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Abstract

Based on three-dimensional simulations of the Braginskii equations, we
identify two main parameters which control transport in the edge of tokamaks:
the MHD ballooning parameter and a diamagnetic parameter. The space
defined by these parameters delineates regions where typical L-mode levels of
transport arise, where the transport is catastrophically large (density limit)

and where the plasma spontaneously forms a transport barrier (H-mode).

PACS numbers: 52.30.Jb, 52.35.Kt, 52.55.Fa



The tokamak edge region, comprising the transition zone from the inner, hot core plasma
to the outer, cold scrape-off layer, exerts vital control over the plasma discharge through
its role in the L-H (Low to High confinement) transition [1,2], the density limit [3], and
the edge temperature pedestal. We claim here, based on three-dimensional simulations of
the Braginskii equations, that these phenomena are fundamentally linked to the dependence
of the turbulent edge transport on two dimensionless parameters: the MHD ballooning
parameter « = —Rg%d(/dr and a diamagnetic parameter oy (defined below). The space
spanned by these parameters is shown in Fig. (1). In the weak diamagnetic limit (small
oq) where resistive ballooning mode driven turbulence is strong [4], the simulations show
a dramatic rise in the transport with increasing o that leads to high transport levels even
at small o values well below the limit of ideal ballooning instability [5,6]. We associate
this behavior with an effective density limit beyond which stable tokamak operation is not
possible. At higher a4y ~ 1, on the other hand, the o dependence of the turbulence, driven in
this case by a nonlinear drift wave instability [4,7], is reversed, with small but finite values of
a leading to a strong suppression of transport. In this regime a local increase in the plasma
pressure gradient, above a threshold in «, causes a reduction of the transport. Since such
a reduction would naturally lead to a further steepening of the edge pressure gradient, this
region of higher o and a4 is unstable to the spontaneous formation of a transport barrier.
The boundary of this unstable domain defines the onset condition for the L-H transition
in our model. Finally, the global stability of the edge pedestal and the relative roles of
finite o and F x B shear are explored in dynamical simulations of the barrier formation
process. These simulations confirm the E x B shear effect can stabilize turbulence during
the formation of the barrier [8,9]. We also find, however, that for small «, E' x B shear alone
is not sufficient to trigger a transition due to the strong positive dependence of transport on
the plasma pressure gradient.

The simulations are carried out in a poloidally and radially localized, flux-tube domain
that winds around the torus [4]. Assuming a shifted-circle magnetic geometry, the nonlinear

equations for perturbations of the magnetic flux 12, electric potential qg, density n, electron
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and ion temperatures 1., T}, and parallel flow ) are
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where V|| = 0, + 4Z x V-V, d/dt = 8, +Zx V,¢-V, V2 = (0, (z)ay)2 +
02, 7 = (cos(272) + A(z) sin(272) — €)0y + sin(272)0;, A(z) = 278z — asin(27z), G =

23, [C(6 + Taaps), —4(eu/ea) V)], T = V30, Po = i+ Ta, p = (B + 751)/(1 + 7). The
time (t), perpendicular (r,y) and parallel (z) normalization scales are t; = (RL,/2)'/%/c,,
Ly = 2mqq (noe’nyps R/miwe:)'/? (2R/Ln)1/4, and L, = 2mq, R, with an associated diffusion

rate Dy = L2/ty = (27q)*(1 + 7)p?Ve;/ L. The diamagnetic and MHD parameters are
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Other parameters are 7 = Tjg/Too, o = Ln/L1,, € = a/R, ¢, = 2L,/ R, ¢, = €-/?/(47q,),

& = (2m)?aly,/Ly, Ly/Ly, = [1 4+ 0. + 7(1 + m:)]/(1 + 7), ke = 1.6026,(1 + 7), ki =
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0.064(m,/m;) 275202, (1 + 7), v, = 0.1672¢2k;. The parallel coordinate values z = 0
and z = +1/2 represent the outboard and inboard midplanes, respectively. The transverse
flux coordinates x,y correspond to local radial and poloidal variables. Unless noted oth-
erwise, we consider the values § =1, 7 = 1,¢, =002, ¢ =02, ¢, =3, 7, = n. = 1,
mi/my, = 2.

The application of a fluid model to tokamak edge discharges is reasonable in part because
the mean-free-path of electrons )\, is typically smaller than the connection length L,. For
parameters at the L-H transition in the case of AUG [10], for example, \./L, < 0.05
(R = 165¢m, a = 50cm, B = 25T, T, = 100ev, n ~ 3 x 10 /em?®, Z5; = 2, ¢ = 4).
Further, since v,;, > 1 (in the AUG example, v,, > 20), trapped particles should not play
a major role. Finally, the dominant modes in our simulations satisfy &, p; < 1.

We first describe the dependence of the transport on the parameters o and ay. Fig. (2a)
shows the normalized, poloidally averaged ion energy flux I, ~ —(ﬁiqu> versus « for various
values of ay. For small oy < 0.5 the transport increases strongly with increasing «, while
for larger oy ~ 1, the transport at higher « is suppressed. This reversal reflects the fact
that the turbulence in the small and large oy cases is driven by different mechanisms with
contrary dependences on electromagnetic effects.

In the small oy case, the turbulence results mainly from the nonlinear development of
resistive ballooning modes [4]. The enhancement of the transport at higher « in this case
is due to the dependence of the turbulence saturation level on magnetic field perturbations,
which strengthen as « is increased [5]. For very small a4 <0.3 the transport becomes ex-
tremely large even at small oo ~ 0.3. The evolution of the edge into this regime would lead
to a large flux of plasma from the core into the edge and a possible radiation collapse. Since
ag < T/y/n while a ox nT', the limit of small oy and finite « is consistent with larger n and
smaller 7', and we label in Fig. (1) the rough boundary of this effectively forbidden zone as a
“density limit”. In agreement with this, the edge discharge parameters at the density limit

in AUG are similar to those given previously aside from a lower temperature (7, = 50eV)



[10], with corresponding values of oy ~ 0.3 and « ~ 0.5. The energy diffusion rate predicted
by the simulations for these parameters is immense: D = ['), Dy with Dy ~ 60m?/s and
(see Fig. (2a)) T'p, ~ 1. This picture is also consistent with observations on Alcator-C that
confinement degrades as the density limit is approached [3].

In the case oy ~ 1, resistive ballooning modes are weakened by diamagnetic effects [4],
and the turbulence is predominantly caused by a nonlinear electron drift wave instability
[4,7]. This instability relys on the nonlinear production of poloidal pressure gradients, which
(unlike radial gradients) excite unstable drift waves even in the presence of the equilibrium
magnetic shear [7]. The drift waves then grow due to the convection of the electron pres-
sure across the magnetic field, which generates a parallel pressure gradient V|p. and an
associated parallel current through Ohm’s law [7]. This process, however, is inhibited by
electromagnetic effects at very small . This is because the electrons at higher o convect
the magnetic field together with the electron pressure, leading to a large reduction of V,p,
relative to the electrostatic, « = 0 limit (ie. Vyp. = [Vﬁo) +B- Vipe < Vﬁo)pe, where
Pe = Peo + Pe)- This effect can be illustrated by a linear analysis of a constant ambient
density gradient in the y-direction n = nyy. The resulting drift wave growth rate ~, (k)
is shown in Fig. (3) for various values of o (we take agny = 1, ky = 278, 7 = 1, n;. = 0,
€n = 0). The strong suppression with increasing « is consistent with Fig. (2a). A similar
effect was also invoked in Ref. [11].

To estimate the level of o at which the suppression occurs, note from Eq. (1) the magnetic
perturbations become important in our normalized units when (27)%ad; ~ V3, or with
O ~ Wye ~ agky, a ~ k1 /[ag(2m)?]. To obtain k, note the vorticity equation (2) implies
8,V2 ¢ ~ askdd ~ V| J, or with J ~ V¢ (from Ohm’s law) and V| ~ 275 (the inverse
shear length), k; ~ (2m5)% 3a51/ %, As a result, electromagnetic effects become important
for a ~ §2/3(2may) ™3 ~ 0.1 (given ag ~ 1, 5§ ~ 1), consistent with Figs. (2a, 3).

Returning to the issue of transport barrier formation, in a stable system an increased
pressure gradient leads to increased turbulence and enhanced flux, which in turn acts to

flatten the gradient. The gradient therefore evolves to a state in which the energy flux and
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the sources balance. A transport barrier can form spontaneously if the flux decreases with
increasing gradient. In dimensional units the particle flux (comparable to I';,) can be written
as I' = (Dyno/ L) (ag, @y €y, ...). The dependence on the gradient enters explicitly through
the scale length L,,, which decreases as the profiles steepen, as well as implicitly through
the L,-dependence of Dy, oy, o, etc. Excluding the variation of I';,, the flux has a strong
positive power dependence I' ~ ni. The dependence of T';, on n’ must therefore reverse this
for the system to be unstable to the formation of a barrier. This dependence, neglecting the
weak variation of oy ~ n''/*, appears mainly through the parameters o ~ n’ and €, ~ n'~".
For small a4, I', is insensitive to ¢, and increases sharply with a (see Fig. (2a)), which
reinforces the stability of the system. No barrier formation is therefore possible for small
oy.

At higher oy ~ 1, on the other hand, the a-dependence of 'y, (~ I',) shown in Fig. (2a)
is reversed, allowing the possibility that dI',,/d|n’| could change sign. The suppression as-
sociated with increasing « in this case must compete with the contrary n? dependence of
the normalization, as well as a strong destabilizing trend due to decreasing ¢, = 2L, /R
[4] — see Fig. (2b). To determine the net dependence on the scale length, simulations were
carried out in the range ¢, ~ 0.01 — 0.04 for various values of oy, a. After steady transport
levels were established, the profile scale lengths were decreased and the parameters consis-
tently adjusted. These simulations show dI',/d|n'| indeed changes sign, provided « 2 0.4.
The parametric boundary along which dI',,/d|n’| = 0 separates the L and H mode regimes
in Fig. (1), and represents the L-H transition condition in our model. This prediction is
supported by a study of Alcator C-Mod edge parameters at the L-H transition [12].

Poloidal E x B shear flows, generated locally by the turbulence, lead in part to the
large transport reduction with increasing oy seen in Fig. (2a). The ordering on which our
model is based, however, excludes a contribution to the E, shear that can arise from profile
variations beyond the intrinsic turbulence scale. This possibly understates the importance

of E, shear since such profile shear will reinforce the stability of the system during the

steepening process [8,9].



To address this issue, we carried out simulations of the edge pedestal in the context of
a simple model. The model includes a source and sink (radially periodic) in the density
equation (3), intended to represent neutral particle fueling in the edge. In response to the
source, a modulation of the density profile develops that steepens the gradient in the center
of the simulation domain. The strength of the source is chosen so that for oy ~ 1 and
a < 1 the source produces only a slight steepening of the profile before the system comes
into equilibrium. We then slowly increase a with time. With increasing o the transport
drops and the source causes the gradient to steepen, enhancing the turbulence until a new
equilibrium is reached. At a critical value of o the region of maximum pressure gradient
exceeds the L-H threshold condition and the profiles spontaneously begin to steepen. The
subsequent evolution depends on the parameter ¢,: at €, = 0.02 it is smooth and monotonic,
while at €, = 0.01 it is bursty. Fig. (4a) shows the flux Iy, (¢) from a simulation that includes
the source in the latter case, with oy = 1 and (initially) o = 0.05. At ¢ = 1550 the source is
turned on and the value of « is slowly increased at a rate da/dt = 2.5x 1073, This causes the
transport to drop gradually until ¢ = 1630 (« ~ 0.25), when a burst of turbulence produces
a large F x B poloidal sheared flow. This can be seen in Fig. (4b), which shows the time
evolution of the root mean square poloidal E x B velocity gy = ((vgy)2 ,)3/? (dotted line),
ion diamagnetic velocity 74, (dashed), and total ion rotation @;, = vgy + vasy (solid). This
E x B flow sharply reduces the flux and induces a localized transport barrier (much smaller
than the box size), which in turn leads to a steepening of density profile that is reflected in
a slow rise of the ion diamagnetic flow from 1650 to 1750. At ¢ = 1750 (o =~ 0.5) the barrier
is disrupted by a large scale resistive ballooning mode which again produces strong F x B
sheared flow (see Fig. (5a), solid line) and suppression of the transport. A similar event at
t ~ 1820 leads finally to the formation of a global transport barrier at ¢ = 1920. Beyond
this, the diamagnetic velocity in Fig. (4b) increases monotonically as the profiles continue
to steepen, while the total ion flow slowly decays due to effect of magnetic pumping. Since
Viy = Vpy + V4iy = 0, this forces v, to increase in proportion to ¥4, as seen in the figure.

The growth of vg,, the radial profile of which is shown in Fig. (5a) (dotted line) at late time,
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reinforces the bifurcation of the system by suppressing turbulence in the pedestal everywhere
except in a small region surrounding the maximum pressure gradient where E! ~ 0.

The steepening of the profiles following the transition is not limited by the ideal n — oo
MHD stability limit. This is shown in Fig. (5b), which is a plot of the ion pressure profile
at an early (dashed) and late (solid) time in a simulation with ¢, = 0.02, oy = 1. The
a-value at the center of the pedestal, a(x = 0) = 1.6, is well beyond the first stability limit
(¢ = 0.8 at § = 1). Long wavelength ideal modes with k, < 1/L, are stable because the
radial localization of the pedestal gradient greatly weakens the drive of such modes relative
to the stabilizing contribution of magnetic line-bending. Shorter wavelength modes with
kyz1 /L, are stabilized by a combination of w,; and E x B shear effects.

Finally, we point out the thresholds of Fig. (1) are likely to depend on important factors
not discussed here, in particular 7T;/7,, non-circular geometry, and §. Nevertheless, we
expect the framework on which they are based to be robust.

We acknowledge extensive discussions with Drs. T. Carlstrom, M. Greenwald, R. Groeb-

ner, A. Hubbard, R. Moyer, T. Osborne, W. Suttrop, and D. Thomas.
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FIGURES

FIG. 1. Edge plasma phase space

FIG. 2. (a) I'),(«) for ag = 0.25 (squares); ag = 0.5 (triangles); oy = 0.75 (asterisks);
ag = 1 (diamonds); (b)T',,(€,) for oy =1 and o = 0.05 (solid); o = 0.6 (dashed)

FIG. 3. y(kL) for @« = 0 (solid); & = 0.15 (dot); o = 0.3 (dash); « = 0.6 (dot-dash)
FIG. 4. (a) I'y, vs. t at ¢, = 0.01; (b) Ion drifts vs. ¢: @ (solid); U4y (dash); 0, (dot)

FIG. 5. (a) E x B flows before (dash), during (solid), after (dot) transition; (b) early (dash),

late (solid) ion pressure profiles.
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