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using these introductory tools will prepare learners for future computer science learning op-
portunities. This view is built on the assumption that the attitudinal and conceptual learning
gains made while working in the introductory block-based environments will transfer to con-
ventional text-based programming languages. To test this hypothesis, this paper presents the
results of a quasi-experimental classroom study in which programming novices spent five-week
using either a block-based or text-based programming environment. After five weeks in the in-
troductory tool, students transitioned to Java, a conventional text-based programming language.
The study followed students for 10 weeks after the transition. Over the course of the 15-week
study, attitudinal and conceptual assessments were administered and student-authored programs
were collected. Conceptual learning, attitudinal shifts, and changes in programming practices
were analyzed to evaluate how introductory modality impacted learners as they transitioned to a
professional, text-based programming language. The findings from this study build on earlier
work that found a difference in performance on content assessments after the introductory
portion of the study (Weintrop & Wilensky, 2017a). This paper shows the difference in con-
ceptual learning that emerged after five weeks between the block-based and text-based condi-
tions fades after 10 weeks in Java. No differences in programming practices were found between
the two conditions while working in Java. Likewise, differences in attitudinal measures that
emerged after working in the introductory environments also faded after 10 weeks in Java, re-
sulting in no difference between the conditions after 15 weeks. The contribution of this work is to
advance our understanding of the benefits and limits of block-based programming tools in pre-
paring students for future computer science learning. This paper presents the first quasi-experi-
mental study of the transfer of knowledge between block-based and text-based environments in a
high school setting. The lack of significant differences between the two introductory program-
ming modalities after learners transition to professional programming languages is discussed
along with the implications of these findings for computer science education researchers and
educators, as well as for the broader community of researchers studying the role of technology in
education.

* Corresponding author.
E-mail address: weintrop@umd.edu (D. Weintrop).

https://doi.org/10.1016/j.compedu.2019.103646

Received 1 August 2018; Received in revised form 30 July 2019; Accepted 4 August 2019
Available online 07 August 2019

0360-1315/ © 2019 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/03601315
https://www.elsevier.com/locate/compedu
https://doi.org/10.1016/j.compedu.2019.103646
https://doi.org/10.1016/j.compedu.2019.103646
mailto:weintrop@umd.edu
https://doi.org/10.1016/j.compedu.2019.103646
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compedu.2019.103646&domain=pdf

D. Weintrop and U. Wilensky Computers & Education 142 (2019) 103646

1. Introduction

Block-based programming is quickly becoming the way that younger learners are being introduced to the field of computer
science (Bau, Gray, Kelleher, Sheldon, & Turbak, 2017). Led by the popularity of tools such as Scratch (Resnick et al., 2009), Blockly
(Fraser, 2015), and Alice (Cooper, Dann, & Pausch, 2000), millions of kids are engaging with programming through drag-and-drop
graphical tools. For example, Code.org's Hour of Code initiative, which includes dozens of activities that incorporate block-based
programming, has recently surpassed 500 million “hours served” and has reached learners in every country on the planet (Code.org,
2017). This highlights how the excitement around computer science is a global phenomenon. Due in part to the success of such tools
and initiatives at engaging novices in programming, block-based programming environments are increasingly being incorporated into
curricula designed for high school computer science classrooms. Examples of such curricula include Exploring Computer Science
(Goode, Chapman, & Margolis, 2012), the Computer Science Principles project (Cuny, 2015), and Code.org's curricular offerings
(Code.org Curricula, 2019).

Many uses of block-based tools in formal educational contexts presuppose that such tools will help prepare students for later
instruction in text-based languages (Armoni, Meerbaum-Salant, & Ben-Ari, 2015; Brown et al., 2016; Dann, Cosgrove, Slater, Culyba,
& Cooper, 2012). This transition is often a part of the larger computer science trajectory where block-based introductory courses are
intended to prepare students for the transition to professional, text-based languages. This can be seen in how the transition has been
studied to date (e.g. Armoni et al., 2015; Dann et al., 2012; Powers, Ecott, & Hirshfield, 2007). This assumption was also echoed by
the high school students who participated in the study presented in this work, who made statements such as “[block-based pro-
gramming] is a good start, then once we know the commands and everything, we can move on to Java” and “[block-based programming] is
getting us ready for what we're going to be doing”. While work has been done focusing on learning that happens while using block-based
tools (e.g. Franklin et al., 2017; Grover & Basu, 2017; Weintrop & Wilensky, 2015a), less work has rigorously tested the transition
from block-based introductory tools to text-based languages in formal settings (Blikstein, 2018; Shapiro & Ahrens, 2016). A sys-
tematic review of the literature on the role of visual programming concluded that there is uncertainty concerning the effectiveness of
block-based languages when looking beyond introductory contexts (Noone & Mooney, 2018). This question is of great importance
given the growing role of block-based tools in K-12 education around the world and their impact on the teaching and learning of
computer science (Blikstein, 2018; Caspersen, 2018).

This paper seeks to understand if and how the modality used (block-based versus text-based) prepares learners for conventional
text-based languages. This line of inquiry is consequential for both the research community as it is an open question that can inform
future research on design and learning, as well as practitioners who are tasked with making decisions around learning environments
and pedagogy in their classrooms every day. More specifically, this paper answers the following research question:

In high school introductory computer science classes, how does the modality used for introductory programming instruction
(block-based versus text-based) impact learners when they transition to a professional text-based programming language?

This paper presents the results of a quasi-experimental study designed to answer this question. The study took place in two high
school computer science classrooms and compares isomorphic block-based and text-based programming environments. Students
spent five weeks working in either a block-based or text-based version of the same introductory programming environment before
transitioning to Java. The same teacher taught both classes and students in each condition used the same curriculum and had the
same time-on-task. The findings from the first five weeks of the study are reported in (Weintrop & Wilensky, 2017a). This work is a
continuation of that paper, specifically focusing on what happened after leaving the introductory environments and moving to Java.
To understand how the design of introductory tools prepare learners for programming in professional programming languages, we
present comparative outcomes of content assessments, attitudinal surveys, and investigate programming practices that emerged after
the transition to Java.

2. Prior work
2.1. Block-based programming

Block-based programming is a visual programming paradigm that utilizes a programming-primitive-as-puzzle-piece metaphor to
make the act of programming more accessible and intuitive for novices (Bau et al., 2017; Good, 2018). The block-based programming
approach is becoming increasingly widespread. Duncan, Bell, and Tanimoto (2014) reviewed 47 introductory programming en-
vironments and found 28 of the environments used the block-based approach to programming, including 19 of the 24 environments
designed for learners under the age of 8. Writing a program in a block-based programming environment takes the form of snapping
together commands by dragging-and-dropping them next to each other. Block-based programming environments include several
features designed to facilitate the act of programming (Maloney, Resnick, Rusk, Silverman, & Eastmond, 2010; Tempel, 2013). For
example, the visual depiction of a block provides cues denoting how and where a given command can be used. Those visual cues are
also used as a means of enforcing syntactic rules, preventing incompatible or incorrect statements from being combined to create
invalid statements. In this way, the block-based modality prevents syntax errors during program construction but retains the practice
of authoring programs instruction-by-instruction. Block-based programming environments also support the programmer by pre-
senting the available commands in easily-browsed and logically organized drawers, a feature identified by learners as easing the
barrier to programming (Weintrop & Wilensky, 2015b). Collectively, these features provide a rich web of supports for novices to draw
on making them a compelling way to introduce novices to programming (Kolling & McKay, 2016; Weintrop & Wilensky, 2017b).

Research looking at the use of block-based programming environments in introductory K-12 educational contexts is showing it to
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be an effective way to introduce novices to foundational programming concepts. At the upper elementary level (ages 10-14), block-
based tools are an effective way to make programming concepts accessible to younger learners when provided a developmentally
appropriate curriculum (Franklin et al., 2017; Hill, Dwyer, Martinez, Harlow, & Franklin, 2015; Howland & Good, 2014; Meerbaum-
Salant, Armoni, & Ben-Ari, 2010). After teaching a computer science curriculum to upper elementary school learners, Grover at al.
(2015) found block-based programming to be a productive way to introduce learners to foundational computing concepts and
develop important computational thinking skills such as algorithmic thinking. Comparative studies between block-based and text-
based environments with students in this age group found that learners perform comparably or better in the block-based condition
and complete assignments more quickly (Lewis, 2010; Matsuzawa et al., 2015; Price & Barnes, 2015, pp. 91-99). At the high school
level, a comparative study found that students perform better on concept assessments after working in block-based tools compared to
isomorphic text-based alternatives after five weeks of instruction (Weintrop & Wilensky, 2017a). Collectively, this work supports the
decision of using block-based programming modality in K-12 classrooms.

Along with conceptual gains, block-based programming environments have been shown to have positive impacts with respect to
motivation, attitudes, and engagement for K-12 learners. This has been found across a number of programming environments in-
cluding Scratch (Malan & Leitner, 2007, pp. 223-227; Resnick et al., 2009; Ruf, Miihling, & Hubwieser, 2014, pp. 50-59), Snap!
(Garcia, Harvey, & Barnes, 2015), and Alice (Kelleher, Pausch, & Kiesler, 2007; Kelleher & Pausch, 2007). It is also important to note
that the block-based approach to programming has been successful at engaging novice programmers from historically under-
represented populations (Kelleher et al., 2007; Maloney, Peppler, Kafai, Resnick, & Rusk, 2008; Tangney, Oldham, Conneely, Barrett,
& Lawlor, 2010; Wilson & Moffat, 2010).

2.2. Dual-modality and Bi-directional programming environments

One active area of research relevant to the current study is design work exploring ways to combine block-based programming
with features of conventional text-based representations of computational ideas. The idea with this approach is to draw on multiple
modalities to support learners making meaning of programming concepts and authoring successful programs (Good & Howland,
2017; Weintrop & Holbert, 2017). This is part of the larger conversation around the long-term role of block-based programming in
education and beyond (Shapiro & Ahrens, 2016; Weintrop, 2019). We divide this body of research into two categories: dual-modality
environments, which combine features of block-based and text-based tools in a single interface, and bi-directional environments that
allow learners to move back-and-forth between block-based and text-based presentations of the program. These environments are
pertinent to this study as they represent alternatives to the notion of block-based programming serving as a predecessor to text-based
programming.

There are a growing number of bi-directional programming environments that are gaining popularity in computer science
education circles. The Droplet editor (Bau, 2015), which is used in Code.org's AppLap and the Pencil Code environment, provides a
button allowing the learner to choose whether they want to work in a block-based interface or text-based interface. Clicking the
transition button begins an animation where the learner can watch their code morph from one modality to the other, reinforcing the
equality of the two presentations of code. The Droplet editor currently supports JavaScript, HTML, and CoffeeScript, with a Python
implementation currently under development (Blanchard, 2017). Further implementations of this approach include BlockPy, a Py-
thon-based tool focusing on data science contexts (Bart, Tibau, Kafura, Shaffer, & Tilevich, 2017), Tiled Grace, an overlay on top of
the Grace programming language supporting block-based interactions (Homer & Noble, 2017), GP, a reimagining of the Scratch
environment designed to be more general purpose (Monig, Ohshima, & Maloney, 2015), and the work of Matsuzawa, Ohata, Sugiura,
and Sakai (2015) who created a bi-directional Java environment that was one of the first to empirically study this approach and show
its promise. Research is revealing some of the ways that students take advantage of the bi-directionally of these environments, such as
shifting from text to blocks in order to introduce new commands to a program (Weintrop & Holbert, 2017).

Unlike bi-directional environments, the dual-modality approach blends features of block-based and text-based programming into
a single editor. The idea with this strategy is to try and leverage the strengths of both modalities at the same time. This can be seen in
the Frame-based editor build for Greenfoot's Stride language, which is designed to be a keyboard-driven approach to block-based
programming (Kolling, Brown, & Altadmri, 2017). Research on this approach has shown students have similar learning gains as those
in traditional environments, but progress more quickly and have fewer issues related to language syntax (Price, Brown, Lipovac,
Barnes, & Kolling, 2016). Further research looking at novices working in dual-modality environments has revealed that learners take
advantage of aspects of both modalities as they work, making it distinct from working in either a fully blocks-based or fully text-based
environment (Weintrop & Wilensky, 2018). The active development of such environments speaks to the current relevance of the
proposed study, which seeks to understand how block-based environments do and do not support learners in their transition to text-
based languages.

2.3. From block-based to text-based programming

As block-based programming environments have grown in popularity in formal educational settings, a question of increasing
consequence is whether or not the approach is effective at preparing learners for future, text-based programming languages. Early
work on graphical (but not block-based) programming found little evidence of successful transfer in novices when moving to text-
based programming languages meaning novices still struggled with basic programming tasks in the new language despite prior
programming success with graphical tools (Scholtz & Wiedenbeck, 1990; Wiedenbeck, 1993). Similar outcomes have been docu-
mented using contemporary block-based environments, with numerous case studies documenting challenges associated with the
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transition (e.g. Cliburn, 2008; Garlick & Cankaya, 2010; Powers et al., 2007). Kolling, Brown, and Altadmri (2015) document 13
distinct issues related to this transition, ranging from the need to memorize syntax to the shift to typing in commands character-by-
character in place of blocks that treat commands as atomic objects.

At the same time, there are studies showing that gains made in block-based tools do prepare learners for later text-based pro-
gramming. Armoni et al. (2015) conducted a longitudinal study to investigate this topic. Their approach was to look at the per-
formance of students in a high school text-based programming class that was comprised of some students who had taken a Scratch
programming class in middle school and other students with no prior programming experience. The researchers then used the
students’ performance in the high school programming course to assess whether or not the Scratch middle school experience helped
students in this later course. The resulting analysis reported little quantitative difference in their performances on assessments but did
identify some specific content areas where the students with earlier Scratch experience out-performed their peers (e.g. iterating
programming constructs). The authors also found that students with prior Scratch experience reported higher levels of self-efficacy
and motivation to learn to program. Grover, Pea, and Cooper (2015) used a preparation for future learning lens to show that a block-
based curriculum can prepare learners for text-based programming, including results showing learners performing well on conceptual
multiple-choice questions posed in text-based languages after working through a Scratch-based curriculum. Using a version of the
Alice designed to support the transition and using a pedagogical strategy that emphasized this transition, Dann et al. (2012) found
students performed better in future Java courses after completing the transfer-focused curriculum. Continuing scholarship on the
transition is revealing promise in this approach to helping learners make the transition (e.g. Saito, Washizaki, & Fukazawa, 2016;
Tabet, Gedawy, Alshikhabobakr, & Razak, 2016). These studies suggest that block-based tools can help learners in future text-based
contexts, especially as it relates to conceptual knowledge and the ability to author successful programs. However, the lack of a
controlled comparison or quasi-experimental design in this prior work prevents these authors from making strong claims on the role
of modality in supporting this transition independent of curriculum or pedagogy. It is this question, and the associated methodo-
logical gaps, that the present work seeks to address.

3. Materials and methods
3.1. Study design and data collection strategy

This paper seeks to answer the following research question: In high school introductory computer science classes, how does the
modality used for introductory programming instruction (block-based versus text-based) impact learners when they transition to a
professional text-based programming language? To answer it, we conducted a quasi-experimental study during the first 15 weeks of
the school year in two introductory programming classes. The two classes followed the same curriculum but used different versions of
the same programming environments during the first portion of the course. For the first five weeks of the school year, one class used a
block-based version of the environment and the other class used a text-based version of the same environment. Further details about
the environment are presented in the next section. After the five-week introduction, both classes transitioned to the Java pro-
gramming environment. Once in Java, both classes used the same programming environment and again followed the same curri-
culum. The study design had students take a content assessment and attitudinal survey at the outset, after five weeks when the
transition to Java took place and then again at the conclusion of the 15 weeks. The content assessment and attitudinal assessments
were administered on consecutive days during class time and took roughly 20 min to complete each. A detailed analysis of com-
parative findings from the first five weeks of the study can be found in (Weintrop & Wilensky, 2017a) and full versions of both
instruments used in this study can be found in the appendices of (Weintrop, 2016).

For the content assessment, students were asked to complete a customized version of the Commutative Assessment designed
specifically for the study (Weintrop & Wilensky, 2015a). The assessment is comprised of 30 multiple-choice questions on the pro-
gramming concepts covered during the introductory portion of the course (including conditional and iterative logic, variables, and
functions). The assessment also included questions related to overall program comprehension and non-programming questions on
algorithms. The defining feature of the Commutative Assessment is that each of the short programs can be presented in either Snap!
Blocks, Pencil Code blocks, or Pencil Code text (Fig. 1a, b, and 1c respectively). The comprehension questions ask students to select
the correct description of the presented program, so rather than figuring out just the output of the program, students must derive the
purpose of the set of instructions. Note, we acknowledge the shortcomings of multiple-choice questions for program comprehension
questions (Simon and Snowdon, 2014) but include them in the analysis as there were a small portion of the overall assessment and
were held constant between groups making them still useful for our comparative questions. Each version of the assessment asked
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Fig. 1. The three forms programs may take in the Commutative Assessment., (a) Snap!, (b) Pencil Code Blocks, (c) Pencil Code Text.
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students to answer questions in all three of the programming modalities. The assessment was designed such that during each ad-
ministration of the assessment students answered questions for every topic in all three modalities. Further, three versions of as-
sessment were constructed with different patterns of question-modality pairs and were given at each of the three time intervals. This
resulted in a counterbalanced design where every student answered every question in each of the three modalities over the course of
the 15 weeks, ensuring an even distribution of concept, condition, and modality.

Along with the content assessment, students completed an attitudinal survey at the beginning, middle, and conclusion of the
study. The three versions of the survey administered during the study were largely the same except for changes in tense (past/future)
and additional questions added to the Mid and Post surveys asking students to reflect on their experiences in the class. The survey was
based on items from the Georgia Computes project (Bruckman et al., 2009, pp. 86-90) and the Computing Attitudes Survey which has
been validated and is widely used in computing education research studies (Dorn & Elliott Tew, 2015; Tew, Dorn, & Schneider, 2012).
The survey was comprised of 10-point Likert scale questions as well as short response questions. In the analysis presented in this
paper, we focus on questions associated with confidence and enjoyment and a standalone question related to interested in future
computer science courses.

Finally, as part of this study, we recorded the programs students wrote and the error message they received while compiling their
programs. When programming in Java, before a program can be run it must be compiled using the javac command. If there is an
error in the program, a call to javac will respond with an error, preventing the program from being run. For this study, we recorded
every call to javac made by the participants, capturing the contents of the program and the output of the javac call (including any
errors if present). To accomplish this, we added logic to the console students used to run their programs. To record these events, we
developed a tool that wrapped the students' compilation command with a script that executes the compilation while also recording
the contents of the student's program and the resulting compiler output and sends both to a remote server. This whole process is
invisible to the student. This approach to logging student programs builds on earlier work looking at compilation events as a means to
gain insight into learners' emerging programming practices (Jadud & Henriksen, 2009). The specific implementation used in this
work was informed by the Git Data Collection project (Danielak, 2014).

3.2. Pencil.cc and the introductory curriculum

This research study is built around students learning to program in the same programming environment but using different
modalities — either block-based or text-based. To carry out this study, a modified version of Pencil Code was created called Pencil.cc.
Pencil Code is an online programming environment that allows users to freely move back-and-forth between text-based (Fig. 2a) and
block-based (Fig. 2b) versions of their programs (Bau, Bau, Dawson, & Pickens, 2015). In supporting this bi-directionality, the two
programming modalities are isomorphic, meaning that anything that can be done in one interface can also be done in the other.
Unlike Pencil Code, Pencil.cc prevents learners from moving between the two modalities, instead, learners either use only the block-
based interface or only the text-based interface. Thus, for the duration of the five-week study, students were introduced to pro-
gramming using either a block-based version of Pencil.cc or a text-based version of Pencil.cc. This means students in one class
programmed via the drag-and-drop mechanism supported by the block-based interface while the other class authored programs by
typing in commands character-by-character. Aside from the programming modality, everything else about the two versions of the
programming environment is identical, including the programming language (including keywords and syntax), the visual execution
environment, and the programming capabilities and other environmental scaffolds. For both versions of Pencil.cc, the underlying
programming language used was CoffeeScript. CoffeeScript was chosen as it is syntactically light, has an active professional user base,
and it is sufficiently different from Java so as to keep the transition between environments significant.

The block-based interface of Pencil.cc includes many of the features of block-based programming that research has identified that
learners perceive as being productive for programming (Weintrop & Wilensky, 2015b). This includes a conceptually organized and
browsable palette of blocks (the left-most portion of Fig. 2b), visual cues as to how and where blocks can be used, and the drag-and-
drop compositional mechanism. Students in the text-based condition of the study used a text-editor that includes numerous scaffolds
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Fig. 2. The text-based (a) and block-based (b) versions of Pencil.cc used for this study.
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standard to programming authoring tools including syntax highlighting and basic compile-time error checking. The goal in creating
Pencil.cc was to isolate the programming modality to understand if and how the way students are initially introduced to pro-
gramming (i.e. block-based vs. text-based) affects their ability to transition to conventional text-based languages.

The introductory curriculum students followed for the first five weeks was a modified version of the Beauty and Joy of Computing
(Garcia et al., 2015). Additional activities were created to take advantage of features of Pencil.cc that were grounded in the Con-
structionist programming tradition (Harvey, 1997; Papert, 1980). In creating the curriculum, an effort was made to ensure student
were given creative freedom within each assignment. As such, student solutions varied widely within the assignments. The five-week
curriculum covered the following topics: variables, conditional logic, iterative logic, and functions. Each content area included visual
assignments that asked students to control an on-screen turtle (in the spirit of Logo and Scratch activities) as well as text processing
activities with no graphical component. The types of assignments in the curriculum were balanced to not privilege one condition over
the other in the case that one modality was more conducive to a particular type of activity. The curriculum used for the study is
available in Appendix A of (Weintrop, 2016).

3.2.1. Introductory Java materials

After the five-week introduction, students in both conditions transition to Java. All students used the same basic text editor for
their Java programming assignments, which did not include common programming editor features like syntax highlighting or auto-
completion. The teacher felt it was pedagogically valuable to have students work in a basic text editor, which she had successfully
used in this course in prior years. The course followed the Java Concepts: Early Objects textbook (Horstmann, 2012). During the ten
weeks of the Java portion of the study, students encountered basic input/output, variables, data types, objects, and functions. While
there is not complete content overlap between the introductory curriculum and the first ten weeks in Java, there are concepts that
were encountered in both, notably variables and functions.

3.2.2. Setting and participants

This study was carried out in an urban, public school in the American Midwest that serves almost 4,000 students. The school is
racially and socio-economically diverse (44% Hispanic, 33% White, 10% Asian, 9% Black, and 4% multiracial/other; 58.6% of
students are from economically disadvantaged households). The school is a selective enrollment institution, meaning it is designed for
academically well-performing students who must do well on a written test to be admitted. The school district has put measures in
place to ensure the makeup of selective enrollment schools are representative of the urban population from which they draw in that
students are admitted based on their test performance relative to other students at their current school rather than to other students
across the city. The result of this decision is a more diverse (both socioeconomically and geographically) student body than alter-
native approaches for deciding admissions. Working in a selective enrollment school was not ideal for this work and introduces some
limitations but was necessary as few public schools have multiple sections of the same computer science course or a teacher ex-
perienced enough to be willing to teach different classes using variations of the same programming tool. The student population that
participants were drawn from captures a representative set of high-achieving learners.

The quasi-experimental design was carried out in two sections of an existing Introduction to Programming course. In prior years,
the course began teaching Java on day one. For this study, the introduction to Java was delayed until the sixth week of class, with the
first five weeks being spent using Pencil.cc and the custom-designed curriculum discussed above. Each of the two classes had 30
students, each of whom were assigned a laptop to use for the course. The two classes were taught by the same teacher in the same
classroom in back-to-back periods allowing us to control for teacher and environmental effect. The teacher received her under-
graduate degree in technical education and corporate training and was in her eighth year of teaching (third at that school).

The Introduction to Programming class is offered as an elective meaning students choose to enroll in the class. Historically the
class attracts students from a variety of racial backgrounds and usually has more male students enroll than female students. This
study included a total of 60 students with all students in the two classes included in the set of potential participants. The choice of two
classrooms of 30 each was chosen as 30 is often held as the minimum number of participants for statistical analysis which gives us the
ability to analyze conditions independently (Cohen, Manion, & Morrison, 2007). Further, the school only offered 3 sections of the
course, all of which were involved in research studies and including a second school would have introduced new confounds to the
study design and analysis. The self-reported racial breakdown of students in the class was as follows: 41% White, 27% Hispanic, 11%
Asian, 11% Multiracial, and 10% Black. Among participants, a language other than English is spoken in 47% of homes. The classes
were made up of 49 male students (25 in Blocks, 24 in Text) and 11 female students (5 in Blocks, 6 in Text). The two classes included
students from all four high school grades (9 freshmen, 9 sophomores, 16 juniors, and 26 seniors). The gender disparity in these
classrooms is problematic but recruiting students to enroll in the classes used in the study was beyond the control of the researchers.

4. Results

This paper seeks to understand how introductory programming modality (block-based versus text-based) impacts learners when
they move on to learning a professional text-based programming language. For this work, we operationalize “impact” by looking at
three interrelated dimensions of learning to program: conceptual understanding, attitudes towards programming, and programming
practices. In focusing on these three aspects, we seek to understand how the knowledge, dispositions, and practices that developed
using introductory tools carry over to learning to program with a professional text-based language. We use these three aspects as a
means to understand different dimensions of the complex act of learning to program. As such, this section presents three different
ways of understanding how introductory modality impacts the novice learning experience as they move from introductory to
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Fig. 3. The mean scores for students in the two conditions on the three administrations (Pre, Mid, and Post) of the Commutative Assessment.

professional tools.

This section begins with a presentation of the findings of the learners conceptual understanding of programming content through
the analysis of student performance on the Commutative Assessment. Next, we present a systematic analysis of responses to the
attitudinal surveys administered. Finally, we present an analysis of student programming practices based on an analysis of learner's
calls to javac. Throughout this section, we briefly report findings from the previously published first five weeks of the study to serve
as context but focus specifically on results from week 5 onwards. Additionally, given the multidimensional nature of the analysis, we
provide some short discussions of results specific to each analysis here before providing an overarching analysis across the different
data sources in the discussion section that follows.

4.1. Learning outcomes

This section presents an analysis of the Pre, Mid, and Post content assessments scores by condition. Fig. 3 shows student scores at
each of the three administrations.

We begin by presenting previously published results looking at scores on the content assessment administered at the outset of the
school year and the midpoint of the study (Weintrop & Wilensky, 2017a). By condition, the mean scores were 51.7% (SD 14.5%) for
Text and 54.3% (SD 12.2%) for the Blocks condition, a difference not found to be statistically significant: t(57) = 0.78, p = 0.44,
d = 0.20 (note: calculations showing participant numbers less than 60 is a result of student absences where no make-up adminis-
tration was possible). This analysis shows there to be no difference between the two classes with respect to prior programming
knowledge at the outset of the study. After working in the introductory environment for 5 weeks, a difference between the two
conditions emerged. Looking at the Mid assessment, students in the Text condition had a mean score of 58.8% (SD 14.6%) and
students in the Blocks condition scored an average of 66.6% (SD 13.4%). A t-test shows this difference to be statistically significant (t
(53) = 2.03, p = 0.04, d = 0.58). This means that after 5 weeks, students learning to program in a block-based environment per-
formed significantly better on a content assessment than peers using an isomorphic text-based environment.

After the Mid assessment, students immediately transitioned to Java and spent the next 10 weeks programming in Java before
taking the Commutative Assessment for a third and final time. On the Post content assessment, there is no statistical difference found
between the two conditions (£(57) = 0.014, p = .99), with the Blocks students having an average of 64.9% (SD 13.5%) and students
coming from the Text condition scoring 64.7% (SD 14.0%). If we look at how student performance changed between the Mid and Post
administrations and compare it between the two conditions, we find the difference in gains made by students between the two
conditions to be statistically significant (¢(52) = 2.58, p = .01, d = 0.70).

This analysis reveals that students in the block-based programming condition achieved greater gains during the five-week in-
troductory period with respect to performance on the Commutative Assessment. After the transition to Java, students in the Blocks
conditions did not improve, while the Text condition saw another incremental improvement. This means that over the course of the
15-week study, all of the students started and ended in the same place on the content assessment, however, the two conditions took
different paths along the way.

One possible explanation is that there was little transfer between environments for students coming from the block-based con-
dition, so their performance plateaued, while students who had spent the previous five weeks working in the text-based introductory
environment experienced some transfer that helped them continue developing their conceptual understanding of programming
concepts as they moved into Java. A second possible explanation of this finding is that there is a ceiling effect for learners and that the
Blocks condition reached that ceiling faster than the Text condition. In other words, learners in the environment that enabled drag-
and-drop composition were able to more quickly understand the concepts at hand, while the Text condition took longer to make sense
of the activity of programming before reaching the ceiling associated with the curriculum students worked through. The finding that
block-based learning environments allow students to learn more quickly has been shown in some small studies in informal en-
vironments (Price & Barnes, 2015, pp. 91-99), so this suggests this may be a larger, more robust phenomenon.
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4.2. Attitudinal findings

Part of understanding and evaluating the impact of working in different modalities during the introductory portion of the course is
investigating how the attitudes and perceptions of programming that formed during their use persisted or changed as students moved
on to Java. As previously mentioned, in this section, we present the results of our analysis of two composite attitudinal measures
(confidence and enjoyment) and a standalone question related to interested in future computer science courses. The decision to focus
on these specific dimensions of attitude is due to their association with a learner's likelihood of pursuing future computer science
learning opportunities, especially as it relates to learners from historically underrepresented population in computing (American
Association of University Women, 1994; Margolis & Fisher, 2003; Tavani & Losh, 2003). Additionally, confidence and enjoyment are
often used in studies investigating the design of programming environments and learning (e.g. Bishop-Clark, Courte, & Howard,
2006; McDowell, Werner, Bullock, & Fernald, 2006; Rodriguez Corral et al., 2019). When analyzing changes in scores over time
within the same set of students (e.g. between the Mid and Post surveys for the Blocks condition), a Wilcoxon Signed Rank test
(reported as Z statistic) is performed. The ordinal nature of the Likert responses and non-parametric nature of the test make this an
appropriate test to use for these paired sample calculations. In cases where the analysis is comparing the two conditions to each other,
a Wilcoxon Rank Sum test (reported as a U statistic) is performed. This test is used because the two samples are independent and the
underlying data is ordinal and non-parametric (Fay & Proschan, 2010). Note, the figures in this section are all presented on the same
y-axis scale but do not all cover the same range, meaning they can be compared relative to each other but the meanings of positions
on the charts differ. It is also important to note that the y-axes of figures presented in this section do not start at zero, this was done to
make quantitative differences more legible.

4.2.1. Confidence in programming ability

The first attitudinal dimension discussed is students' perceived confidence in their programming ability. The composite con-
fidence score is the combination of the two Likert statements: I will be good at programming and I will do well in this course (note:
the tense of the statements changed between administrations). These questions have Cronbach's a scores of 0.82 on the Pre survey,
0.80 on the Mid survey and 0.88 on the Post survey, which meet the 0.8 threshold often cited as the minimum level of acceptability
for research purposes (Streiner, 2003). Fig. 4a shows the aggregated confidence measure at the Pre, Mid and Post points in time.

Looking at the three distinct points at which the survey was administered, we find no significant difference in confidence between
the conditions (Pre: U = 353.5, p = .30; Mid: U = 395, p = .78; Post: U = 307.5, p = .08). Running Wilcoxon signed ranked tests for
changes within groups between time points, we only find a significant difference in the Blocks condition between the Mid and Post
survey, which shows learners who spent 5 weeks working in the block-based condition to be significantly less confident after
spending 10 weeks programming in Java (Z = 46, p = .05). Note that despite there being a numerical difference between the
conditions at the outset of the study, the difference was not statistically significant, nor was the change in confidence between the Pre
and Mid administrations of the survey. Taken together, the data show that, comparatively, the modality did not have a significant
impact on students' confidence. Linking these results with the findings from the previous section on content performance, we see
students in the Text condition showing a slight (though not significant) growth in confidence at the same time their test scores are
improving, while the Blocks students see a decrease in confidence alongside a decrease in scores on the content assessment. The
conclusion to be drawn from this analysis is that modality alone does not seem to affect high school learners’ confidence in their
programming ability.

Looking just at the trajectory for the Blocks conditions, the increase in confidence for students could explain other findings
showing an increased retention for students using these types of graphical tools in their first computer science course (Cliburn, 2008;
Johnsgard & McDonald, 2008), but does potentially call into question the effectiveness of such an approach for preparing students for
future learning of computer science as the gains with respect to confidence do not persist.

4.2.2. Enjoyment of programming
The second attitudinal dimension analyzed from the survey seeks to understand if students enjoyed programming and if so, how it
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Fig. 5. The mean responses scores, grouped by condition, for the statement: I plan to take more computer science courses after this one.

differed by condition both during their time using the introductory tools and their time in Java. The aggregate enjoyment score is a
composite of responses to the following three questions: Programming is Fun, I like programming, and I am excited about this course.
A Cronbach's Alpha test was run on these three questions and found a sufficient level of correlation (Pre: a = 0.79, Mid: a = 0.84,
Post: a = 0.89).

Looking at the changes from Pre to Mid and Mid to Post, shown in Fig. 4b, there is very little quantitative change with no
statistically significant differences emerging between time periods within the groups or at the same time period across the groups.
This lack of difference leads to the conclusion that modality does not affect perceived enjoyment in high school learners. It is
important to keep in mind that students worked through the same curriculum regardless of modality. In other words, students
working in the block-based interface were given the same assignments as those working in text. This lack of a significant difference
suggests that the increased enjoyment of programming found in other studies using block-based tools (e.g. Wilson & Moffat, 2010)
may have more to do with the curriculum used or the context in which learners programmed than the modality itself.

4.2.3. Interest in future CS

The final attitudinal survey result we presented in this analysis asks about students’ interest in pursuing future computer science
learning opportunities. It asked students to give a response on a 10-point Likert scale to the prompt: I Plan on Taking More Computer
Science Courses after this one. Student responses at all three points in time, grouped by condition are shown in Fig. 5.

Like with the content scores presented in Fig. 3, when looking into students’ interest in future computer science courses, we see
students in the two conditions start and end the study at the same point with a significant difference emerging at the midpoint of the
study. The first five weeks of the study saw participants in the Blocks condition become more interested in computer science courses,
while students in the Text condition became less interested. At the midpoint of the study, the two conditions have significantly
different levels of interest in future computer science coursework (U = 264.5, p < .05). After 10 weeks of working in Java, the trend
flips with students coming from the Blocks environment becoming less interested, while students coming from the Text condition
become more interested.

The results of this analysis are particularly interesting as they have potential implications for the strategic timing of the blocks-to-
text transition in formal contexts. If the designers of an introductory computer science course sequence plan to have students use a
block-based environment initially with the goal of transitioning learners to text-based programming at some point, the data shown in
Fig. 5 suggest there are better and worse times to schedule the transition. For example, if the course sequence is set to have the first
course be all in blocks and the second course only use text-based languages (which is a common approach), this data suggests that
there will be a high enrollment rate in the second course, but that students’ interest will wane early on. This pattern matches reports
of educators implementing this approach (Cliburn, 2008). The potential downfall of this approach is that if the text-based in-
troduction happens at the beginning of the course, it is more likely students will transfer out or drop the course. Alternatives to this
approach would be to make the transition within the course so the teacher has built up a rapport with students and employ explicit
bridging techniques (Dann et al., 2012), or to interleave the block-based and text-based instruction throughout the year (Powers
et al., 2007). It is also important to note that there are other reasons to use a blocks-first sequence despite this finding, such as the
greater learning gains (as discussed in section 4.1) or the prioritization of exposure to foundational concepts and easy introduction
over preparation for future learning and transition to text-based programming that is emphasized in this study.

4.3. Programming practices outcomes

The final dimension of our operationalization of impact investigates differences in programming practices between students
coming from block-based tools compared to those coming from a text-based introduction to programming. Unlike the prior two
Findings sections that used surveys and written assessments, this section analyzes the programs learners wrote and how they wrote
them to further identify potential impacts of introductory modality. This section looks at a few different dimensions of the practice of
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Fig. 6. The average number of javac calls per student per day grouped by week. The solid portion of each bar represents successful calls; the striped
portions represent erroneous calls.

programming that have been investigated elsewhere in the computer science education literature to understand the process learning
to program: compilation and run behaviors (Jadud, 2005; Jadud & Henriksen, 2009; Vihavainen, Luukkainen, & Ihantola, 2014, pp.
21-26), types and frequency of errors (Altadmri & Brown, 2015; Jackson, Cobb, & Carver, 2005; Jadud, 2005), and changes made
between sequential runs (Berland, Martin, Benton, Petrick Smith, & Davis, 2013; Blikstein et al., 2014; Piech, Sahami, Koller, Cooper,
& Blikstein, 2012). In this section, we use the data generated when student try and compile the Java program using the javac
command as a means to understand emerging programming practices.

4.3.1. Differences in how often students attempted to run their programs

Students in the Blocks condition ran the javac command an average of 142.3 times (SD 67.1) over the course of the ten weeks.
Over that same period, students in the Text condition called javac 130.9 (SD 61.1) times, a difference that is not statistically
significant (t(56) = 0.67, p = .50). In other words, there was no significant difference in the number of calls to javac based on the
introductory modality students used. Fig. 6 shows the average number of compilations for each student per day across the three
conditions broken down by week. This chart includes both successful compilations (solid portions of each bar) as well as calls that
resulted in an error (the striped portion of each bar).

While the number of calls per week fluctuates over the course of the ten-weeks due to variations of the in-class activity, across the
study we see little difference between the two conditions. Taken together, this shows students in the two conditions had similar
programming practices in terms of how often they attempted to run their programs, next we look at success rates to see if there are
differences in how error-prone these programs were.

4.3.2. Differences in success rates of compilations

If a student makes a syntactic error in their program, a call to javac returns an error response informing them of the error. Over
the ten-week curriculum, students who used the text-based introductory environment had an average of 70.26 errors (SD 38.2) while
students coming from the block-based introductory condition averaged 75.7 total errors (SD 34.3). As a percentage of the total calls to
javac, students in the Text condition had errors on 53.7% of javac calls, compared to 53.2% of calls for Blocks students, this
difference in error rates is not statistically significant (t(56) = 0.58, p = .57). The striped portions of the columns in Fig. 6 show the
average number of unsuccessful javac calls per week. If we break up this data to look at difference per student, we again see similar
patterns across the two conditions. Table 1 provides an overview of the frequency of failed compilations per student as well as
information about the number of errors per failed javac call broken down by condition.

Here again, we see little difference between the two conditions. This leads us to conclude that the five weeks spent in the text-
based introductory environment did not better prepare learners for later programming in a professional text-based language with
respect to authoring less error-prone programs. At the same time, it did not negatively impact learners’ ability to write correct
programs compared to having prior programming experience be situated in a block-based environment.

Table 1
High-level descriptive patterns of failing compilations and errors over the course of the 10 weeks.
Failed javac calls per student Compilation errors per student Compilation errors per failed javac call
Blocks 75.11 165.78 2.23
Text 69.55 164.26 2.21
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Fig. 7. The ten most frequently encountered Java errors, grouped by condition.

4.3.3. Differences in the types of errors encountered

Just as we can glean information from patterns found in successful and erroneous compilation calls, we can also look at the types
of programming errors the students encountered as another potential venue for differences between block-based and text-based
introductions to emerge. This section reports on the types of errors encountered and their frequency to see if there are systematic
differences based on learners' introductory modality. Unfortunately, the Java compiler often does not (and at times cannot) provide
meaningful error messages to the programmer (or to researchers trying to understand novice programmer behaviors). For instance, a
missing ¢;’ could result in the error message “expected ‘;’ on line 11” or by the rather generic message “not a statement”. To
make the analysis more meaningful, errors were grouped into more broadly defined error types, a detailed breakdown of how these
error types were compiled can be found in (Weintrop, 2016). Fig. 7 shows the ten most frequently encountered errors grouped by
condition. The values in this chart are reported on a per-compilation basis to control for differences in how often students compiled
their programs.

The most common error was: “*;’ expected”, which is seen when students forget to end a statement with a semicolon, a
syntactic requirement of Java. The second most common error: “cannot find symbol”, occurs when students try and use a variable
before it has been defined. This pattern matches prior research looking at patterns of novice programming errors, as both Jadud
(2005) and Flowers et al. (2004) identified these two mistakes as the most frequently encountered by novice programmers learning
Java. Combined with the previous analysis, these data show that students in the two conditions not only made errors as the same rate
but when they did have syntax errors in their programs, they were the same type of errors. The take away from this analysis is that
introductory modality did not impact the type of errors learners made after transitioning to the Java programming language.

4.3.4. Differences in the amount of code added in between successful compilations

Along with compilation patterns, we are also interested in how one goes about authoring a program. For example, does the learner
write larger chunks of code and then see what happens? Or does the learner make small incremental edits en route to a functioning
program? The idea is to investigate if introductory modality shaped the composition practice as it relates to the practice of authoring
programs. To do this we look at the magnitude of changes made to programs between consecutive runs. To measure the size of the
change, we use the Levenshtein distance between the texts of the two programs (Levenshtein, 1966). Levenshtein distance captures

Table 2
The frequency of successful compilations with a given Levenshtein distance from the last successful compilation of the same program.

Levenshtein Distance

0 1 2 3 4 5-10 11-25 26-100 > 100
Blocks 7.00 3.37 5.70 1.33 2.37 4.30 3.52 6.56 3.33
Text 6.16 3.00 5.58 1.23 2.13 3.77 3.48 5.87 2.55
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the minimum number of single-character edits (i.e. insertions, deletions or substitutions) required to change one string into the other.
Table 2 shows the results of this analysis. The columns capture the size of the Levenshtein distance between consecutive successful
programs, while the cells show the average number of occurrences of that distance per student. The lower the number, the less often a
program with that distance from the previous successful compilation was run by a student. For example, the left-most column that
contains numbers shows that, on average, students in the Blocks condition compiled a program that was identical to the last program
they compiled 7.00 times over the course of the 10 weeks, while the Text condition did this 6.16 times.

The students in the Text condition made fewer large changes to their programs and also re-ran their programs without making any
changes less often than the other condition. These numbers tell the same story as the previous sections, namely that there is no
systematic difference in the magnitude of program changes between consecutive runs between the two conditions after the transitions
to Java. Also, it is worth noting, these data also allow us to reject the explanation that the fewer number of total complications in the
Text condition was a result of the students making larger sets of changes between runs.

5. Discussion

The main contribution of this work is the finding that after seeing differences emerge between students working in block-based
and text-based introductory environments, these difference fade after learners transition to a professional text-based environment.
This lack of difference is true across conceptual, attitudinal, and programming practices dimensions. This is a significant finding as
introductory computing curricula and environments designed for novices are becoming increasingly widespread so understanding the
strengths (e.g. intuitive and accessible introduction to the field) and limitations (e.g. lack of immediate transfer of gained knowledge
or practices) of the programming environment being used is important. One potential interpretation of these findings is that if the
goal is to prepare learners to program in conventional text-based programming environments, then block-based tools may not be any
more useful than the text-based introductory languages historically used. However, this interpretation ignores potential pedagogical
and design approach that might facilitate a more successful transition to professional programming languages. We use these im-
plications to shape our discussion section before concluding with some larger discussion points.

5.1. Implications for pedagogy

One of the study design decisions made for this work was to ask the teacher to not differentiate instruction between the two
conditions. The intention was to try and control for pedagogy to be able to attribute differences in outcomes to the modality of the
introductory tool. However, in doing so, there is a lost opportunity that could potentially explain the lack of transfer between the
introductory tools and Java. In the block-based classroom, after the students moved to Java, the block-based environment was not
seen again, nor was it referenced as a means to draw parallels between Java and the introductory tools that had been using for the
first part of the course. In taking this approach, we limited the teacher's ability to use all the educational resources at her disposal. In
post interviews with the teacher, she discussed how this study helped her see the potential of block-based programming in in-
troductory programming courses and she commented on how in the future, she would continue to use the block-based environment,
but interleave it throughout the year. She said in the future, she planned on introducing each new concept with the block-based tool
before moving to Java, drawing direct parallels between the two. This pattern of a block-based introduction followed by a scaffolded
text-based transition would then be repeated over the course of the year. While we do not have the data to report on the outcomes of
this approach, the fact that this is what the teacher in this study decided would be the best course of action for her classrooms, speaks
to the potential role of pedagogy in facilitating the transition between programming tools. Likewise, this also suggests a potential
avenue of future research we hope to pursue.

5.2. Implications for the design of introductory programming environments

Just as pedagogy is one potential way to support learners in their transition from block-based to text-based programming, the
programming environment itself may also facilitate this process. The programming environment used in this study (Pencil.cc) al-
lowed learners to program in blocks or in text but did not allow students to move between the two. Pencil Code, the environment that
Pencil.cc is built upon, was specifically designed to support this bi-directionality, allowing learners to move between block-based and
text-based programming freely. Research looking at students working in these types of dual-modality environments shows how giving
this control to the user can support learners with varying degrees of confidence as well as provide scaffolds to help learners author
successful programs (Matsuzawa et al., 2015; Weintrop & Holbert, 2017). An alternative approach to dual-modality environments
that support both blocks and text are hybrid environments that blend features of block-based and text-based tools into a single
interface. For example, frame-based editors are an attempt to enable block-based-style editing but allowing users to mainly use the
keyboard, rather than using the drag-and-drop interaction of most block-based tools (Kolling et al., 2017). Like with dual-modality
tools, a growing body of research is showing that such environments are a promising approach for helping introduce novices to
programming (Price et al., 2016; Weintrop & Wilensky, 2017c). The work presented in this paper suggests the need for such design
solutions to help facilitate the transition from block-based to text-based tools by showing that gains made in block-based environ-
ments do not result in a head start in text-based tools.
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5.3. Choosing an introductory programming environment

Given the growing interest in computing education, educators and parents are faced with the task of choosing an introductory
programming environment to serve as a learner's first exposure to the world of programming. When choosing a programming en-
vironment (or modality for an environment) to be used in an education context, it is important to consider the question: what is the
goal of this introductory computing experience? If the answer is: to prepare the learner for future computer science instruction, with
the assumption that such a path will require learning to program in professional text-based tools, then the findings in this paper may
cause the educator to reconsider if a block-based tool is the best approach. While the block-based introductory strategy did not
impede learner progress when moving on to a professional language, neither did is facilitate it in a way that differed from an
introductory text-based tool. Thus, if the educator has concerns related to block-based programming (e.g. the logistics of changing
learning environments or learner concerns with the authenticity of block-based tools) or sees pedagogical utility in having learners
type out programs from day one, it might be best to start learners with a text-based language rather than a block-based one.

However, if the goal of the learning experience is less about future computer science coursework and more focused on larger goals
related to computational literacy and preparing learners to be informed citizens in a technological world, then a block-based tool may
be a particularly effective introductory environment. In other words, deciding what the end goal of the introductory computing
learning experience is should inform what modality to use. Likewise, this same logic applies when integrating programming is other
disciplines or contexts. For example, if programming is being included in a science course to help develop mechanistic reason of a
specific scientific phenomenon, then a block-based interface may be appropriate. Alternatively, if the goal is to prepare a student to
conduct scientific research using existing scientific programming libraries written in a text-based language, then a text-based lan-
guage might be preferable. Collectively, this work shows the importance of considering the goals and desired outcomes of in-
troductory computing activities when choosing what programming modality to choose.

5.4. Implications beyond computer science educators and researchers

While the primary audience of this work will be those directly involved in the enterprise of helping young learners have positive
and effective computer science learning experiences, there are potential takeaways for the larger audience of those interested in the
role of computers in education. The main contribution of this work for larger audiences is highlighting the existence of an “expert
blind spot” for those designing educational technologies. The notion of an “expert blind spot” is most often discussed with respect to
teachers whose advanced knowledge of a subject results in them “not seeing” issues learners might have with a given concept (Nathan
& Petrosino, 2003). In the case of this work, the people who are designing and implementing these introductory programming
environments can see the connections between a block-based conditional statement and the textual equivalent so may assume
learners will also see the connection. This research shows that this connection is not as clear to the learner as the designers may have
hoped. The implication of this beyond the design of introductory programming environments is for all designers and researchers of
educational technology to critically evaluate what knowledge might be taken for granted in their designs and highlight the role of
empirical studies to explore potential expert blind spots.

A second, related, point of interest of this work for those outside of the computer science education community stems from the
study design and the explanatory power that it enables. Given our interest in classroom practice and a desire to have results that
speak to both researchers and educators, the study was specifically designed to be useful to both of those audiences. To accomplish
this, care was taken to make the study setting as authentic as possible while also making the modification necessary to enable direct
comparisons between experimental conditions. This meant embedding the study within existing classes and working with an ex-
perienced teacher. While this made the study more challenging to conduct, particularly in terms of finding a setting and getting the
appropriate institutional approvals, the result was a dataset that holds up to the scrutiny of academics and teachers alike. If the goal
of a research project is to shape classroom practice, being in classrooms is an important step towards achieving this goal.

A final contribution of this work is to demonstrate a multifaceted analysis of the potential roles of technology in education. The
results section presented findings related to content learning, attitudinal outcomes, and practices associated with mastery of the
content area. The study was designed to decouple these different dimensions of learning, meaning it was possible to see significant
differences along any dimension independent of the findings of the other two. In doing so, there were multiple opportunities to find
differences in outcomes between the two conditions. While no differences emerged, this study shows one possible way to study
educational outcomes when learning is defined more broadly than just an increase in knowledge.

5.5. Limitations and future work

This study was designed to answer foundational research questions related to if and how introductory programming modality
(block-based or text-based) impacts learners as they transition to professional text-based programming languages. While this study
does provide insight into this question, there are limitations to the results. The first set of limitations of this study are related to the
exceptionalities of the participants. The study took place in a selective enrollment school and in computer science classes where
students had to sign-up to enroll. This means the study was comprised of learners that have historically been successful in formal
educational contexts and showed a proclivity for computer science. Thus, the findings of this do not necessarily apply to all students,
especially those with no interest in computer science. The ratio of male to female students is another limitation of the study as males
were overrepresented. Finally, the teacher who participated in this study is an exceptional and experienced computer science edu-
cator. It is not clear how the results of this study would be different in a classroom led by a less experienced or less confident
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instructor. While none of these limitations undermine the findings, they do limit the generalizability of this study and outline
direction for future work. One clear direction forward would be a replication study at a different school with a different set of
students. There are challenges associated with conducting such a study and recruiting teachers and students for it but it would be an
important step forward for expanding the generalizability of this work.

A second limitation of the study is related to its 15-week duration. The ten weeks of the study was enough time to introduce the
concepts but only a fraction of the year-long course. It is possible that differences between the conditions may emerge later in the
semester or that different modalities impact the learning of some concepts that were not covered in the first 10 weeks of the course.
While the study gave no reason to think this is the case, it is nonetheless possible that it takes longer than 10 weeks for the differences
to emerge. A future iteration of this study lasting a full year could more fully explore this potentiality.

This study also has potential limitations stemming from the specific programming environments, languages, and curricula used.
While Pencil.cc is a reasonable representative environment for both the larger category of block-based and text-based programming
environments, in both cases it lacks some common features. For example, the block-based mode has a relatively constrained voca-
bulary and statement structure relative to tools like Scratch. At the same time, the text editor includes common scaffolds like syntax
highlighting but does not include common features such as autocomplete or embedded code suggestions. Also, the decision to have
CoffeeScript serve as the text-based programming language for the introductory portion of the study is only one of many possible
language alternatives. Like with the participant-related limitations, conducting future work exploring the transition between different
languages and different implementations of the block-based paradigm are open avenues of future work.

A related limitation stems from the transition from an introductory curriculum where students wrote procedural programs to an
object-first Java curriculum. While this is a conceptual shift, we think this transition had a relatively small impact on the findings
presented below for a few reasons. First, while the programs written in the Java portion of the study were object-oriented, intensive
object-based content was rarely encountered. The programs authored focused more on basic input/output, the creation of variables
(often using primitive types), and calling functions. When objects were encountered, the students were often given program templates
to follow that included the code for object instantiation. A second reason to believe the impact was relatively limited is in how
Pencil.cc handles sprites. When a new sprite is created, it is treated as an object. The command to create a new sprite is: s = new
Sprite () and giving instructions to the new sprite uses dot notation (e.g. s.fd 100). As such, students encountered basic object-
oriented concepts and syntax during the introductory portion of the course. Finally, as all students made the same transition, we
expect any impact from the transition to be experienced by both conditions. All that being said, it is possible this shift in paradigms
did have some impact on the results across all students, so is noted as a limitation.

Another limitation relates to methodological choices made on how we operationalized “impact” for this study. In focusing on
conceptual understanding, attitudinal outcomes, and programming practices, we foreground only some of the many facets of learning
to program. Absent from the analysis presented were measures such as program correctness, program quality, or overall ability to
solve real problems through programming. While these measures are desirable, they were not a good fit for the context in which this
work was conducted. First, concerning program correctness, the simplicity of the programs being authored and the level of scaf-
folding provided in the classroom. The teacher encouraged students to help each other and often worked alongside students during
class time, especially those that were struggling. As a result, the final programs submitted for assignments were overwhelming correct
for the assignment, thus making program correctness not a particularly useful measure in this specific context. In place of program
correctness, we use characteristics of the process of authoring the program as a means to gain insight into the learners emerging
understanding of concepts and development of programming skills. This allows us to see how the learner progressed over time rather
than relying on the summative program. Evaluating program quality is difficult for similar reasons, stemming from the simplicity of
the assignments and the complex and messy nature of classroom research. In terms of trying to evaluate learners’ abilities to solve
real-world problems using programming, which is the ultimate goal of the class, after 10 weeks of learning Java in this course, the
assignments students were being given were not at this level of sophistication. By the end of the study, students were still authoring
relatively simple programs focused on introducing and applying basic concepts, rather than employing concepts to solve real-world
problems. Later in the school year, programs shift to more applied and authentic challenges, but that happened well after the early
work that was the focus of the first 10 weeks.

Along with this list of limitations, there are also other potential directions for future work that we hope to pursue. One possibility
that was considered but not followed for this study is to investigate how modality differentially affects different types of students. For
example, do students who are struggling with programming or are initially less interested in the discipline see more, less, or different
benefits from one programming modality compared to another? Another direction of future work is taking a similar modality-centric
approach to concepts beyond programming and computer science. As argued by Wilensky & Papert (2010), there is great promise and
much work to be done in reimagining the representational infrastructure of a domain and the potential role of computationally
mediated representational systems. As new fields become increasingly computational, new tools, interfaces, and modalities are being
invented to support new computational endeavors. Research projects similar to this work could fit well amongst the various activities
that accompany the formation of new technologically enhanced tools and practices and the larger emergence of new computational
fields.

6. Conclusions
While block-based languages have exploded in popularity, relatively little research has been done to show that students learning
in these environments are effectively transitioning emerging understandings and practices to more traditional text-based languages

like Java (Blikstein, 2018). The goal of this work is to explore this transition in a high school classroom setting to understand if and
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how modality facilitates this transition. Versions of this question have been answered in various ways in the literature (Armoni et al.,
2015; Lewis, 2010; Price & Barnes, 2015; Saito et al., 2016; Weintrop, 2016), but never in a quasi-experimental setting where factors
including teacher, curriculum, and time-on-task were controlled for and learners were from the same student body. The results of this
high school classroom study show that students had greater learning gains in block-based environments compared to isomorphic text-
based alternatives, but that these gains did not result in a difference in follow-on text-based instruction with respect to conceptual
learning, attitudinal shifts, or successful programming practices.

By showing that conceptual gains made in block-based introductory tools do not automatically transfer to a professional text-
based language, we shed a spotlight on the need for educators and tools designers to help facilitate this transition. Further, in
identifying how modality shapes learners’ attitudes towards the field of computer science, and how it changes as they shift pro-
gramming languages, we can help support educators to make informed decisions about how best to welcome learners into the world
of computing. As the role of computing and technology continue to grow in society, preparing young people to be informed parti-
cipants in this technological landscape is important. Identifying the strengths and drawbacks of introductory programming tools that
play a role in laying this foundational computational literacy is an important component of that process. The goal of this work is to
move us closer to understanding how best to prepare all learners for the computational future that await them.

References

Altadmri, A., & Brown, N. C. C. (2015). 37 million compilations: Investigating novice programming mistakes in large-scale student data. Proceedings of the 46th ACM
technical Symposium on computer science education - SIGCSE ’15. Presented at the the 46th ACM technical Symposium (pp. 522-527). Kansas City, Missouri, USA: ACM
Press. https://doi.org/10.1145/2676723.2677258.

American Association of University Women (1994). Shortchanging Girls, Shortchanging America. Washington, DC: AAUW Educational Foundation.

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to “real” programming. ACM Trans. Comput. Educ. TOCE, 14(25), 1-15.

Bart, A. C., Tibau, J., Kafura, D., Shaffer, C. A., & Tilevich, E. (2017). Design and evaluation of a block-based environment with a data science context. IEEE Trans.
Emerg. Top. Comput. 1-1 https://doi.org/10.1109/TETC.2017.2729585.

Bau, D. (2015). Droplet, a blocks-based editor for text code. J. Comput. Sci. Coll. 30, 138-144.

Bau, D., Bau, D. A., Dawson, M., & Pickens, C. S. (2015). Pencil code: Block code for a text world. Proceedings of the 14th International Conference on interaction design and
Children (pp. 445-448). New York, NY, USA: IDC "15. ACM. https://doi.org/10.1145/2771839.2771875.

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable programming: Blocks and beyond. Communications of the ACM, 60, 72-80. https://doi.org/
10.1145/3015455.

Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013). Using learning analytics to understand the learning pathways of novice programmers. The
Journal of the Learning Sciences, 22, 564-599. https://doi.org/10.1080/10508406.2013.836655.

Bishop-Clark, C., Courte, J., & Howard, E. V. (2006). Programming in pairs with alice to improve confidence, enjoyment, and achievement. Journal of Educational
Computing Research, 34, 213-228. https://doi.org/10.2190/CFKF-UGGC-JG1Q-7T40.

Blanchard, J. (2017). Hybrid environments: A bridge from blocks to text. Proceedings of the 2017 ACM Conference on International computing education research, ICER 17
(pp. 295-296). New York, NY, USA: ACM. https://doi.org/10.1145/3105726.3105743.

Blikstein, P. (2018). Pre-college computer science education: A survey of the field. Mountain View, CA: Google LLC.

Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014). Programming pluralism: Using learning analytics to detect patterns in the learning of
computer programming. The Journal of the Learning Sciences, 23, 561-599. https://doi.org/10.1080/10508406.2014.954750.

Brown, N. C. C., Monig, J., Bau, A., & Weintrop, D. (2016). Future Directions of Block-based Programming. Proceedings of the 47th ACM Technical Symposium on
Computing Science Education (pp. 315-316). New York, NY, USA: SIGCSE’16. ACM. https://doi.org/10.1145/2839509.2844661.

Bruckman, A., Biggers, M., Ericson, B., McKlin, T., Dimond, J., DiSalvo, B., et al. (2009). Georgia computes!: Improving the computing education pipeline. ACM SIGCSE
Bulletin. ACM.

Caspersen, M. (2018). Teaching programming. In S. Sentance, E. Barendsen, & C. Schulte (Eds.). Computer science education: Perspectives on teaching and learning (pp.
109-130). Bloomsbury Publishing.

Cliburn, D. C. (2008). Student opinions of alice in CS1. Frontiers in education Conference, 2008. FIE 2008. 38th AnnuallEEE T3B-1.

Code.org (2017). The 5th Hour of Code is here! Code.org. 9.20.18 https://medium.com/@codeorg/the-5th-hour-of-code-is-here-5b9ed3c29¢50.

Code.org Curricula (2019). Code.org.

Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education (6th ed.). New York: Routledge, London .

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: A 3-D tool for introductory programming concepts. J. Comput. Sci. Coll. 15, 107-116.

Cuny, J. (2015). Transforming K-12 computing education: An update and a call to action. ACM Inroads, 6, 54-57. https://doi.org/10.1145/2809795.

Danielak, B. A. (2014). How electrical engineering students design computer programs. College Park, MD: University of Maryland.

Dann, W., Cosgrove, D., Slater, D., Culyba, D., & Cooper, S. (2012). Mediated transfer: Alice 3 to Java. Proceedings of the 43rd ACM technical Symposium on computer
science education (pp. 141-146). ACM.

Dorn, B., & Elliott Tew, A. (2015). Empirical validation and application of the computing attitudes survey. Computer Science Education, 25, 1-36. https://doi.org/10.
1080/08993408.2015.1014142.

Duncan, C., Bell, T., & Tanimoto, S. (2014). Should your 8-year-old learn coding? Proceedings of the 9th Workshop in primary and secondary computing education (pp. 60—
69). New York, NY, USA: WiPSCE "14. ACM. https://doi.org/10.1145/2670757.2670774.

Fay, M. P., & Proschan, M. A. (2010). Wilcoxon-mann-whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics
Surveys, 4, 1-39. https://doi.org/10.1214/09-SS051.

Flowers, T., Carver, C. A., & Jackson, J. (2004). Empowering students and building confidence in novice programmers through Gauntlet. Frontiers in education, 2004.
FIE 2004. 34th Annual. Presented at the Frontiers in education, 2004. FIE 2004. 34th Annual: Vol. 1, (pp. T3H/10-T3H/13). . https://doi.org/10.1109/FIE.2004.
1408551.

Franklin, D., Skifstad, G., Rolock, R., Mehrotra, 1., Ding, V., Hansen, A., Weintrop, D., & Harlow, D. (2017). Using Upper-Elementary Student Performance to
Understand Conceptual Sequencing in a Blocks-based Curriculum. Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (pp.
231-236). New York, NY, USA: SIGCSE ’17. ACM. https://doi.org/10.1145/3017680.3017760.

Fraser, N. (2015). Ten things we’ve learned from Blockly. 2015 IEEE blocks and beyond Workshop (blocks and beyond). Presented at the 2015 IEEE blocks and beyond
Workshop (blocks and beyond) (pp. 49-50). . https://doi.org/10.1109/BLOCKS.2015.7369000.

Garcia, D., Harvey, B., & Barnes, T. (2015). The beauty and Joy of computing. ACM Inroads, 6, 71-79. https://doi.org/10.1145/2835184.

Garlick, R., & Cankaya, E. C. (2010). Using alice in CS1: A quantitative experiment. Proceedings of the Fifteenth Annual Conference on Innovation and technology in
computer science education (pp. 165-168). ACM.

Good, J. (2018). Novice programming environments: Lowering the barriers, supporting the progression. Innovative methods, user-Friendly tools, coding, and design
approaches in people-oriented programming (pp. 1-41). IGI Global.

Goode, J., Chapman, G., & Margolis, J. (2012). Beyond curriculum: The exploring computer science program. ACM Inroads, 3, 47-53.

Good, J., & Howland, K. (2017). programming Language, natural language? Supporting the diverse computational activities of novice programmers. Journal of Visual

15


https://doi.org/10.1145/2676723.2677258
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref2
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref3
https://doi.org/10.1109/TETC.2017.2729585
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref13
https://doi.org/10.1145/2771839.2771875
https://doi.org/10.1145/3015455
https://doi.org/10.1145/3015455
https://doi.org/10.1080/10508406.2013.836655
https://doi.org/10.2190/CFKF-UGGC-JG1Q-7T40
https://doi.org/10.1145/3105726.3105743
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref19
https://doi.org/10.1080/10508406.2014.954750
https://doi.org/10.1145/2839509.2844661
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref21
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref21
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref22
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref22
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref23
https://medium.com/@codeorg/the-5th-hour-of-code-is-here-5b9ed3c29c50
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref25
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref26
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref27
https://doi.org/10.1145/2809795
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref29
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref30
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref30
https://doi.org/10.1080/08993408.2015.1014142
https://doi.org/10.1080/08993408.2015.1014142
https://doi.org/10.1145/2670757.2670774
https://doi.org/10.1214/09-SS051
https://doi.org/10.1109/FIE.2004.1408551
https://doi.org/10.1109/FIE.2004.1408551
https://doi.org/10.1145/3017680.3017760
https://doi.org/10.1109/BLOCKS.2015.7369000
https://doi.org/10.1145/2835184
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref37
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref37
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref38
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref38
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref39

D. Weintrop and U. Wilensky Computers & Education 142 (2019) 103646

Languages & Computing, 39, 78-92. https://doi.org/10.1016/j.jvlc.2016.10.008.

Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-based programming: Examining misconceptions of loops, variables, and boolean logic.
Proceedings of the 2017 ACM SIGCSE technical Symposium on computer science education (pp. 267-272). New York, NY: ACM Press. https://doi.org/10.1145/
3017680.3017723.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science course for middle school students. Computer Science Education, 25,
199-237. https://doi.org/10.1080/08993408.2015.1033142.

Harvey, B. (1997). Computer science logo style: Beyond programming. The MIT Press.

Hill, C., Dwyer, H., Martinez, T., Harlow, D., & Franklin, D. (2015). Floors and Flexibility: Designing a programming environment for 4th-6th grade classrooms.
Proceedings of the 46th ACM technical Symposium on computer science education (pp. 546-551). ACM.

Homer, M., & Noble, J. (2017). Lessons in combining block-based and textual programming. J. Vis. Lang. Sentient Syst. 3, 22-39. https://doi.org/10.18293/VLSS2017.

Horstmann, C. S. (2012). Java concepts: Early objects (7 edition). Hoboken, NJ: Wiley.

Howland, K., & Good, J. (2014). Learning to communicate computationally with flip: A bi-modal Programming Language for game creation. Computers & Education.
https://doi.org/10.1016/j.compedu.2014.08.014.

Jackson, J., Cobb, M. J., & Carver, C. (2005). Identifying top Java errors for novice programmers. Frontiers in education Conference. IEEE.

Jadud, M. C. (2005). A first look at novice compilation behaviour using BlueJ. Computer Science Education, 15, 25-40.

Jadud, M. C., & Henriksen, P. (2009). Flexible, reusable tools for studying novice programmers. Proceedings of the Fifth International Workshop on computing education
research Workshop (pp. 37-42). ACM.

Johnsgard, K., & McDonald, J. (2008). Using alice in overview courses to improve success rates in programming 1. IEEE 21st Conference on Software Engineering
education and training, 2008 (pp. 129-136). CSEET ’08. https://doi.org/10.1109/CSEET.2008.35.

Kelleher, C., & Pausch, R. (2007). Using storytelling to motivate programming. Communications of the ACM, 50, 58-64.

Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling alice motivates middle school girls to learn computer programming. Proceedings of the SIGCHI Conference on
Human factors in computing systems (pp. 1455-1464). .

Kolling, M., Brown, N. C. C., & Altadmri, A. (2015). Frame-based editing: Easing the transition from blocks to text-based programming. Proceedings of the Workshop in
primary and secondary computing education (pp. 29-38). New York, NY, USA: WiPSCE "15. ACM. https://doi.org/10.1145/2818314.2818331.

Kolling, M., Brown, N. C. C., & Altadmri, A. (2017). Frame-based editing. J. Vis. Lang. Sentient Syst. 3, 40-67. https://doi.org/10.18293/VLSS2017.

Kolling, M., & McKay, F. (2016). Heuristic evaluation for novice programming systems. Transactions on Computing Education, 16, 12. 1-12:30 https://doi.org/10.1145/
2872521.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics (pp. 707-710). .

Lewis, C. M. (2010). How programming environment shapes perception, learning and goals: Logo vs. Scratch. Proceedings of the 41st ACM technical Symposium on
computer science education. New York, NY (pp. 346-350). .

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM SIGCSE Bulletin. ACM.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice: Urban youth learning programming with Scratch. ACM SIGCSE Bull, 40,
367-371.

Maloney, J. H., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch programming language and environment. ACM Trans. Comput. Educ. TOCE,
10, 16.

Margolis, J., & Fisher, A. (2003). Unlocking the clubhouse: Women in computing. The MIT Press.

Matsuzawa, Y., Ohata, T., Sugiura, M., & Sakai, S. (2015). Language migration in non-CS introductory programming through mutual language translation environ-
ment. Proceedings of the 46th ACM technical Symposium on computer science education (pp. 185-190). ACM Press. https://doi.org/10.1145/2676723.2677230.
McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair programming improves student retention, confidence, and program quality. Communications of the

ACM, 49, 90-95. https://doi.org/10.1145/1145287.1145293.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. M. (2010). Learning computer science concepts with Scratch. Proceedings of the sixth International Workshop on
computing education research (pp. 69-76). .

Monig, J., Ohshima, Y., & Maloney, J. (2015). Blocks at your fingertips: Blurring the line between blocks and text in GP. 2015 IEEE blocks and beyond Workshop (blocks
and beyond). Presented at the 2015 IEEE blocks and beyond Workshop (blocks and beyond) (pp. 51-53). . https://doi.org/10.1109/BLOCKS.2015.7369001.

Nathan, M. J., & Petrosino, A. (2003). Expert blind spot among preservice teachers. American Educational Research Journal, 40, 905-928. https://doi.org/10.3102/
00028312040004905.

Noone, M., & Mooney, A. (2018). Visual and textual programming languages: A systematic review of the literature. Journal of Computers in Education. 5, 149-174.
https://doi.org/10.1007/s40692-018-0101-5.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic books.

Piech, C., Sahami, M., Koller, D., Cooper, S., & Blikstein, P. (2012). Modeling how students learn to program. Proceedings of the 43rd ACM technical Symposium on
computer science education (pp. 153-160). ACM.

Powers, K., Ecott, S., & Hirshfield, L. M. (2007). Through the looking glass: Teaching CSO with alice. ACM SIGCSE Bull, 39, 213-217.

Price, T. W., & Barnes, T. (2015). Comparing textual and block interfaces in a novice programming environment. Presented at the ICER ’15. ACM Presshttps://doi.org/10.
1145/2787622.2787712.

Price, T. W., Brown, N. C., Lipovac, D., Barnes, T., & Ko6lling, M. (2016). Evaluation of a frame-based programming editor. Proceedings of the 2016 ACM Conference on
International computing education research (pp. 33-42). ACM.

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Herndndez, A., Rusk, N., et al. (2009). Scratch: Programming for all. Communications of the ACM, 52, 60.

Rodriguez Corral, J. M., Ruiz-Rube, L., Civit Balcells, A., Mota-Macias, J. M., Morgado-Estevez, A., & Dodero, J. M. (2019). A study on the suitability of visual languages
for non-expert robot programmers. IEEE Access, 7, 17535-17550. https://doi.org/10.1109/ACCESS.2019.2895913.

Ruf, A., Miihling, A., & Hubwieser, P. (2014). Scratch vs. Karel: Impact on learning outcomes and motivation. ACM Presshttps://doi.org/10.1145/2670757.2670772.

Saito, D., Washizaki, H., & Fukazawa, Y. (2016). Analysis of the learning effects between text-based and visual-based beginner programming environments. 2016 IEEE
8th International Conference on Engineering education (ICEED). Presented at the 2016 IEEE 8th International Conference on Engineering education (ICEED) (pp. 208-213).
. https://doi.org/10.1109/ICEED.2016.7856073.

Scholtz, J., & Wiedenbeck, S. (1990). Learning second and subsequent programming languages: A problem of transfer. International Journal of Human Computer
Interaction, 2, 51-72.

Shapiro, R. B., & Ahrens, M. (2016). Beyond blocks: Syntax and semantics. Communications of the ACM, 59, 39-41. https://doi.org/10.1145/2903751.

Simon, & Snowdon, S. (2014). Multiple-choice vs free-text code-explaining examination questions. Presented at the Proceedings of the 14th Koli calling International
Conference on computing education research (pp. 91-97). ACM. https://doi.org/10.1145/2674683.2674701.

Streiner, D. L. (2003). Starting at the beginning: An introduction to coefficient Alpha and internal consistency. Journal of Personality Assessment, 80, 99-103. https://
doi.org/10.1207/515327752JPA8001 _18.

Tabet, N., Gedawy, H., Alshikhabobakr, H., & Razak, S. (2016). From alice to Python. Introducing text-based programming in middle schools. Proceedings of the 2016
ACM Conference on Innovation and technology in computer science education - ITiCSE ’16. Presented at the the 2016 ACM Conference (pp. 124-129). Arequipa, Peru:
ACM Press. https://doi.org/10.1145/2899415.2899462.

Tangney, B., Oldham, E., Conneely, C., Barrett, S., & Lawlor, J. (2010). Pedagogy and processes for a computer programming outreach workshop—the bridge to college
model. Educ. IEEE Trans. On, 53, 53-60.

Tavani, C. M., & Losh, S. C. (2003). Motivation, self-confidence, and expectations as predictors of the academic performances among our high school students [WWW
Document]. Child Study J. 7.22.19 http://link.galegroup.com/apps/doc/A116924600/HRCA?sid = googlescholar.

Tempel, M. (2013). Blocks programming. Vol. 9. CSTA Voice.

Tew, A. E., Dorn, B., & Schneider, O. (2012). Toward a validated computing attitudes survey. Proceedings of the Ninth Annual International Conference on International

16


https://doi.org/10.1016/j.jvlc.2016.10.008
https://doi.org/10.1145/3017680.3017723
https://doi.org/10.1145/3017680.3017723
https://doi.org/10.1080/08993408.2015.1033142
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref43
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref44
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref44
https://doi.org/10.18293/VLSS2017
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref46
https://doi.org/10.1016/j.compedu.2014.08.014
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref48
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref49
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref50
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref50
https://doi.org/10.1109/CSEET.2008.35
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref52
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref53
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref53
https://doi.org/10.1145/2818314.2818331
https://doi.org/10.18293/VLSS2017
https://doi.org/10.1145/2872521
https://doi.org/10.1145/2872521
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref57
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref58
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref58
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref59
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref60
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref60
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref61
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref61
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref62
https://doi.org/10.1145/2676723.2677230
https://doi.org/10.1145/1145287.1145293
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref65
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref65
https://doi.org/10.1109/BLOCKS.2015.7369001
https://doi.org/10.3102/00028312040004905
https://doi.org/10.3102/00028312040004905
https://doi.org/10.1007/s40692-018-0101-5
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref69
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref70
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref70
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref71
https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1145/2787622.2787712
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref73
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref73
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref74
https://doi.org/10.1109/ACCESS.2019.2895913
https://doi.org/10.1145/2670757.2670772
https://doi.org/10.1109/ICEED.2016.7856073
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref78
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref78
https://doi.org/10.1145/2903751
https://doi.org/10.1145/2674683.2674701
https://doi.org/10.1207/S15327752JPA8001_18
https://doi.org/10.1207/S15327752JPA8001_18
https://doi.org/10.1145/2899415.2899462
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref83
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref83
http://link.galegroup.com/apps/doc/A116924600/HRCA?sid=googlescholar
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref85
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref86

D. Weintrop and U. Wilensky Computers & Education 142 (2019) 103646

computing education research (pp. 135-142). ACM.

Vihavainen, A., Luukkainen, M., & Ihantola, P. (2014). Analysis of source code snapshot granularity levels. ACM Presshttps://doi.org/10.1145/2656450.2656473.

Weintrop, D. (2016). Modality matters: Understanding the effects of programming language representation in high school computer science classrooms (Ph.D. Dissertation)
Evanston, IL: Northwestern University.

Weintrop, D., & Holbert, N. (2017). From blocks to text and back: Programming patterns in a dual-modality environment. Proceedings of the 2017 ACM SIGCSE technical
symposium on computer science education (pp. 633-638). New York, NY, USA: SIGCSE ’17. ACM. https://doi.org/10.1145/3017680.3017707.

Weintrop, D., & Wilensky, U. (2018). How block-based, text-based, and hybrid block/text modalities shape novice programming practices. Int. J. Child Comput. Interact.
17, 83-92. https://doi.org/10.1016/j.ijcci.2018.04.005.

Weintrop, D., & Wilensky, U. (2017a). Comparing block-based and text-based programming in high school computer science classrooms. ACM Trans. Comput. Educ.
TOCE, 18, 3. https://doi.org/10.1145/3089799.

Weintrop, D., & Wilensky, U. (2017b). How block-based languages support novices: A framework for categorizing block-based affordances. J. Vis. Lang. Sentient Syst. 3,
92-100. https://doi.org/10.18293/VLSS2017-006.

Weintrop, D., & Wilensky, U. (2017c). Between a block and a typeface: Designing and evaluating hybrid programming environments. Proceedings of the 2017 conference
on interaction design and children (pp. 183-192). New York, NY, USA: IDC "17. ACM. https://doi.org/10.1145/3078072.3079715.

Weintrop, D., & Wilensky, U. (2015a). Using commutative assessments to compare conceptual understanding in blocks-based and text-based programs. Proceedings of
the eleventh annual international conference on international computing education research (pp. 101-110). New York, NY, USA: ICER ’15. ACM. https://doi.org/10.
1145/2787622.2787721.

Weintrop, D., & Wilensky, U. (2015b). To block or not to block, that is the question: students’ perceptions of blocks-based programming. Proceedings of the 14th
international conference on interaction design and children (pp. 199-208). New York, NY, USA: IDC "15. ACM. https://doi.org/10.1145/2771839.2771860.

Weintrop, D. (2019). Block-based programming in computer science education. Commun. ACM, 62(8), 22-25. https://doi.org/10.1145/3341221.

Wiedenbeck, S. (1993). An analysis of novice programmers learning a second language. Empirical studies of programmers: Fifth Workshop: Papers presented at the Fifth
Workshop on empirical studies of programmers, December 3-5, 1993, Palo Alto, CA (pp. 187). Intellect Books.

Wilensky, U., & Papert, S. (2010). Restructurations: Reformulating knowledge disciplines through new representational forms. In J. Clayson, & I. Kallas (Eds.).
Proceedings of the constructionism 2010 Conference. Paris, France.

Wilson, A., & Moffat, D. C. (2010). Evaluating Scratch to introduce younger schoolchildren to programming. In: Proc. 22nd Annu. Psychol. Program. Interest. Group
Univ. Carlos III Madr. Leganés Spain.

17


http://refhub.elsevier.com/S0360-1315(19)30199-X/sref86
https://doi.org/10.1145/2656450.2656473
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref103
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref103
https://doi.org/10.1145/3017680.3017707
https://doi.org/10.1016/j.ijcci.2018.04.005
https://doi.org/10.1145/3089799
https://doi.org/10.18293/VLSS2017-006
https://doi.org/10.1145/3078072.3079715
https://doi.org/10.1145/2787622.2787721
https://doi.org/10.1145/2787622.2787721
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1145/3341221
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref88
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref88
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref89
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref89
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref90
http://refhub.elsevier.com/S0360-1315(19)30199-X/sref90

	Transitioning from introductory block-based and text-based environments to professional programming languages in high school computer science classrooms
	Introduction
	Prior work
	Block-based programming
	Dual-modality and Bi-directional programming environments
	From block-based to text-based programming

	Materials and methods
	Study design and data collection strategy
	Pencil.cc and the introductory curriculum
	Introductory Java materials
	Setting and participants


	Results
	Learning outcomes
	Attitudinal findings
	Confidence in programming ability
	Enjoyment of programming
	Interest in future CS

	Programming practices outcomes
	Differences in how often students attempted to run their programs
	Differences in success rates of compilations
	Differences in the types of errors encountered
	Differences in the amount of code added in between successful compilations


	Discussion
	Implications for pedagogy
	Implications for the design of introductory programming environments
	Choosing an introductory programming environment
	Implications beyond computer science educators and researchers
	Limitations and future work

	Conclusions
	References




