Second In-Class Exam Math 246, Professor David Levermore Thursday, 18 October 2018

		ır Name: MD SID:		
Discussion Instru		,	harma 9:00	Anqi Ye 10:00
answer a problem th	nen use the back y problem is lo	of one of these page cated. Any work	ges. Clearly indithat you do not	you need more space to icate where your answer want to be considered redit. Good luck!
Please copy and Please print your			edge below.	
				ot given or received any
	S	ignature:		
Problem 1:	/4	Problem 2:	/12	
Problem 3:	/4	Problem 4:	/12	
Problem 5:	/8	Problem 6:	/8	
Problem 7:	/8	Problem 8:	/8	
Problem 9:	/10	Problem 10:	/8	
Problem 11:	/10	Problem 12:	/8	
		Total Score:	/100	Grade:

(1) [4] Give the interval of definition for the solution of the initial-value problem

$$y''' - \frac{e^{2t}}{5+t}y'' + \frac{\sin(5t)}{4-t}y = \frac{3+t}{1-t}, \qquad y(-2) = y'(-2) = y''(-2) = 4.$$

(2) [12] The functions $\cos(2t)$ and $\sin(2t)$ are a fundamental set of solutions to u'' + 4u = 0.

(a) [8] Solve the general initial-value problem

$$u'' + 4u = 0$$
, $u(0) = u_0$, $u'(0) = u_1$.

(b) [4] Find the associated natural fundamental set of solutions to u'' + 4u = 0.

	_			
1 😼	-1	m	11	٠.

(3) [4] Suppose that $X_1(t)$, $X_2(t)$, $X_3(t)$, and $X_4(t)$ solve the differential equation $x'''' - 2x''' + e^t x' + \cos(2t)x = 0$,

Suppose we know that $Wr[X_1, X_2, X_3, X_4](1) = 7$. Find $Wr[X_1, X_2, X_3, X_4](t)$.

- (4) [12] Let L be a linear ordinary differential operator with constant coefficients. Suppose that all the roots of its characteristic polynomial (listed with their multiplicities) are -2 + i3, -2 + i3, -2 i3,
 - (a) [2] Give the order of L.
 - (b) [7] Give a real general solution of the homogeneous equation Lu = 0.
 - (c) [3] Give the degree d, characteristic $\mu + i\nu$, and multiplicity m for the forcing of the nonhomogeneous equation $Lv = t^5 e^{3t}$.

Name:

(5) [8] What answer will be produced by the following Matlab commands?

$$>> ode = 'D2x - 8*Dx + 12*x = 16*exp(2*t)';$$

 $>> dsolve(ode, 't')$

ans =

(6) [8] Find a particular solution $v_P(t)$ of the equation $v'' - v = 2t e^{-t}$.

Name:____

(7) [8] Compute the Green function g(t) associated with the differential operator

$$D^2 + 8D + 16, \quad \text{where} \quad D = \frac{\mathrm{d}}{\mathrm{d}t}.$$

(8) [8] Solve the initial-value problem

$$q'' + 8q' + 16q = \frac{8e^{-4t}}{1+t^2}, \qquad q(0) = q'(0) = 0.$$

$$tx'' - (1+2t)x' + 2x = 0$$
 over $t > 0$.

(You do not have to check that this is true!)

- (a) [3] Show that these functions are linearly independent.
- (b) [7] Give a general solution of the nonhomogeneous equation

$$ty'' - (1+2t)y' + 2y = \frac{16t^2}{1+2t}$$
 over $t > 0$.

(10) [8] Give a real general solution of the equation

$$D^2v - 8Dv + 20v = 8\cos(5t) + \sin(5t)$$
, where $D = \frac{d}{dt}$.

\mathbf{N}	ame	:

(11) [10] The vertical displacement of a spring-mass system is governed by the equation

$$\ddot{h} + 18\dot{h} + 1681h = a\cos(\omega t - \phi),$$

where a > 0, $\omega > 0$, and $0 \le \phi < 2\pi$. Assume CGS units.

- (a) [2] Give the natural frequency and period of the system.
- (b) [4] Show the system is under damped and give its damped frequency and period.
- (c) [4] Give the steady state solution in its phasor form $\operatorname{Re}(\Gamma e^{i\omega t})$.

- (12) [8] When a 10 gram mass is hung vertically from a spring, at rest it stretches the spring 4.9 cm. (Gravitational acceleration is $g = 980 \text{ cm/sec}^2$.) A dashpot imparts a damping force of 900 dynes (1 dyne = 1 gram cm/sec²) when the speed of the mass is 3 cm/sec. Assume that the spring force is proportional to displacement, that the damping force is proportional to velocity, and that there are no other forces. At t = 0 the mass is displaced 3 cm below its rest position and is released with a upward velocity of 5 cm/sec.
 - (a) [6] Give an initial-value problem that governs the displacement h(t) for t > 0. (DO NOT solve this initial-value problem, just write it down!)
 - (b) [2] Is this system undamped, under damped, critically damped, or over damped? (Give your reasoning!)