Quiz 6 Solutions, Math 246, Professor David Levermore Tuesday, 16 October 2018

(1) [5] Compute the Green function for the differential operator $L = D^2 + 4D + 29$.

Solution. The Green function g(t) for L solves the initial-value problem

$$g'' + 4g' + 29g = 0$$
, $g(0) = 0$, $g'(0) = 1$.

The associated characteristic polynomial is

$$p(\zeta) = \zeta^2 + 4\zeta + 29 = (\zeta + 2)^2 + 5^2,$$

which has roots $-2 \pm i5$. Therefore a general solution of the equation is

$$g(t) = c_1 e^{-2t} \cos(5t) + c_2 e^{-2t} \sin(5t) \,.$$

Because $g(0) = c_1$, the initial condition g(0) = 0 implies that $c_1 = 0$. Therefore

$$g(t) = c_2 e^{-2t} \sin(5t)$$
, $g'(t) = 5c_2 e^{-2t} \cos(5t) - 2c_2 e^{-2t} \sin(5t)$.

Because $g'(0) = 5c_2$, the initial condition g'(0) = 1 implies that $c_2 = \frac{1}{5}$. Therefore the Green function for L is

$$g(t) = \frac{1}{5}e^{-2t}\sin(5t)$$
.

Group Work Exercises for Problem 1 [2]

(a) Solve the initial-value problem

$$x'' + 4x' + 29x = \frac{e^{-2t}}{\cos(5t)}, \qquad x(0) = 0, \quad x'(0) = 0.$$

Give the interval of definition of the solution.

(b) Solve the initial-value problem

$$y'' + 4y' + 29y = \frac{e^{-2t}}{\cos(5t)}, \qquad y(0) = 1, \quad y'(0) = 0.$$

Hint: You can use the answer to (a) as the particular solution.

(2) [3] Find the amplitude and phase of the simple harmonic motion

$$h(t) = 5\cos(3t) - 12\sin(3t)$$

Solution. The point in the plane with Cartesian coordinates (5, -12) lies in the fourth quadrant and has polar coordinates (a, ϕ) with

$$a = \sqrt{5^2 + (-12)^2} = \sqrt{25 + 144} = \sqrt{169} = 13,$$

$$\phi = 2\pi - \tan^{-1}\left(\frac{12}{5}\right).$$

Therefore the amplitude is a = 13 and the phase is $\phi = 2\pi - \tan^{-1}\left(\frac{12}{5}\right)$.

Remark. There are many ways to express ϕ . For example, because ϕ is in the fourth quadrant we know that $\frac{3\pi}{2} < \phi < 2\pi$. Using either 2π or $\frac{3\pi}{2}$ as a reference we have

$$\phi = 2\pi - \tan^{-1}\left(\frac{12}{5}\right), \qquad \phi = \frac{3\pi}{2} + \tan^{-1}\left(\frac{5}{12}\right), \\ \phi = 2\pi - \sin^{-1}\left(\frac{12}{13}\right), \qquad \phi = \frac{3\pi}{2} + \sin^{-1}\left(\frac{5}{13}\right), \\ \phi = 2\pi - \cos^{-1}\left(\frac{5}{13}\right), \qquad \phi = \frac{3\pi}{2} + \cos^{-1}\left(\frac{12}{13}\right).$$

The first column uses 2π as the reference while the second uses $\frac{3\pi}{2}$. Other inverse trigonometric functions could have been used. Only one correct answer (and no wrong answers) was required for full credit.

Remark. This oscillation has frequency 3 and period $\frac{2\pi}{3}$.

(3) [2] The displacement h(t) of a spring-mass system is governed by

$$\ddot{h} + 2\eta \dot{h} + 25h = f(t) \,,$$

where $\eta \ge 0$ and f(t) is a forcing. For what values of η is the system under damped? Solution. The system is under damped when $0 < \eta < \omega_o$. Because the natural frequency of this system is $\omega_o = \sqrt{25} = 5$, the system is under damped when

$$0 < \eta < 5.$$

Alternative Solution. The system is under damped when $\eta > 0$ and the associated characteristic polynomial has conjugate roots. Because the associated characteristic polynomial is

$$p(\zeta) = \zeta^2 + 2\eta\zeta + 25 = (\zeta + \eta)^2 + 25 - \eta^2,$$

it has a conjugate pair of roots whenever $25 - \eta^2 > 0$. Therefore the system is under damped when

$$0 < \eta < 5$$
.

Group Work Exercises for Problems 2 and 3 [5]

- (a) Express $h(t) = 5\cos(3t) 12\sin(3t)$ in both its Cartesian and polar phasor form.
- (b) For what values of $\eta \geq 0$ is the system in Problem 3
 - (i) undamped?
 - (ii) critically damped?
 - (iii) over damped?
- (c) Let $\eta = 0$ and $f(t) = 7\cos(\omega t)$. For what value of ω does resonance occur for the system in Problem 3?
- (d) Let $\eta = 3$ and $f(t) = 5\cos(3t) 12\sin(3t)$. Give the steady-state solution for the system in Problem 3 in its Cartesian phasor form.
- (e) Let $\eta = 3$ and f(t) = 0. Give the solution of the system in Problem 3 that satisfies the initial conditions h(0) = 0 and $\dot{h}(0) = 6$. Put it in amplitude-phase form. Give the natural frequency ω_o , natural period T_o , damped frquency ω_η , and damped period T_η of this system.

Group Work Exercises for Exam 2 [3]

The functions 1 + t and e^t are solutions of the homogeneous equation

$$t x'' - (1+t)x' + x = 0$$
 over $t > 0$.

(You do not have to check that this is true!)

- (1) Compute the general Green function G(t, s) associated with 1 + t and e^t .
- (2) Solve the initial-value problem

$$ty'' - (1+t)y' + y = -\frac{t^2}{1+t}$$
 $y(2) = 0, \quad y'(2) = 0.$

(3) Give a general solution of the nonhomogeneous equation

$$ty'' - (1+t)y' + y = -\frac{t^2}{1+t}$$
 over $t > 0$.