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1 Introduction

We are interested in studying the Cauchy problem for the incompressible 3D Navier-Stokes Equations
(NSE), a vector valued PDE written as

∂tv + (v · ∇)v = ∆v −∇p, (1.1)

∇ · v = 0, (1.2)

v(0) = v0, (1.3)

where v(t, x) : [0,∞)×R3 → R3 is thought of as the velocity field of some fluid and p(t, x) : [0,∞)×R3 → R
as the scalar pressure.

The first things we notice is that the unknown we are solving for is v, but annoyingly this is not a closed
form equation for v. However, the incompressibility condition (1.2), allows us to obtain a closed form as
follows. Take the divergence of (1.1) to obtain

−∆p = ∇ · (v · ∇)v = ∂xivj∂xjvi.

Then, by taking the inverse Laplacian, we may write (1.1) as

∂tv + (v · ∇)v = ∆v +∇∆−1(∂xivj∂xjvi), (1.4)

∇ · v = 0 (1.5)

v(0) = v0. (1.6)

More importantly for us, this reconstruction operation can be written as

p = K ∗ (v⊗ v) (1.7)

where K(x, y) is the kernel of (−∆)−1(div div). When the derivatives coincide, i.e. terms of the form
∆−1∂xj∂xj , we have a delta-function contribution, which is bounded from H2 → L2. From the other terms,
we obtain a singular integral operator. This allows us to pass a-priori estimates on the velocity to the
pressure.

Second, we note how the equations scale. In particular, for λ > 0 and v a solution to (1.1), define

vλ =
1

λ
v

(
x

λ
,
t

λ2

)
,

vλ0 =
1

λ
v
(x
λ

)
,

so that vλ is a solution to (1.1) with initial data vλ0 .
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We are interested in self-similar solutions. For (1.1), that exactly means a solution pair v should be
invariant under the scaling the equations, i.e. v = vλ for each λ > 0. Now, if v is a self-similar solution to
(1.1) on [0, T )× R3, it is clear that v can be extended to a self-similar solution on [0,∞)× R3 via

v(t, x) =
1

λ
v

(
x

λ
,
t

λ2

)
where the right hand side is defined for λ2 > t/T . So, self-similar solutions are always global.

Clearly, in order for an initial data v0 to have a self-similar solution in any reasonable sense, we must
have

v0(x) = vλ0 (x) = λ−1v(λ−1x).

In other words, an initial data v0 ought to be −1-homogeneous for us to expect existence.
If we are interested in what restrictions on we must place on an initial data to guarantee existence, it

is natural to try and find a norm which will be invariant under the scaling v 7→ vλ, i.e. a critical space for
(1.1). In particular v = vλ, so the only spaces, which contain self-similar solutions are critical spaces.

By a simple calculation, one notices that ‖vλ‖L3 is independent of λ and thus L3(R3) is the critical
Lebesgue space for NSE. In L3, we have the following classical local well-posedness theorem of Kato ([3]):

Theorem 1.1 (Kato). Let u0 ∈ L3 be a divergence free (in the sense of distributions) vector field on R3.
Then, there exists ε0 a universal constant and T = T (u0), such that there exists a unique divergence-free
mild solution to (1.1), u ∈ C([0, T );L3) and if ‖u0‖L3 ≤ ε0, we may take T =∞. That is, u satisfies (1.1)
in the sense that

u(t) = et∆u0 +

∫ t

0

e(t−s)∆ [K ∗ (u⊗u) +∇ · (u⊗u)] (s) d s

for each 0 ≤ t < T , where the equality is in the sense of L3(R3).

So, in L3, a critical space, we have local existence and uniqueness to (1.1) for any large initial data. In
fact, L3 is the largest critical space for which local well-posedness is known for all initial data. However, L3

does not contain any −1-homogeneous initial data. Indeed, |x|−1 /∈ L3(R3). But, we do have |x|−1 in the
weak space L3,∞(R3). It is easy to verify that L3,∞(R3) satisfies that same scaling as L3(R3) and is also a
critical space for (1.1). However, it is strictly larger than L3(R3).

The following theorem of Hao Jia and Vladimir Sverak ([2]) states that this (along with some regularity)
is actually sufficient to guarantee the existence of self-similar solution:

Theorem 1.2 (Hao/Sverak). Let v0 be −1-homogeneous (v0 = vλ0 for each λ > 0) and smooth away from 0.
Then, there exists at least one v smooth away from (t, x) = (0, 0), a self-similar solution to (1.1) with initial
data v0.

We will state later exactly in what sense v is a solution to (1.1). But, it is already possible to see why
this theorem is interesting. First, note that since v0 is −1-homogeneous, it is completely determined by its
restriction to S2, where it is smooth and hence bounded. In particular, ‖v0|S2‖L∞ = ‖v0‖L3,∞ seems like a
natural way to measure such initial data. However, there is no size restriction on v0. This is an existence
result for large initial data in a critical space L3,∞ which is strictly larger than L3.

Second, the restrictions on the initial data are very mild. In some sense, Hao and Sverak show that the
bare minimum restriction on v0 plus some regularity, necessarily implies existence of a (smooth) self-similar
solution.

Remark. Note that unlike Kato’s local well-posedness theorem, we do not get uniqueness from Hao and
Sverak’s theorem. Indeed, in general we do not even expect uniqueness to be true for large initial data. The
difference comes from the use of the Banach fixed point theorem (contraction mapping principle) in the local
well-posedness as opposed to the Leray-Schauder continuation theorem in Hao/Sverak. The Leray-Schauder
theorem is a variant of the Schauder fixed point theorem, which like the finite dimensional version Brouwer’s
fixed point theorem, definitely says nothing about uniqueness.
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In the second section, we introduce a few preliminary results concerning the 3D Navier-Stokes equations,
define what we mean by a solution, and introduce our abstract technique for proving existence. We then
conclude in the third section with a sketch of the proof of Hao and Sverak’s theorem.

2 Preliminaries

2.1 Energy inequalities and Leray Solutions

For a classical solution v(t, x) ∈ C∞([0,∞)×R3) to (1.1) which vanishes sufficiently rapidly, we have the
nonlinearity paired with itself vanishes since:∫

R3

(v · ∇)v · v =

∫
R3

vivj∂xivj

= −
∫
R3

v2
j∂xivi + vjvi∂xivj

= −
∫
R3

(v∇)v · v.

Thus, we obtain the following energy equality:

1

2

d

d t
‖v(t)‖2L2 =

∫
R3

v · ∂tv

=

∫
R3

v · (∇p)− [(v · ∇) v] · v + v ·∆v

=

∫
R3

vi∂xip+ vi∂xjxjvi

= −
∫
R3

(p∂xivi) + ∂xjvi∂xjvi

= −
∫
R3

|∇v|2

Or, integrating,

‖v(t)‖2L2 + 2

∫ t

0

‖∇v(s)‖2L2 d s = ‖v(0)‖2L2 . (2.1)

Thus, it is natural for us to require a weak solution to (1.1) to be in L2([0, T ); Ḣ1)∩L∞([0, T );L2). However,
since we are working with functions that look like |x|−1, we can’t quite expect that level of integrability from
our solutions. But, we can expect at least that our solutions are locally (uniformly) finite in these norms.
In particular, we define a solution to (1.1) as:

Definition 2.1 (Leray Solution). A function v ∈ L2
loc([0,∞) × R3) is said to be a Leray solution to (1.1)

with initial data v0 ∈ L2
loc(R

3) if

• There exists a distribution p such that equation (1.1) is satisfied by (v, p) in the sense of distributions.

• v is locally uniformly L∞L2 ∩ L2Ḣ1, in the sense that for each R > 0,

sup
0≤t<R2

[
sup
x0∈R3

∫
BR(x0)

|v(t, x)|2 dx

]
+ sup
x0∈R3

∫ R2

0

∫
BR(x0)

|∇v(t, x)|2 dx d t <∞ (2.2)

• Moreover, v decays at infinity sufficiently fast so that we may make sense of the pressure reconstruction
(1.7), in particular,

lim
|x0|→∞

∫ R2

0

∫
BR(x0)

|v(t, x)|2 dx d t = 0
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for each R > 0.

• v is divergence-free in the sense of distributions.

• v obtains the initial data in the sense that

‖v(t)− v0‖L2(K) → 0

for each K ⊂ R3 compact.

• Finally, v is “suitable” in the sense that it satisfies a weaker, local version of the energy inequality.
Namely, for each 0 < t <∞ and φ ∈ C∞C ((0,∞)× R3) with φ ≥ 0, we have∫

R3

|v(t)|2φ+ 2

∫ t

0

∫
R3

|∇v|2φ ≤
∫ t

0

∫
R3

|v|2(∂tφ+ ∆φ) +

∫ t

0

∫
R3

(|v|2 + 2p)v · ∇φ. (2.3)

Basically, these are the weak solutions to (1.1) which aren’t horribly whacked. Moreover, they still come
with an a-priori estimate resembling (2.1).

Theorem 2.1 (A-priori estimates for Leray Solutions). Let v0 ∈ L2
unif (R3) and v a Leray Solution starting

from v0. Then, for any fixed R > 0, there exists a λ > 0 such that

sup
0≤t<λR2

[
sup
x0∈R3

∫
BR(x0)

|v(t)|2
]

+ 2 sup
x0∈R3

∫ λR2

0

∫
BR(x0)

|∇v|2 ≤ C sup
x0∈R3

∫
BR(x0)

|v0|2. (2.4)

As a reference for Leray solutions, pretty much the only exposition of them I could find is the book ([4]).
For general information about weak solutions, I have found the book ([6]) to be a good resource.

2.2 Leray-Schauder Degree Theory

The main soft analysis result we will use here to prove existence is the following:

Theorem 2.2 (Leray-Schauder Continuation). Suppose X is a Banach space, F : X → X is compact with
a unique fixed point F (x∗) = x∗ and (Frechet) differentiable at x∗ with Dx∗ [Id − F ] = Id ∈ GL(X), and
G : X → X is compact. Further suppose H : [0, 1]×X → X with H(0) = F and H(1) = G such that:

• A-priori bounds - there exists a constant C independent of t, such that H(t, x) = x implies ‖x‖X ≤ C

• Compactness - H is compact with respect to the product topology on [0, 1]×X.

Then, there exists a (not necessarily unique) fixed point to the problem G(x) = x in X.

This is a bit abstract, so to think of why this might be useful for proving existence, think of F as a
solution operator to some initial value problem with small initial data (so that the problem is well-posed)
and G as the solution operator to same problem, but for large initial data. Then, this theorem says that if
you can compactly deform F to G, then the well-posedness of small initial data implies existence for large
initial data (but not necessarily uniqueness).

Now, this isn’t exactly a standard analytic tool and is rather unintuitive the first time you see it, so I’ve
tried to give some idea of why it’s true. In particular, the standard proof uses the topological idea of degree
theory.

Degree theory is basically the idea that I want that counting the number of solutions of a problem
f(x) = 0 in some domain, is almost a topological invariant. In finite dimensions, fix Ω ⊂ Rn compact and
f ∈ C∞(Ω;Rn). Further, if Dxf is an isomorphism whenever f(x) = 0, (i.e. 0 is a regular value) f has
finitely many 0’s in Ω and the following sum is defined:

deg(f,Ω) =
∑
xi

sgn(detDfxi).

This roughly counts the number of solutions to the equation f(x) = 0 where x ∈ Ω up to some orientation
of the solution. For us, the important properties this satisfies are the following:
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• If deg(f,Ω) 6= 0, then there exists x ∈ Ω such that f(x) = 0.

• If 0 ∈ Ω, deg(Id,Ω) = 1

• If H : [0, 1] × Ω → Rn is C∞ with 0 a regular value, 0 /∈ H([0, 1], ∂ Ω), and H(0) = f and H(1) = g
(such a function H is called an admissible homotopy from f to g), then

deg(f,Ω) = deg(g,Ω).

Remark. The third property shows that deg(f,Ω) is invariant under certain continuous deformations of the
function f , which makes deg into a topological invariant of the space C∞(Ω,Rn), i.e. deg : C∞ → Z is
continuous, which we will be very useful for us. The more natural definition of simply counting solutions to
f(x) = 0 does not satisfy this property, which is why we prefer the slightly less intuitive signed count.

Remark. For any point p ∈ Rn a regular value for f , f(x) = p has finitely many solutions. Therefore, using
the “continuity” of deg, by Sard’s theorem and the Stone-Weierstrauss theorem, we may extend deg to be
defined on all functions f ∈ C(Ω;Rn) satisfying the same properties as above.

Now, this would be great if we were interested in studying the fixed points of finite dimensional problems.
But we are more interested in the situation

F (x) = x

where F : X → X for X a Banach space. However, in this case we cannot extend deg to all continuous
functions f ∈ C(Ω;X), but rather only functions F with finite dimensional approximations, namely compact
mappings. Indeed, the Leray-Schauder degree is the extension of deg to

K(Ω;X) = {Id− C | C : Ω→ X is compact}.

The extension also written as deg, satisfies slight variants of the above properties:

• If deg(Id− F,Ω) 6= 0, then there exists x ∈ Ω such that F (x) = x.

• If 0 ∈ Ω, deg(Id,Ω) = 1

• If H : [0, 1]×Ω→ X is compact (with respect to the product topology on [0, 1]×Ω), continuous with
0 /∈ H(0, ∂ Ω), and H(0) = Id− F and H(1) = Id−G, then

deg(Id− F,Ω) = deg(Id−G,Ω).

Given this degree function on K(Ω;X) with the above properties, it is quite easy to prove the Leray-
Schauder theorem. All the work really lies in constructing such a degree.

Leray-Schauder Continuation. Since H(t, x) satisfies the a-priori bound, we may pick Ω = BC(0) ⊂ X the
ball of radius C. Then, by assumption H is an admissible homotopy from the restriction of F to Ω to the
restriction of G to Ω. Hence,

deg(Id− F,Ω) = deg(Id−G,Ω).

On the other hand,
deg(Id− F,Ω) = 1,

since returning to our original definition counts the one solution to the problem x− F (x) = 0 in Ω and we
have chosen the sign at x∗ by picking the orientation Dx∗ [Id− F ] = Id. In particular,

deg(Id−G,Ω) 6= 0

gives G(x) = x for some x ∈ Ω.
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3 Proof Sketch

3.1 Step One: Functional set up

Now, we want to pick the proper spaces and operators to apply the Leray-Schauder Continuation Theo-
rem. First, we use self-similarity to reduce the problem and find the object which should be a fixed point.
For any u(t, x), a Leray solution with initial data u0, is completely determined by its profile at time t = 1,
U(x) = u(1, x) via

u(x, t) =
1√
t
U

(
x√
t

)
,

where U(x) satisfies an elliptic equation G U = 0 and has decay at infinity |U(x)| . |x|−1. In fact, u(t, x) is
a self-similar solution to NSE if and only if G U = 0 and |U(x)| . |x|−1.

Further, we may decompose
U(x) = e∆u0 + V.

where V then satisfies the elliptic equation

−∆V − V

2
− x

2
· ∇V +∇P = L(V, u0) (3.1)

∇ · V = 0 (3.2)

where
L(u0, V ) = −

[
V · ∇V + e∆u0 · ∇V +∇e∆u0 · V + e∆u0 · ∇e∆u0

]
and P (x) = p(x, 1). Let S : X → X be the solution operator to the above, so that S(f) satisfies (3.1) with
right hand side f . Then, define H(µ, V ) = S(L(V, µu0)). Further, pick X to be the Banach space

X = {f ∈ C1(R3;R3) | ∇ · f = 0, ‖f‖X <∞}

where the norm is given by
sup
x∈R3

[
(1 + |x|2)|f(x)|+ (1 + |x|3)|∇f(x)|

]
.

We claim this is the functional analytic set-up want to work in. There are many things to verify:

Lemma 3.1. There is a well-defined function H(µ, V ) : [0, 1]×X → X which is obtain via the composition
S ◦ L.

Lemma 3.2. For u(t, x) and V (x) related as above, u is a self-similar Leray solution with initial data µu0,
if and only if H(µ, V ) = V .

Together, these two claims give that if we can apply the Leray-Schauder Continuation theorem to H,
then there exists a self-similar solution to (1.1) and the proof is complete. It will still remain to show that
the hypotheses of the Leray-Schauder theorem apply to H. That is exactly the content of the following three
claims:

Lemma 3.3. There exists a unique V ∗ ∈ X such that H(0, V ∗) = V ∗ and DV ∗ [H(0, ·)] = 0.

Lemma 3.4. There exists a constant C = C(u0) independent of µ such that if H(µ, V ) = V , then ‖V ‖X ≤ C.

Lemma 3.5. The map H(µ, V ) : [0, 1]×X → X is continuous and, in particular, compact.

We shall now prove claim 1: It suffices to show that there exists such an operator S : X → X. We
isolated the terms on the left hand side of (3.1) because in normal coordinates this becomes a forced Stokes
system,

∂tv −∆v +∇p = t−3/2F

(
x√
t

)
(3.3)

∇ · v = 0 (3.4)

v(0, x) = 0 (3.5)

with V (x) = v(1, x). Stokes systems have been studied and the following is true:
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Theorem 3.6. Suppose v ∈ L∞t L
γ
x for some γ > 1. If v solves (3.3) for some distribution p, then if

F ≤ C1

1+|x|3 , v is uniquely defined as the mild solution,

v(t, x) =

∫ t

0

e(t−s)∆ P s−3/2F (s−1/2x) d s

where P denotes the projection onto the subspace of divergence-free vector fields. Moreover, if V (x) = v(1, x),

‖V ‖X . C1 and ‖V ‖C1,α(BR(0)) .α,R C1.

Clearly, V ∈ X implies v(t, x) = t−1/2V (t−1/2x) ∈ L∞Lp so that the Stokes system has a well-defined
solution. Now, since L(V, µ) ∈ X for V ∈ X, it follows that H(V, µ) is well defined on X. Since L(V, µ)
actually has decay like |x|−3, when V ∈ X, we obtain H(V, µ) maps X into X.

And now, claim 2: If V ∈ X is a fixed point H(1, V ) = V , then clearly V satisfies the above elliptic PDE
(3.1), which implies G U = 0 and has the requisite decay. If u is a self-similar Leray solution with initial
data u0, it follows that V satisfies the elliptic PDE (3.1) above. It remains only to show that V ∈ X. We
will show this and claim 3 simultaneously by proving an a-priori bound for H.

3.2 Step Two: A priori bounds

Suppose u(t, x) is a self-similar Leray solution with initial data u0. Then, it is clear that |U(x)| ≤
C(1 + |x|)−1. However, when we look at U as a perturbation of the heat evolution, we gain two powers of
|x| in decay. Indeed, we have the following improvement:

|∂α(U(x)− e∆u0)| ≤ C(α, u0)

1 + |x|3+α
,

which is actually the whole point of the functional set-up. Moreover, U is smooth.
We proceed as follows. For any “good” point of the initial data, i.e. not 0, u0 is smooth nearby. Suppose

this smoothness around propagates forward for some small time uniformly for any Leray solution starting
from u0. In particular, we mean for any good point there exists a T (u0) > 0 such that for any u a Leray
solution starting from u0 we have

‖∂αx ∂
β
t ‖L∞(B×[0,T ]) ≤ C(‖u0‖L∞(B))

Then, we can cover S2 ⊂ R3 by balls B1/2(x0), for which we have a uniform estimate of ‖u0‖L∞ and in
particular,

‖∂αx ∂t‖L∞(B1/2(x0)×[0,T ])

is uniformly bounded independent of x0. Therefore, by the mean value theorem, we can write

|u(t, x)− u0| ≤ Ct

for 1/2 ≤ |x| ≤ 3/2 and 0 ≤ t ≤ T . But, for any λ > 0, uλ is a Leray solution starting from u0, and satisfies
the same estimate by uniformity over all Leray solutions.

|λ−1u(tλ−2, xλ−1)− u0(x)| ≤ Ct

Now, picking λ =
√
t and using −1-homogeneity of u0,

|u(1, xt−1/2)− u0(xt−1/2)| ≤ Ct3/2.

But, this just
|U(y)− u0(y)| ≤ C|y|−3
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for |y| ≥ 1/(2T ). Since the heat profile at time 1 satisfies the same scaling, we also have

|e∆u0(y)− u0(y)| ≤ C|y|−3

for |y| ≥ 1/(2T ). On the other hand, we can use our a-priori estimates for Leray solutions to give U ∈
H1(B1/T (x)). Since U satisfies an elliptic equation, elliptic estimates give U is smooth and bounded for
|y| ≤ 3/(2T ). Therefore, boundedness of the heat profile gives

|U(y)− e∆u0(y)| ≤ C

1 + |y|3

for each y ∈ R3. We can do the same estimate on the derivatives of U to obtain the desired improvement.
The key property we used was that Leray solutions are nice enough to propagate regularity for short

time which is interesting in and of itself.

3.3 Step Three: Compactness and Well-Posedness for small µ

In this case, compactness comes from the properties of the solution operator S to the Stokes system
(3.3). In particular, if f ∈ C1, S(f) is in C1,α

loc and we gain regularity. Moreover, if f decays like |x|−4, which
L(V, µ) does, then S(f) decays like |x|−3, so that we gain decay. Therefore, H(µ, V ) : X × [0, 1] → X is a
compact map.

Finally, unique solvability of H(µ, V ) = V for µ = 0 follows from uniqueness to the Navier-Stokes
equations in X for small data. Also, we compute the derivative at V = 0, the unique fixed point for µ = 0,

D0H(0, V ) = D0S(V · ∇V ) = D0S(V · ∇0 + 0 · ∇V ) = D0S(0) = 0.
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