nonlinear equations produce finite fluctuations and tra
port even though all modes are linearly stable. A cl
comes from the occasional appearance of regions of
tense transport, where radially extended flowsyx form,
strengthen, and then break up. We show now that the
bulence results from the nonlinear amplification of the
x-directed flows. Figure 3 illustrates the physical mech
nism. The flowyxsyd convects the ambient density up an
down the density gradient and therefore produces the d
sity perturbationn0syd, Fig. 3(a). When this density per
turbation becomes sufficiently large, it destabilizes dr
waves withkx . ky and finitekz. These drift waves are
not stabilized by magnetic shear because their wave v
tor is essentially oriented in thez-x plane and the mag-
netic shear acts primarily on disturbances with largeky.
The growing potential perturbation of this drift wave

FIG. 1. The total energy versus time from a simulation wi
magnetic shear including magnetic curvature fort , 666.
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shown in Fig. 3(b). The potential perturbations of th
drift-wave amplify the originalx-directed flows shown in
Fig. 3(a). The mechanism shown in Fig. 3(c) is basica
the vortex peeling process presented previously for
self-generation of sheared poloidal rotation [9]. Thus t
entire process is self-amplifying and is apparently insen
tive to the magnetic shear.

To estimate the growth of this streaming instability w
present a simple analytical model which describes
nonlinear interaction of a truncated set of modes. F
simplicity, the calculation is carried out in an unshear
system, although magnetic shear should not alter
qualitative picture. Previous investigations of shear
flow generation focused on how stable vortices [9]
drift waves [10] interacted to drive sheared flow. W
extend this approach by allowing the drift waves
be self-consistently amplified by self-generated gradien
The flows are described by three interacting poten
perturbations

f ­ f0 cosspyd 1 sf1 cospy 1 f2 sin2pyd

3 sinkzz expsikxxd , (7)

where f0 describes the radial sheared flow andf1 and
f2 are drift waves whose phase iny has been chosen so
that they interact to drivef0. The modef2, which has
a shorter wavelength, is taken to be damped by perp
dicular viscosity. We takekx ¿ ky , 1 so that the two
drift waves essentially propagate alongx due to the den-
sity gradient≠ny≠y as shown in Fig. 3, i.e., the configura
tion is rotated bypy2 compared with a conventional drif
wave. At the same time the sheared flow which is ge
erated is radial rather than poloidal, and this flow driv
the nonlinear instability. The corresponding density pe
turbations are similar to those off with the exception of
n0syd, which is driven by the radial convections≠f0y≠yd
of the initial ambient density gradient. The drift wave

FIG. 2. A grey scale plot ofn perpendicular toB with light
shading corresponding to high density.
4223
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FIG. 3. Physical mechanism of the nonlinear instability.

growing on the local gradientn0y ; ≠n0y≠y grow most
strongly on the steepest part of the gradient. The resu
ing quasilinear flattening of the density profile evens th
gradient, forcingn0syd to take on a triangular shape with
n0y being piecewise constant, i.e.,n0y is a positive (neg-
ative) constant between (outside) the vertical flow line
in Fig. 3(a). To evaluate the time dependence ofn0y we
take they derivative of (1) and average overz, x, and the
y interval s21y2, 1y2d, which yields

≠n0yy≠t ­ 2pf0 , (8)
with n0y a piecewise constant. Note that the avera
eliminates both the convective transport and compress
terms in (1). The remaining interactions between th
modes can be evaluated without further approximatio
The final equations are

≠f1y≠t 1 g1sf1 2 n1d 1 A1ff2
0f1 ­ 0 , (9)

≠n1y≠t 1 g1k2
'1r̂2sn1 2 f1d 1 A1nf2

0n1

2 ikxn0yf1 ­ 0 , (10)

≠f0y≠t ­ A0jf1j
2f0 , (11)
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where g1 ­ k2
z yk2

'1, k2
'i ­ k2

xi 1 k2
yi , A0 ­ k2

x sk2
'2 2

k2
'1d sk2

'1 2 k2
'0d 8k2

'2n2f, A1f ­ A02p2yk2
'1, A1n ­

k2
xp2y4n2n, and n2n and n2f are the damping rates of

n2 and f2. In the absence of radial flow, (9) and (10)
are linear, yielding the local dispersion relation for the
complex growth rateg,

g

√
1 1 k2

'1r̂2 1 g
k2

'1

k2
z

!
­ 2ikxn0y , (12)

of drift waves driven unstable byn0y . An initial small
radial flow f0 increasesn0y in (8). The drift waves
described by (9) and (10) go unstable, amplifyingf0 in
(11), which then further increasesn0y. As f0 grows, the
shear flow damping terms in (9) and (10), proportional t
f

2
0 , become important and the system evolves in such

way that the drift waves remain near marginal stability
the drive due ton0y balancing the damping due tof0.
The balance gives (assuming Reg ­ 0d

f4
0 ­

kxn0yg1

sA1f 1 A1nd sA1nA1fd1y2 ; ĝ1n0y . (13)

Inserting this result into (8) yields a nonlinear evolution
equation forn0y,

≠n0yy≠t ­ 2pĝ
1y4
1 n

1y4
0y , (14)

with the algebraically growing solutionn0y , t4y3.
To test this picture of nonlinear instability, we have

performed 3D simulations of drift-wave turbulence in the
case of no magnetic shear. The system is initialize
with n0syd of the lowest order mode of the system o
sufficiently large amplitude to locally drive drift-wave
turbulence. The parameters of the simulation areLx ­
18, Ly ­ 36, Lz ­ 72, and r̂ ­ 1.0. In the nonlinear
instability the extraction of energy from the ambien
gradient arises from thekz ­ 0 component ofyx in
contrast with the usual linear drift-wave theory wherekz is
finite. To focus on the nonlinear instability, we artificially
eliminatekz fi 0 components of the≠wy≠y drive term in
the continuity equation, which makes the system linear
stable. In Fig. 4 time traces of the energy in all mode
(thick solid), kz ­ 0 modes (short-dashed), andkz fi 0
modes (long-dashed) are shown. At aroundt ­ 25 the
modes withkz fi 0 (drift waves) grow strongly at the
expense ofkz ­ 0fn0sydg. After this initial transient, all
of the energies begin to grow steadily with no apparen
saturation. A 2D slice of the potential during this late
phase is shown in Fig. 5. The large scale radial flow
yx0syd dominates. This flow has been amplified from
noise. Time sequences of such plots (not shown) reve
that the peeling of the drift-wave vortices is the dominan
mechanism for amplifying the radial flow at late time.
The corresponding 2D plots of the density are simila
and reveal thatn0syd has also been amplified during the
simulation. Finally, the thin solid curve in Fig. 4 is the
time history of the energy with the usual linear drift-wave
drive included. The qualitative features are similar. Thu
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FIG. 4. Energy versus time from a simulation with n
magnetic shear.

the usual linear drift-wave instability plays no significa
role in the nonlinear evolution of the system.

The next issue is whether the nonlinear instability ju
described underlies the dynamics of sustained turbule
observed in the presence of magnetic shear. At
qualitative level, regions where the transport occasiona
becomes very large exhibit radially extended flows. T
analytic calculation is almost unchanged when magne
shear is included. There is no exactkz ­ 0 mode in a
sheared magnetic field. A radial flow at some locati
along the flux tube in a sheared magnetic field twists
the x-y plane and is compressed in thex direction as
it projects down the flux tube [11]. As a consequenc
radial flows are localized in thez direction and develop
a finite kz and the associated damping which must
overcome by the nonlinear drive. A crucial test of th
physical picture of the nonlinear instability mechanis

FIG. 5. A grey scale off perpendicular toB illustrating the
development of the radial flow.
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is that the source of energy of density fluctuations is
kz , 0 modes rather than finitekz modes as would be
expected from a traditional linear drift wave model. A
spectral analysis of Eq. (1) as carried out in Ref. [6]
reveals that the source of energy is indeed the longes
wavelength (smallkz) density disturbances in the system.
The primary reason that the nonlinear instability remains
robust in a sheared magnetic field is that the drift waves
driven by n0syd are not stabilized by magnetic shear
because these modes havekx ¿ ky andkx is not affected
by magnetic shear, i.e., magnetic shear drops out of (1
and (2) if ky ­ 0. The fundamental difference between
a sheared and nonsheared system is therefore not th
mechanism which drives the turbulence but the saturatio
mechanism. In the unsheared magnetic field the energ
runs away as the radial flows continue to amplify, while
in a sheared system the radial flows always break up
as a result of Kelvin-Helmholtz instability, leading to a
saturated nonlinear state.

In conclusion, we have found that the drift-wave
turbulence in a plasma confined by a magnetic field
is driven by a nonlinear streaming instability. This
instability is essentially independent of the magnetic
shear. While the present results are based on a collision
description of drift waves, the basic mechanism for
the nonlinear instability presented in Fig. 3 does not
depend on the collisionality of the system. Collisionless
drift waves would grow on the density gradientn0y

and then reinforce the radial sheared flow. Thus it
seems possible that the core confinement region of
tokamak would also be subject to nonlinear instability,
and this mechanism would compete with trapped particle
instabilities in driving transport.
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