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History

Starting in the 1800s integral operators arose in many settings.

Niels Henrik Abel (1823)
Carl G. Neumann (1877)
Giuseppe Peano (1886, 1890)
Émile Picard (1890)
Ernst Lindelöf (1894)
William F. Osgood (1898)
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History

General theories were developed in the early 1900s.

Ivar Fredholm (1900, 1903)
David Hilbert (1904)
Erhard Schmidt (1907)

These focused on integral equations in the form

u(x)−
∫ b

a
k(x , y)u(y) dy = f (x) ,

where [a, b] ⊂ R, and the kernel k(x , y) is continuous over [a, b]2, and
forcing f (x) is continuous over [a, b]. Hilbert and Schmidt extended their
results to some so-called singular kernels.
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History

Major advances in the theory of singular integral operators followed.

William H. Young (1912)
Godfrey H. Hardy, John E. Littlewood (1928, 1930)
Sergei Sobolev (1938)
Alberto Cauldrón, Antoni Zygmund (1956)

Here we will present some extensions of these advances.
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Integral Operators

Let (X ,Σµ,dµ) and (Y ,Σν ,dν) be positive σ-finite measure spaces.
Let M(dµ) and M(dν) be the spaces of all complex-valued dµ-measurable
and dν-measurable functions respectively.
We consider linear integral operators K in the form

Ku(y) =
∫

k(x , y) u(x) dµ(x) , (1.1)

where the kernel k is a complex-valued measurable function with respect
to the σ-algebra Σµ⊗ν .
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Integral Operators

We give conditions on k that imply the operator K is bounded or even
compact from X to Y where (X , ‖ · ‖X ) and (Y, ‖ · ‖Y) are Banach spaces
of functions that are contained within M(dµ) and M(dν) respectively.
We will first do this for classical Lebesgue spaces — namely, for cases
where

X = Lp(dµ) and Y = Lq∗(dν) for some p, q∗ ∈ [1,∞] .

We will then extend these results to weak Lebesgue spaces — namely, to
cases where

X = Lp
w (dµ) or Y = Lq∗

w (dν) for some p, q∗ ∈ (1,∞) .
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Lebesgue Spaces

For any positive σ-finite measure space (X ,Σµ,dµ) and any p ∈ (0,∞)
we define the Lebesgue space Lp(dµ) by

Lp(dµ) =
{

u ∈ M(dµ) :
∫
|u(x)|p dµ(x) <∞

}
. (2.2)

For every p ∈ (0,∞) we define the magnitude of u ∈ Lp(dµ) by

[u]Lp =
(∫
|u(x)|p dµ(x)

) 1
p
. (2.3)

It is clear from (2.2) that for every u ∈ M(dµ) we have u ∈ Lp(dµ) if and
only if [u]Lp <∞.
It is also clear that [λ u]Lp = |λ| [u]Lp for every u ∈ Lp(dµ) and every
λ ∈ C.
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Lebesgue Spaces

For every p ∈ [1,∞) the Minkowski inequality implies that [ · ]Lp satisfies
the triangle inequality, and is thereby a norm. In that case Lp(dµ) is a
Banach space equipped with the norm

‖u‖Lp = [u]Lp =
(∫
|u(x)|p dµ(x)

) 1
p
. (2.4)

For every p ∈ (0, 1) it can be shown that [ · ]Lp fails to satisfy the triangle
inequality, and is thereby not a norm. However, in that case Lp(dµ) is a
Frechét space equipped with the metric

d(u, v)Lp = [u − v ] p
Lp =

∫
|u(x)− v(x)|p dµ(x) . (2.5)
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Lebesgue Spaces

Finally, we define the Lebesgue space L∞(dµ) by

L∞(dµ) =
{

u ∈ M(dµ) : ess sup
x∈X

{
|u(x)|

}
<∞

}
. (2.6)

Then L∞(dµ) is a Banach space equipped with the norm

‖u‖L∞ = ess sup
x∈X

{
|u(x)|

}
= inf

{
α > 0 : µ

(
Eu(α)

)
= 0

}
, (2.7)

where Eu(α) = {x ∈ X : |u(x)| > α}. Here we adopt the usual
convention that inf{∅} =∞.
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Weak Lebesgue Spaces

Early work did not apply to kernels over RD × RD of the form
k(x , y) = |x − y |−D

r for some r ∈ (1,∞) when dµ and dν are each
Lebesgue measure. This problem was overcome by bounds that grew out
of the pioneering work of Hardy and Littlewood. Their work led to a class
of spaces that allow the treatment of such kernels — namely, the weak
Lebesgue spaces.
For any positive σ-finite measure space (X ,Σµ,dµ) and any p ∈ (0,∞)
we define the weak Lebesgue space Lp

w (dµ) by

Lp
w (dµ) =

{
u ∈ M(dµ) : sup

α>0

{
αpµ(Eu(α))

}
<∞

}
, (2.8)

where Eu(α) = {x ∈ X : |u(x)| > α}.
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Weak Lebesgue Spaces

For every p ∈ (0,∞) it is clear that Lp(dµ) ⊂ Lp
w (dµ). Indeed, for every

u ∈ Lp(dµ) and every α > 0 the Chebyshev inequality yields

µ(Eu(α)) =
∫

Eu(α)
dµ(x) ≤ 1

αp

∫
Eu(α)

|u(x)|p dµ(x) ≤ 1
αp

∫
|u(x)|p dµ(x) = 1

αp [u] p
Lp(dµ) .

It thereby follows that

sup
α>0

{
αpµ(Eu(α))

}
≤ [u] p

Lp(dµ) <∞ ,

whereby u ∈ Lp
w (dµ). In general Lp

w (dµ) is larger than Lp(dµ). For
example, when X = RD and dµ is the unsual Lebesgue measure on RD

then it can be shown that the function u(x) = |x |−
D
p is in Lp

w (dµ) but it is
clearly not in Lp(dµ).
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Weak Lebesgue Spaces

For every p ∈ (0,∞) we define the magnitude of every u ∈ Lp
w (dµ) by

[u]Lp
w

=
(

sup
α>0

{
αpµ(Eu(α))

}) 1
p
. (2.9)

It is clear from (2.8) that u ∈ Lp
w (dµ) if and only if [u]Lp

w
<∞.

However, [ · ]Lp
w

is not a norm. While it satisfies [λu]Lp
w

= |λ| [u]Lp
w

for
every u ∈ Lp

w (dµ) and λ ∈ C, it fails to satisfy the triangle inequality.
However, the next result shows there is an equivalent norm for p ∈ (1,∞).
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Weak Lebesgue Spaces

Theorem

For every p ∈ (1,∞) and every u ∈ M(dµ) we define

‖u‖Lp
w

= sup
E∈Σµ

 1
µ(E )

1
p∗

∫
E
|u(x)|dµ(x) : µ(E ) ∈ (0,∞)

 . (2.10)

For every u ∈ M(dµ) we can show that u ∈ Lp
w (dµ) if and only if

‖u‖Lp
w
<∞. Moreover,

[u]Lp
w
≤ ‖u‖Lp

w
≤ p∗[u]Lp

w
for every u ∈ Lp

w (dµ) . (2.11)
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Weak Lebesgue Spaces

Remark. It is easily checked from definition (2.10) that ‖ · ‖Lp
w

is a norm.
The result stated above shows that the space Lp

w (dµ) is characterized by
the finiteness of this norm for every p ∈ (1,∞).
Remark. If u ∈ Lp(dµ) for some p ∈ (1,∞) then by applying the Hölder
inequality inside the sup of (2.10) and using the fact that
‖1E‖Lp∗ = µ(E )

1
p∗ shows that

‖u‖Lp
w
≤ ‖u‖Lp .

Here 1E denotes the indicator function of the set E .
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Convolution Operators

Let (G ,+) be an Abelian group with Haar measure dm defined over the
σ-algebra Σm. (Recall that the Haar measure is a positive measure that is
translation invariant; it is unique up to a positive constant factor.) Given
two functions w and u defined over G , we define their convolution to be
the function w ∗ u that is formally given by

w ∗ u(y) =
∫

w(y − x) u(x) dm(x) . (3.12)

This can be viewed as an integral operator of the form (1.1) where
X = Y = G , dµ = dν = dm, Σµ = Σν = Σm and k(x , y) = w(y − x).
Such operators are called convolution operators. In this setting, w is called
the convolution kernel.
Here we give bounds that insure the convolution (3.12) maps between
either classical Lebesgue spaces or weak Lebesgue spaces.
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Young Convolution Inequality

We begin with the classical Young convolution inequality.

Theorem
Let p, q, r ∈ [1,∞] satisfy the relation

1
p + 1

q + 1
r = 2 . (3.13)

For every u ∈ Lp(dm), v ∈ Lq(dm), and w ∈ Lr (dm) we have∫∫ ∣∣w(y − x) u(x) v(y)
∣∣ dm(x) dm(y) ≤ ‖u‖Lp ‖v‖Lq ‖w‖Lr . (3.14)
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Hardy-Littlewood-Sobolev Inequalities

In the Young convolution inequality (3.14) the function w sits in Lr (dm).
When r ∈ (1,∞) the Hardy-Littlewood-Sobolev inequalities allows this
class to be extended to Lr

w (dm). The first Hardy-Littlewood-Sobolev
inequality is as follows.

Theorem
Let r ∈ (1,∞). For every u ∈ L1(dm) and w ∈ Lr

w (dm) we have

‖w ∗ u‖Lr
w ≤ ‖u‖L1 ‖w‖Lr

w . (3.15)
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Hardy-Littlewood-Sobolev Inequalities

The second Hardy-Littlewood-Sobolev inequality is as follows.

Theorem
Let p, q, r ∈ (1,∞) that satisfy relation (3.13). Then there exists a
positive constant Cp,q,r

G,w such that for every u ∈ Lp
w (dm) and w ∈ Lr

w (dm)
we have

‖w ∗ u‖Lq∗
w
≤ Cp,q,r

G,w [u]Lp
w

[w ]Lr
w . (3.16)

We can establish (3.16) with

Cp,q,r
G,w = p∗q∗r∗

p q . (3.17)
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Hardy-Littlewood-Sobolev Inequalities

The third Hardy-Littlewood-Sobolev inequality is as folows.

Theorem
Let p, q, r ∈ (1,∞) that satisfy relation (3.13). Then there exists a
positive constant Cp,q,r

G such that for every u ∈ Lp(dm), v ∈ Lq(dm), and
w ∈ Lr

w (dm) we have∫∫ ∣∣w(y−x) u(x) v(y)
∣∣ dm(x) dm(y) ≤ Cp,q,r

G ‖u‖Lp ‖v‖Lq [w ]Lr
w . (3.18)

We can establish (3.18) with

Cp,q,r
G = r∗

pq

(p∗
r

) 1
r + r

p∗r∗
(q∗

r

) 1
r + r

q∗r∗

≤ p∗q∗r∗
p q r 2 . (3.19)
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Calderon-Zygmund Inequality
We specialize to the case in which G = RD and dm is the usual Lebesgue
measure on RD. Calderon-Zygmund theory implies the following.
Let w be a complex-valued function over RD that has the factored form

w(z) = h(|z |) j
( z
|z |

)
, (3.20)

where h is Lipschitz continuous away from z = 0 and satisfies
sup{|z |D|h(|z |)| : |z | > 0} <∞, while j is Lipschitz continuous over SD−1

and satisfies the cancellation condition∫
SD−1

j(o) dS(o) = 0 . (3.21)

Here dS denotes the usual Lebesgue surface measure on SD−1. For every
ε > 0 define wε by wε(z) = 1{|z|>ε} w(z), and Kε by

Kεu(y) =
∫

wε(y − x) u(x) dm(x) . (3.22)
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Calderon-Zygmund Inequality

Then for every p ∈ (1,∞) there exists a positive constant Cp that is
independent of ε such that for every ε > 0 the operator Kε satisfies the
bound

‖Kεu‖Lp ≤ Cp ‖u‖Lp for every u ∈ Lp(dm) , (3.23)

Moreover, for every u ∈ Lp(dm) the limit

Ku = lim
ε→0
Kεu exists in Lp(dm) , (3.24)

and the operator K so defined satisfies the bound

‖Ku‖Lp ≤ Cp ‖u‖Lp for every u ∈ Lp(dm) . (3.25)
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Summary of Convolution Inequalities
Our results regarding the convolution of two functions are summarized in
the following table.

Lp ∗ Lq ⊂ Lr for p, q, r ∈ [1,∞] such that 1
p + 1

q = 1 + 1
r .

Lr
w ∗ L1 ⊂ Lr

w for r ∈ (1,∞) .
Lp

w ∗ Lq
w ⊂ Lr

w for p, q, r ∈ (1,∞) such that 1
p + 1

q = 1 + 1
r .

Lp
w ∗ Lq ⊂ Lr for p, q, r ∈ (1,∞) such that 1

p + 1
q = 1 + 1

r .

CZ ∗ Lr ⊂ Lr for r ∈ (1,∞) .
The first item follows from the Young convolution inequality, the second
from the first Hardy-Littlewood-Sobolev inequality, the third from the
second Hardy-Littlewood-Sobolev inequality, the fourth from the third
Hardy-Littlewood-Sobolev inequality, and the last from the
Calderon-Zygmund inequality, where CZ denotes all functions of the
Calderon-Zygmund form (3.20).
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Poisson Equation

For D > 2 the Green function g of −∆x over RD is given by

g(x) = 1
|SD−1|

|x |−D+2 .

If u is the solution of the Poisson equation −∆x u = f for some
f ∈ Lp(dm) then formally

u = g ∗ f , ∇x u = (∇x g) ∗ f , ∇2
x u = (∇2

x g) ∗ f ,

where

∇x g(x) = − D− 2
|SD−1|

|x |−D+1 x
|x | , ∇2

x g(x) = D− 2
|SD−1|

|x |−D
(

Dx ⊗ x
|x |2 − I

)
.
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Poisson Equation

Because

|∇x g(x)| = D− 2
|SD−1|

|x |−D+1 , |∇2
x g(x)| = (D− 2)(D− 1)

|SD−1|
|x |−D ,

we see that

g ∈ L
D

D−2
w (dm) , ∇x g ∈ L

D
D−1
w (dm) , ∇2

x g ∈ CZ (dm) ,

where CZ (dm) denotes the set of all functions that have the
Calderon-Zygmund form (3.20).
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Poisson Equation

Hence, if f ∈ Lp(dm) then

u ∈ L
pD

D−2p (dm) when p ∈ (1, D
2 ) ,

∇x u ∈ L
pD

D−p (dm) when p ∈ (1,D) ,

∇2
x u ∈ Lp(dm) when p ∈ (1,∞) .

The last result shows that solutions of the Poisson equation gain two
derivatives.
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Helmholtz Equation
The Green function g of −∆x + κ2 over R3 is given by

g(x) = 1
4π

e−κ|x |
|x | .

If u is the solution of the Helmholtz equation −∆x u + κ2u = f for some
f ∈ Lp(dm) then formally

u = g ∗ f , ∇x u = (∇x g) ∗ f , ∇2
x u = (∇2

x g) ∗ f ,

where

∇x g(x) = − 1
4π

e−κ|x |
|x |2 (1 + κ|x |) x

|x | ,

∇2
x g(x) = 1

4π
e−κ|x |
|x |3 (1 + κ|x |)

(
3x ⊗ x
|x |2 − I

)
+ κ2

4π
e−κ|x |
|x |

x ⊗ x
|x |2 .
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Helmholtz Equation

Because
|∇x g(x)| = 1

4π
e−κ|x |
|x |2 (1 + κ|x |) ,

we see that

g ∈ Lq(dm) for every q ∈ [1, 3) and g ∈ L3
w (dm) ,

∇x g ∈ Lq(dm) for every q ∈ [1, 3
2 ) and ∇x g ∈ L

3
2w (dm) .
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Helmholtz Equation

Hence, if f ∈ Lp(dm) then

u ∈ Lr (dm)


for every r ∈ [p,∞] when p ∈ ( 3

2 ,∞) ,
for every r ∈ [p,∞) when p = 3

2 ,

for every r ∈ [p, 3p
3−2p ) when p ∈ (1, 3

2 ) ,
for every r ∈ [1, 3) when p = 1 ,

∇x u ∈ Lr (dm)


for every r ∈ [p,∞] when p ∈ (3,∞) ,
for every r ∈ [p,∞) when p = 3 ,
for every r ∈ [p, 3p

3−p ) when p ∈ (1, 3) ,
for every r ∈ [1, 3

2 ) when p = 1 ,

In particular, we see that u ∈ Lp(dm) and ∇x u ∈ Lp(dm).
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Helmholtz Equation

Finally, notice that ∇2
x g = H1(x) + H2(x) where H1 and H2 are the

matrix-valued functions

H1(x) = 1
4π

e−κ|x | (1 + κ|x |)
|x |3

(
3x ⊗ x
|x |2 − I

)
, H2(x) = κ2

4π
e−κ|x |
|x |

x ⊗ x
|x |2 .

Because

|H1(x)| = 1
2π

e−κ|x | (1 + κ|x |)
|x |3 , |H2(x)| = κ2

4π
e−κ|x |
|x | ,

we see that H1 ∈ CZ (dm) while

H2 ∈ Lq(dm) for every q ∈ [1, 3) , and H2 ∈ L3
w (dm) .
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Helmholtz Equation

In particular, we see that if f ∈ Lp(dm) then

∇2
x u = H1 ∗ f + H2 ∗ f ∈ Lp(dm) , when p ∈ (1,∞) .

Therefore, as with the Poisson equation, solutions of −∆x u + κ2u = f
gain two derivatives.
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General Integral Operators

We return to general linear integral operators K in the form

Ku(y) =
∫

k(x , y) u(x) dµ(x) , (5.26)

where the kernel k is a complex-valued measurable function with respect
to the σ-algebra Σµ⊗ν .
Recall that (X ,Σµ, dµ) and (Y ,Σν , dν) are positive σ-finite measure
spaces.
Recall too that M(dµ) and M(dν) are the spaces of all complex-valued
dµ-measurable and dν-measurable functions respectively.
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Adjoint Operator

Let K∗ denote formal adjoint of K, which is given by

K∗v(x) =
∫

k(x , y) v(y) dν(y) . (5.27)

The operator K is bounded from Lp(dµ) to Lq∗(dν) if and only if K∗ is
bounded from Lq(dν) to Lp∗(dµ) where p∗, q ∈ [1,∞] are determined by
the duality relations

1
p + 1

p∗ = 1 , and 1
q + 1

q∗ = 1 . (5.28)

Moreover, ‖K∗‖B(Lq(dν),Lp∗(dµ)) = ‖K‖B(Lp(dµ),Lq∗(dν)).
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Paired Bounds

Lemma

Let k ∈ M(dµ dν) and C ∈ [0,∞) such that for every u ∈ Lp(dµ) and
v ∈ Lq(dν) we have∫∫ ∣∣k(x , y) u(x) v(y)

∣∣ dµ(x) dν(y) ≤ C ‖u‖Lp‖v‖Lq . (5.29)

Then K ∈ B(Lp(dµ), Lq∗(dν)) and K∗ ∈ B(Lq(dν), Lp∗(dµ)) with

‖K‖B(Lp ,Lq∗ ) = ‖K∗‖B(Lq ,Lp∗ ) ≤ C . (5.30)

Remark. The measures dµ and dν will be dropped from the notation for
norms when there is no confusion about what measures are involved.
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Iterated Norm Bounds

Lemma

Let p, q ∈ [1,∞]. Let the kernel k satisfy the bound

‖k‖Lq∗(dν;Lp∗(dµ)) =
((∫

|k(x , y)|p∗dµ(x)
) q∗

p∗

dν(y)
) 1

q∗

<∞ . (5.31)

Then for every u ∈ Lp(dµ) and v ∈ Lq(dν) we have∫∫ ∣∣k(x , y) u(x) v(y)
∣∣ dµ(x) dν(y) ≤ ‖k‖Lq∗(Lp∗ ) ‖u‖Lp ‖v‖Lq . (5.32)
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Iterated Norm Bounds

Lemma
Similarly, let the kernel k satisfy the bound

‖k‖Lp∗(dµ;Lq∗(dν)) =
((∫

|k(x , y)|q∗dν(y)
) p∗

q∗

dµ(x)
) 1

p∗

<∞ . (5.33)

Then for every u ∈ Lp(dµ) and v ∈ Lq(dν) we have∫∫ ∣∣k(x , y) u(x) v(y)
∣∣ dµ(x) dν(y) ≤ ‖k‖Lp∗(Lq∗ ) ‖u‖Lp ‖v‖Lq . (5.34)
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Iterated Norm Bounds

Remark. The spaces Lq∗(dν; Lp∗(dµ)) and Lp∗(dµ; Lq∗(dν)) are called
iterated spaces. They are equipped with the so-called iterated norms
‖ · ‖Lq∗(dν;Lp∗(dµ)) and ‖ · ‖Lp∗(dµ;Lq∗(dν)) defined above by (5.31) and
(5.33). The bounds (5.32) and (5.34) are called iterated norm bounds.
Remark. The Minkowski inequality for integrals implies that

‖k‖Lq∗(dν;Lp∗(dµ)) ≤ ‖k‖Lp∗(dµ;Lq∗(dν)) whenever p∗ ≤ q∗ ,
‖k‖Lp∗(dµ;Lq∗(dν)) ≤ ‖k‖Lq∗(dν;Lp∗(dµ)) whenever q∗ ≤ p∗ .

(5.35)
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Iterated Norm Bounds

In the first case we can conclude that the first iterated norm bound (5.32)
is the sharper one, whereby we conclude by Lemma 6 that K ∈ B(Lp, Lq∗)
and K∗ ∈ B(Lq, Lp∗) with

‖K‖B(Lp ,Lq∗ ) = ‖K∗‖B(Lq ,Lp∗ ) ≤ ‖k‖Lq∗(Lp∗ ) for every k ∈ Lq∗(dν; Lp∗(dµ)) .
(5.36)

In the second case we can conclude that the second iterated norm bound
(5.34) is the sharper one, whereby we conclude by Lemma 6 that
K ∈ B(Lp, Lq∗) and K∗ ∈ B(Lq, Lp∗) with

‖K‖B(Lp ,Lq∗ ) = ‖K∗‖B(Lq ,Lp∗ ) ≤ ‖k‖Lp∗(Lq∗ ) for every k ∈ Lp∗(dµ; Lq∗(dν)) .
(5.37)
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Iterated Norm Bounds

Remark: When either 1 ≤ p∗ ≤ q∗ <∞ and k ∈ Lq∗(dν; Lp∗(dµ)) or
1 ≤ q∗ ≤ p∗ <∞ and k ∈ Lp∗(dµ; Lq∗(dν)) then we can conclude that the
bounded operators K and K∗ from (5.36) and (5.37) are moreover
compact. This is because one can show that the finite-rank kernels are
dense in the spaces Lq∗(dν; Lp∗(dµ)) and Lp∗(dµ; Lq∗(dν)). The classical
Hilbert-Schmidt compactness criterion is the special case p = q = 2.
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Iterated Norm Bounds

Remark: When p = q in the iterated spaces Lp∗(dν; Lp∗(dµ)) and
Lp∗(dµ; Lp∗(dν)) coincide with

Lp∗(dν; Lp∗(dµ)) = Lp∗(dµ; Lp∗(dν)) = Lp∗(dµ dν) .

Moreover, the iterated norms given by (5.31) and (5.33) also coincide with

‖k‖Lp∗(dν;Lp∗(dµ)) = ‖k‖Lp∗(dµ;Lp∗(dν)) = ‖k‖Lp∗(dµ dν) .

If these are finite then K is bounded from Lp(dµ) to Lp∗(dν) and K∗ is
bounded from Lp(dν) to Lp∗(dµ). If moreover p∗ <∞ then K and K∗ are
also compact by the previous remark.
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Iterated Norm Bounds

Remark: In some cases the iterated norm bounds (5.32) and (5.34) are
sharp. Specifically, it can be shown that when p ∈ [1,∞] and q = 1 one
has

‖K‖B(Lp ,L∞) = ‖K∗‖B(L1,Lp∗ ) = ‖k‖L∞(Lp∗ ) for every k ∈ L∞(dν; Lp∗(dµ)) ,

while when p = 1 and q ∈ [1,∞] one has

‖K‖B(L1,Lq∗ ) = ‖K∗‖B(Lq ,L∞) = ‖k‖L∞(Lq∗ ) for every k ∈ L∞(dµ; Lq∗(dν)) .
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Young Integral Operator Bound
The results of the previous section include the following. If k ∈ L∞(dµ dν)
then for every u ∈ L1(dµ) and v ∈ L1(dν) we have∫∫ ∣∣k(x , y) u(x) v(y)

∣∣ dµ(x) dν(y) ≤ ‖k‖L∞(dµ dν)‖u‖L1 ‖v‖L1 .

(5.38)
If k ∈ L∞(dµ; Lr (dν)) for some r ∈ [1,∞) then for every u ∈ L1(dµ) and
v ∈ Lr∗(dν) we have∫∫ ∣∣k(x , y) u(x) v(y)

∣∣ dµ(x) dν(y) ≤ ‖k‖L∞(dµ;Lr (dν))‖u‖L1 ‖v‖Lr∗ .

(5.39)
If k ∈ L∞(dν; Lr (dµ)) for some r ∈ [1,∞) then for every u ∈ Lr∗(dµ) and
v ∈ L1(dν) we have∫∫ ∣∣k(x , y) u(x) v(y)

∣∣ dµ(x) dν(y) ≤ ‖k‖L∞(dν;Lr (dµ))‖u‖Lr∗ ‖v‖L1 .

(5.40)
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Young Integral Operator Bound

If k ∈ L∞(Lr )(dµ,dν) = L∞(dν; Lr (dµ)) ∩ L∞(dµ; Lr (dν)) for some
r ∈ [1,∞) then, in addition to the bounds (5.39) and (5.40), we have an
entire family of Young integral operator bounds.

Theorem

Let k ∈ L∞(Lr )(dµ,dν) for some r ∈ [1,∞). Let p, q ∈ [1, r∗] satisfy the
relation

1
p + 1

q + 1
r = 2 . (5.41)

Then for every u ∈ Lp(dµ) and v ∈ Lq(dν) we have∫∫ ∣∣k(x , y) u(x) v(y)
∣∣ dµ(x) dν(y)

≤ ‖k‖
r

p∗

L∞(dµ;Lr (dν))‖k‖
r

q∗

L∞(dν;Lr (dµ))‖u‖Lp ‖v‖Lq .

(5.42)
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Young Integral Operator Bound

Theorem
Moreover, we have K ∈ B(Lp(dµ), Lq∗(dν)) and K∗ ∈ B(Lq(dν), Lp∗(dµ))
with

‖K‖B(Lp ,Lq∗ ) = ‖K∗‖B(Lq ,Lp∗ ) ≤ ‖k‖
r

p∗

L∞(dµ;Lr (dν)) ‖k‖
r

q∗

L∞(dν;Lr (dµ)) . (5.43)

Remark. The case r =∞ is already covered by (5.38) because in that
case relation (5.41) would require that p = q = 1. The case r ∈ [1,∞)
and p = 1 is already covered by (5.39) because in that case relation (5.41)
would require that q = r∗. The case r ∈ [1,∞) and q = 1 is already
covered by (5.40) because in that case relation (5.41) would require that
p = r∗.
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Interpolation Bounds
The family of Young integral bounds (5.42) belongs to the larger class of
interpolation bounds. We will give interpolation bounds in the following
setting. Suppose that for some p0, q0, p1, q1 ∈ [1,∞] the kernel k satisfies
the bounds∫∫ ∣∣k(x , y) u(x) v(y)

∣∣ dµ(x) dν(y) ≤ C0 ‖u‖Lp0‖v‖Lq0

for every u ∈ Lp0(dµ) and v ∈ Lq0(dν) ,∫∫ ∣∣k(x , y) u(x) v(y)
∣∣ dµ(x) dν(y) ≤ C1 ‖u‖Lp1‖v‖Lq1

for every u ∈ Lp1(dµ) and v ∈ Lq1(dν) ,

(6.44)

These bounds imply the operator K belongs to B(Lp0(dµ), Lq∗0(dν)) and to
B(Lp1(dµ), Lq∗1(dν)), where the usual duality relations 1

q0
+ 1

q∗0
= 1 and

1
q1

+ 1
q∗1

= 1 hold. Interpolation will allow us to extend all of these results
to other spaces.
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Interpolation Bounds

Lemma

If the kernel k satisfies the bounds (6.44) for some p0, q0, p1, q1 ∈ [1,∞]
then for every t ∈ [1,∞] it satisfies the interpolation bound∫∫ ∣∣k(x , y) u(x) v(y)

∣∣ dµ(x) dν(y) ≤ C
1

t∗
0 C

1
t

1 ‖u‖Lp‖v‖Lq

for every u ∈ Lp(dµ) and v ∈ Lq(dν) ,
(6.45)

where t∗ ∈ [1,∞] satisfies 1
t + 1

t∗ = 1, and p, q ∈ [1,∞] satisfy the
interpolation relations

1
p = 1

t∗p0
+ 1

tp1
,

1
q = 1

t∗q0
+ 1

tq1
. (6.46)
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Interpolation Bounds

Lemma
Moreover, we have K ∈ B(Lp(dµ), Lq∗(dν)) and K∗ ∈ B(Lq(dν), Lp∗(dµ))
with

‖K‖B(Lp ,Lq∗ ) = ‖K∗‖B(Lq ,Lp∗ ) ≤ C
1

t∗
0 C

1
t

1 . (6.47)

Here the usual duality relations 1
p + 1

p∗ = 1, and 1
q + 1

q∗ = 1 hold.
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Interpolation Bounds

We now apply the Interpolation Lemma 11 to a kernel k which for some
r , s ∈ [1,∞] satisfies the bounds

‖k‖Ls (dν;Lr (dµ)) =
(∫ (∫

|k(x , y)|r dµ(x)
) s

r
dν(y)

) 1
s
<∞ ,

‖k‖Ls (dµ;Lr (dν)) =
(∫ (∫

|k(x , y)|r dν(y)
) s

r
dµ(x)

) 1
s
<∞ .

(6.48)

Without loss of generality we can assume r ≤ s because in that case
‖k‖Ls (Lr ) ≤ ‖k‖Lr (Ls ) for each of the above norms. We can assume
moreover that r < s because when r = s the bounds in (6.48) coincide, so
the Interpolation Lemma cannot yield further boundedness results.
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Interpolation Bounds

The iterated norm bounds show that the bounds (6.48) on k imply the
following. Because k ∈ Ls(dν; Lr (dµ)), then for every u ∈ Lr∗(dµ) and
v ∈ Ls∗(dν) we have∫∫ ∣∣k(x , y) u(x) v(y)

∣∣ dµ(x) dν(y) ≤ ‖k‖Ls (dν;(Lr (dµ))‖u‖Lr∗‖v‖Ls∗ .

(6.49)
Because k ∈ Ls(dµ; Lr (dν)), then for every u ∈ Ls∗(dµ) and v ∈ Lr∗(dν)
we have∫∫ ∣∣k(x , y) u(x) v(y)

∣∣ dµ(x) dν(y) ≤ ‖k‖Ls (dµ;(Lr (dν))‖u‖Ls∗‖v‖Lr∗ .

(6.50)
In this section we show that because
k ∈ Ls(Lr )(dµ, dν) = Ls(dν; Lr (dµ)) ∩ Ls(dµ; Lr (dν)) then, in addition to
the bounds (6.49) and (6.50), we have a family of interpolation bounds.
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Interpolation Bounds

Theorem
Let k ∈ Ls(Lr )(dµ dν) for some r , s ∈ [1,∞] such that r < s. Let
p, q ∈ [s∗, r∗] satisfy the relation

1
p + 1

q + 1
r + 1

s = 2 . (6.51)

Then for every u ∈ Lp(dµ) and v ∈ Lq(dν) we have the interpolation
bound ∫∫ ∣∣k(x , y) u(x) v(y)

∣∣ dµ(x) dν(y)

≤ ‖k‖
1

t∗
Ls (dν;Lr (dµ))‖k‖

1
t
Ls (dµ;Lr (dν))‖u‖Lp‖v‖Lq ,

(6.52)
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Interpolation Bounds

Theorem
where t∗ and t are given by

1
t∗ =

1
s∗ −

1
p

1
s∗ −

1
r∗

=

1
q −

1
r∗

1
s∗ −

1
r∗
,

1
t =

1
p −

1
r∗

1
s∗ −

1
r∗

=

1
s∗ −

1
q

1
s∗ −

1
r∗
. (6.53)

Moreover, we have K ∈ B(Lp(dµ), Lq∗(dν)) and K∗ ∈ B(Lq(dν), Lp∗(dµ))
with

‖K‖B(Lp ,Lq∗ ) = ‖K∗‖B(Lq ,Lp∗ ) ≤ ‖k‖
1

t∗
Ls (dν;Lr (dµ))‖k‖

1
t
Ls (dµ;Lr (dν)) . (6.54)

When s <∞ the operators K and K∗ are also compact.
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Interpolation Bounds
Remark: When s =∞ this reduces to the Young Integral Operator
Theorem.
Remark: When r ∈ [1, 2] (so that r ≤ r∗) and s = r∗ then for every
p ∈ [r , r∗] one sees that K ∈ B(Lp(dµ), Lp(dν)) and
K∗ ∈ B(Lp∗(dν), Lp∗(dµ)) with

‖K‖B(Lp ,Lp) = ‖K∗‖B(Lp∗ ,Lp∗ ) ≤ ‖k‖
1

t∗
Lr∗(dν;Lr (dµ))‖k‖

1
t
Lr∗(dµ;Lr (dν)) ,

where t is given by (6.53). In this case q = p∗.
Remark: Let p satisfy 2

p = 1
r∗ + 1

s∗ . Notice that p is the harmonic mean
of r∗ and s∗, so that p ∈ [s∗, r∗]. One sees that K ∈ B(Lp(dµ), Lp∗(dν))
and K∗ ∈ B(Lp(dν), Lp∗(dµ)) with

‖K‖B(Lp ,Lp∗ ) = ‖K∗‖B(Lp ,Lp∗ ) ≤ ‖k‖
1
2
Ls (dν;Lr (dµ))‖k‖

1
2
Ls (dµ;Lr (dν)) .

In this case q = p.
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First Hardy-Littlewood Inequality

Theorem
Let r ∈ (1,∞). For every kernel k that satisfies

‖k‖L∞(dµ;Lr
w (dν)) = ess sup

x∈X

{
sup

E∈Σν

{
1

ν(E ) 1
r∗

∫
E
|k(x , y)|dν(y) : ν(E ) ∈ (0,∞)

}}
<∞ ,

(7.55)
the integral operator K defined by (5.26) satisfies the bound

‖Ku‖Lr
w (dν) ≤ ‖k‖L∞(dµ;Lr

w (dν)) ‖u‖L1(dµ) for every u ∈ L1(dµ) . (7.56)

Remark. Bound (7.56) shows that the operator K is bounded from
L1(dµ) into Lr

w (dν) with

‖K‖B(L1,Lr
w ) ≤ ‖k‖L∞(Lr

w ) for every k ∈ L∞(dµ; Lr
w (dν)) . (7.57)

This result should be compared to (5.37) with p = 1 and q = r∗.
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Second Hardy-Littlewood Inequality

Theorem

Let p, q, r ∈ (1,∞) satisfy the relation

1
p + 1

q + 1
r = 2 . (7.58)

Let the kernel k satisfy

‖k‖L∞(dν;Lr
w (dµ)) = ess sup

y∈Y

{
sup

E∈Σµ

{
1

µ(E ) 1
r∗

∫
E
|k(x , y)|dµ(x) : µ(E ) ∈ (0,∞)

}}
<∞ ,

‖k‖L∞(dµ;Lr
w (dν)) = ess sup

x∈X

{
sup

E∈Σν

{
1

ν(E ) 1
r∗

∫
E
|k(x , y)| dν(y) : ν(E ) ∈ (0,∞)

}}
<∞

<∞ .
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Second Hardy-Littlewood Inequality

Theorem
Then there exists a positive Cp,q,r

w such that the integral operator K
defined by (5.26) satisfies the bound

‖Ku‖Lq∗
w
≤ Cp,q,r

w ‖k‖
r

p∗

L∞(dν;Lr
w (dµ)) ‖k‖

r
q∗

L∞(dµ;Lr
w (dν)) [u]Lp

w

for every k ∈ L∞(Lr
w )(dµ, dν) and u ∈ Lp

w (dµ) .
(7.60)

Remark. We can establish (7.60) with

Cp,q,r
w = p∗q∗r∗

p r = p∗r∗ + q∗ . (7.61)

This Cp,q,r
w is universal in the sense that it is independent of the underlying

measure spaces (X ,Σµ, dµ) and (Y ,Σν , dν).
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Third Hardy-Littlewood Inequality

Theorem
Let p, q, r ∈ (1,∞) satisfy the relation

1
p + 1

q + 1
r = 2 . (7.62)

Let k ∈ L∞(Lr
w )(dµ,dν). Then there exists a positive Cp,q,r such that for

every u ∈ Lp(dµ) and v ∈ Lq(dν)∫∫ ∣∣k(x , y) u(x) v(y)
∣∣ dµ(x) dν(y)

≤ Cp,q,r ‖k‖
r

p∗

L∞(dν;Lr
w (dµ)) ‖k‖

r
q∗

L∞(dµ;Lr
w (dν)) ‖u‖Lp ‖v‖Lq .

(7.63)
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Third Hardy-Littlewood Inequality

Remark. We can establish (7.63) with

Cp,q,r = r∗
pq

(p∗
r

) 1
r + r

p∗r∗
(q∗

r

) 1
r + r

q∗r∗

≤ p∗q∗r∗
p q r 2 . (7.64)

This Cp,q,r is universal in the sense that it is independent of the underlying
measure spaces (X ,Σµ, dµ) and (Y ,Σν , dν).
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Third Hardy-Littlewood Inequality

Remark. Bound (7.63) shows that for every k ∈ L∞(Lr
w )(dµ, dν) the

operator K defined by (5.26) is bounded from Lp(dµ) into Lq∗(dν) with

‖K‖B(Lp ,Lq∗ ) ≤ Cp,q,r ‖k‖
r

p∗

L∞(dν;Lr
w (dµ)) ‖k‖

r
q∗

L∞(dµ;Lr
w (dν)) . (7.65)

Remark. This should be compared with bound (5.43) obtained from the
Young integral operator bound (5.42). For each r ∈ (1,∞) that bound
requires the kernel k to be in the more restrictive class L∞(Lr )(dµ, dν),
but includes the cases p = 1 or q = 1. From (7.62) and (7.64) we see that
Cp,q,r →∞ as either (p, q∗)→ (1, r) or (p, q∗)→ (r∗,∞), whereby
bound (7.65) breaks down in these limits. The breakdown at (1, r) should
be contrasted with bound (7.57), in which the range of K is Lr

w (dν) rather
than Lr (dν).
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