
NORTHWESTERN UNIVERSITY

Modality Matters: Understanding the Effects of Programming Language Representation in High

School Computer Science Classrooms

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Learning Sciences

By

David Weintrop

EVANSTON, ILLINOIS

September 2016

 2
Abstract

Computation is changing our world. From how we work, to how we communicate and

how we relax - few parts of our world have been left unaffected by computation and the

technologies that it enables. The field of computer science and the ideas of the discipline are

driving these changes, yet relatively little of it is present in contemporary K-12 education.

Numerous local and national initiatives are underway to bring the powerful ideas of computing

into classrooms around the world. An increasingly popular strategy being employed in this effort

is the use of graphical, blocks-based programming environments like Scratch, Snap! and Alice.

While these environments have been found to be effective at broadening participation with

younger learners, open questions remain about their suitability in high school contexts. This

dissertation uses a quasi-experimental, mixed methods design to understand the effects of

blocks-based, text-based, and hybrid blocks-text programming environments in high school

classrooms. Three custom-designed programming environments were created and used to

understand how modality (blocks-based, text-based, and hybrid blocks/text) affects learners’

emerging understandings of core computer science concepts and their attitudes towards and

perceptions of the discipline. Additionally, the study investigates if and how the different

introductory programming modalities support learners’ transitions to more conventional text-

based professional programming languages.

 Findings from the study reveal that the modality matters. Differences were found with

respect to students’ conceptualizations of programming constructs as well as student

performance on content assessments and attitudinal surveys. The data show students in the

Blocks condition scoring higher on content evaluations after a five-week curriculum and

reporting higher levels of confidence, enjoyment, and interest in the field relative to students

 3
using an isomorphic text-based interface. However, these findings did not translate to greater

success or better self-reported experiences upon transitioning to a professional, text-based

programming language. After ten weeks of learning the Java programming language, students in

the text condition showed comparable scores on content assessments and positive trends on

attitudinal questions, whereas their blocks-based peers showed decreasingly levels of

engagement and enjoyment. This study also demonstrates the potential of hybrid environments

that blend features of blocks-based and text-based interfaces for providing the scaffolds and

engagement of blocks-based tools with the perceived power and authenticity of text-based

introductory environments. Collectively this work contributes to our understanding of the

relationship between computational representations and learning programming, and can be used

to inform the tools that will train the next generation of computationally literature citizens.

 4
Acknowledgements

 My wife would often joke that I enjoyed graduate school too much, which is why it took

me so long to finish. In many ways, she was right1. There are many reasons that I had such a

positive graduate school experience, but two stand out. The first is my advisor, Uri Wilensky,

and the incredible community he has built at the Center for Connected Learning and Computer-

based Modeling. Thank you Uri and CCLers past and present, for helping me grow as a thinker

and a learner. You have made me the researcher I am, and I am deeply grateful for your help and

support. The second largest contributor to my extended stay at Northwestern was my cohort and

the larger Northwestern Learning Science community. Thank you for making me excited to

come to campus every day2 and for challenging me to think deeply about the work I was

undertaking.

 At the outset of any academic pursuit, you are challenged by the adage: stand on the

shoulders of the giants3. With that in mind, it is important for me to acknowledge the visionaries

and great thinkers upon whose shoulders I peer out on the world from. Two in particular stand

out: Seymour Papert, whose ideas and visions we are still chasing, and Andrea diSessa, for

writing the book Changing Minds, which set me on the course that led me to the Learning

Sciences and everything that followed. For a full list of giants, please refer to page 350.

It is also important to me to acknowledge two other groups of people who made this

dissertation possible. First are the talented teachers and brilliant students who participated in my

studies, without whom, there would be no dissertation. Secondly, are the talented, resourceful

1 As usual.
2 Or at least almost every day.
3 At least that is what Google Scholar says. If only there were some way for me to look up the
origin of that expression, oh well.

 5
and, most importantly, generous developers whose tools made this dissertation possible. In

particular, the work of David Bau, Jens Mönig, and John Maloney stand out as their work

contributed most directly to the programming environments used in my dissertation.

 Finally, this dissertation would never have been possible without my family. To my

parents, who always encouraged me to ask questions and supported me in finding answers. To

my sisters, for their support and never-ending older-sibling wisdom. To my children, Maya and

Jonah, whose arrival precipitated my finishing this document, and quickly replaced it as the

central focus of my daily life. And finally, and most importantly, to my wife, who has been by

my side offering help, support, and love on every day of this journey. Thank you for helping me

become the person I am.

 6
Dedication

 This dissertation is for Jonah and Maya. It is for you and your future friends, classmates,

and peers that I undertook this challenge and sought to answer the questions I did. My only hope

for this work is that it will make some small difference in your lives and the lives of learners of

your generation.

 7
Table of Contents

Abstract .. 2

Acknowledgements ... 4
Dedication .. 6

Table of Contents .. 7
List of Figures .. 11

List of Tables ... 13
1. Introduction .. 14

Research Questions ... 21
Intended Outcomes ... 23
Structure of this Dissertation ... 25

2. Literature Review .. 27
Computers and Learning ... 27
The Computer Science Education Landscape ... 31
Learning	Context	...	32	
The	Role	of	the	Computer	..	34	
Stand	Alone	Versus	Integrated	Computer	Science	...	34	
Prioritizing	Inclusivity	and	Broadening	Participation	..	35	
Physical	Computing	&	Robotics	..	36	
Programming	Languages	and	Environments	...	37	
Programming	Paradigm	...	38	
Situating	This	Dissertation	in	the	Larger	Landscape	..	39	

Representations and Learning .. 40
Novice Programming Environments .. 43
Languages	and	Environments	from	constructionist	tradition	..	44	
Languages	and	Environments	from	outside	the	Constructionist	community	48	
Visual	Programming	..	54	
Blocks-based	Programming	...	58	

From Blocks-based to Text-based Programming .. 63
3. Methodology ... 68

Study Design .. 68
Phase	One:	A	Three-way	Introduction	to	Programming	...	69	
Curriculum	...	70	
Phase	Two:	The	To-Text	Transition	..	72	

Methods and Data Collection .. 72
Quantitative	Data	Sources	...	73	
Qualitative	Data	Sources	..	81	
Computational	Data	Sources	..	83	

Data Analysis Approach .. 87
Setting and Participants ... 91

4. Design .. 100
Modality ... 100
Year One – Snappier! ... 102

 8
The	Three	Versions	of	Snappier!	...	103	
Findings	from	Year	One	with	Snappier!	...	107	
Limitations	of	Snappier!	..	117	

Year Two – Pencil.cc .. 119
The	Three	Versions	of	Pencil.cc	...	123	
Limitations	of	Pencil.cc	..	126	

5. Attitudes and Perceptions ... 130
Incoming Perceptions and Initial Reactions to Introductory Environments 130
Assumption	of	a	Text-Driven	Experience	..	131	
Why	Use	Non-Professional,	Introductory	Programming	Environments	132	

Perceived Affordances and Limitations of Pencil.cc and the Three Modalities 136
Perceptions of Introductory Programming Environments by Modality 142
Authenticity	of	the	Activity	by	Modality	..	143	
Learning	to	Program	by	Modalities	..	147	

Changes in Attitudes and Perception over Time ... 150
Confidence	in	Programming	Ability	...	151	
Enjoyment	of	Programming	..	154	
Programming	is	Hard	...	156	
Interest	in	Future	CS	...	158	

Discussion .. 160
Students’	Perceptions	of	Pencil.cc	..	161	
Students’	Attitudes	Toward	Programming	...	162	
How	Did	the	Hybrid	Condition	Fare?	..	164	

Conclusion ... 165
6. Conceptual Learning Outcomes ... 166

Emerging Conceptual Understandings ... 167
Variables	..	168	
Conditional	Logic	..	171	
Iterative	Logic	..	176	
Functions	...	179	

The Commutative Assessment ... 184
Year One Concept by Modality Findings ... 186
Iterative	Logic	..	188	
Conditional	Logic	questions	..	190	
Variables	Questions	..	191	
Function	Questions	..	193	
Comprehension	Questions	...	195	
Concept	By	Modality	Discussion	...	196	

Learning Outcomes by Condition ... 197
Condition	by	Modality	..	202	
Condition	by	Concept	...	204	
Perceived	Ease-of-Use	of	Concepts	by	Condition	...	206	

Discussion .. 209
Modality	Matters	..	210	
Blocks	versus	Text	...	211	
The	Case	of	the	Hybrid	Condition	...	214	

Conclusion ... 215

 9
7. Practices and Artifacts .. 217

Three Vignettes ... 217
Blocks	Condition	Vignette	..	220	
Hybrid	Condition	Vignette	...	227	
Text	Condition	Vignette	...	234	

Programming Practices Across Conditions ... 240
Running	Programs	...	242	
Elapsed	Time	Between	Consecutive	Runs	of	Programs	..	245	
Characteristics	of	Programs	..	248	
Blocks-based	Usage	in	the	Hybrid	Condition	...	250	
Quick	Reference	Usage	..	252	

Discussion .. 255
Using	the	Vignettes	..	255	
Differences	in	Programming	Practices	and	Artifacts	...	260	

Conclusion ... 264
8. Transitioning to Java ... 266

Perceptions of Introductory Programming Environments as a Preparation for Java267
Helpful	Aspects	of	Introductory	Programming	Environment	for	Transitioning	to	Java	270	
Perceptual	Outcomes	Discussion	..	276	

Changes in Attitudes and Perception in Java .. 278
Confidence	in	Programming	Ability	...	278	
Enjoyment	of	Programming	..	281	
Programming	is	Hard	...	283	
Interest	in	Future	CS	...	285	
Attitudinal	Changes	Discussion	...	286	

Differences in Java Programs .. 288
Frequency	of	Compilations	Over	Time	...	288	
Types	and	Frequencies	of	Java	Errors	..	297	
Java	Programs	Discussion	..	303	

Discussion .. 305
Conclusion ... 308

9. Discussion and Conclusion .. 310
Review of the Program of Research .. 310
Summary of Findings ... 313
Comparing	Blocks	and	Text	Modalities	..	313	
The	Case	of	the	Hybrid	Modality	...	319	

Implications ... 324
Implications	of	Modality	on	the	Learner	...	324	
Implications	of	Modality	on	the	Teacher	...	327	
Implications	of	Modality	Choice	on	Schools	and	Administrators	329	

On Modality, Learning, and Design .. 330
Modality	Matters	..	331	
Modality	is	Malleable	..	333	
Modality	and	Structurations	...	336	
Modality	and	Milieu	..	341	

Limitations and Future Work ... 343
Conclusion ... 348

 10
10. References ... 350

11. Appendix A – Introductory Curriculum ... 383
Quilt ... 383
MadLibs ... 385

	
Tip Calculator ... 385
Paint by Quadrant .. 386
Movie Recommendation Engine .. 387
Grade Ranger .. 387
Guessing Game ... 388
Radial Art .. 389
Squiral .. 390
Polygoner ... 391
Connect 4 ... 392
Brick Wall ... 393
Final Project .. 394

12. Appendix B – Attitudinal Survey ... 396
Pre Attitudinal Survey ... 396
Mid Attitudinal Survey .. 398
Post Attitudinal Survey .. 399

13. Appendix C – The Commutative Assessment ... 400
14. Appendix D – Interview Protocols ... 413

Pre Interview Protocol ... 413
Mid Interview Protocol .. 415
Post Interview Protocol .. 415

15. Appendix E – Coding Manuals ... 417

16. Appendix F: Java Compilation Error Parser ... 421	

 11
List of Figures

Figure 1.1. Comparable blocks-based and text-based programs 19	
Figure 2.1. Four example blocks-based programming languages 60	
Figure 3.1. The Commutative Assessment modalities .. 77	
Figure 3.2. Sample Commutative Assessment question ... 79	
Figure 3.3. The classroom where the study was conducted .. 94	
Figure 3.4. Time spent on a computer outside of school .. 96	
Figure 3.5. Student responses for why they enrolled in the course 98	
Figure 4.1. Four examples of programming modalities .. 102
Figure 4.2. The Snap! interface with sections labeled .. 103	
Figure 4.3. The Snappier! read-only text interface ... 105	
Figure 4.4. The Snappier! Block Editor and read-write interface 106	
Figure 4.5. Student reported differences between Snappier! and Java 113	
Figure 4.6. Pencil Code’s interface ... 120	
Figure 4.7. Pencil Code’s two modalities: Blocks and Text ... 120	
Figure 4.8. Pencil.cc’s Quick Reference feature ... 122	
Figure 4.9. The Pencil.cc login page ... 123	
Figure 4.10. Pencil.cc’s hybrid blocks/text interface .. 125	
Figure 4.11. Renderings of the same script in Snap! and Pencil.cc 127	
Figure 5.1. Student reported differences between Pencil.cc and Java (Mid) 137	
Figure 5.2. Student reported differences between Pencil.cc and Java (Post) 140	
Figure 5.3. Student responses to: Pencil.cc is similar to what real programmers do. 144	
Figure 5.4. Student responses to: Pencil.cc made me a better programmer 148	
Figure 5.5. Students’ programming confidence .. 152	
Figure 5.6. Students’ enjoyment of programming .. 155	
Figure 5.7. Average responses to the Likert statement: Programming is Hard 157	
Figure 5.8. Average responses to the Likert statement: I plan to take more computer science
courses after this one, grouped by condition .. 159	
Figure 6.1. Students' metaphors of variables .. 170	
Figure 6.2. Students' descriptions of conditional logic ... 172	
Figure 6.3. Students' descriptions of iterative logic .. 177	
Figure 6.4. Students' metaphors of functions .. 181	
Figure 6.5. Students' descriptions of functions ... 182	
Figure 6.6. Pencil.cc's function syntax ... 183	
Figure 6.7. The Commutative Assessment modalities .. 185	
Figure 6.8. Commutative Assessment performance by modality and concept 187	
Figure 6.9. A sample Computtative Assessment iterative logic question 188	
Figure 6.10. Comparing blocks-based and text-based for loops 189	
Figure 6.11. The Commutative Assessment variable question that students performed better in
the text condition than the blocks-based condition. .. 192	
Figure 6.12. Two sample Commutative Assessment function questions 194	
Figure 6.13. Two sample Commutative Assessment comprehension questions 195	
Figure 6.14. Student Commutative Assessment scores by condition over time 199	
Figure 6.15. Commutative Assessment performance by modality and condition 202	

 12
Figure 6.16. Commutative Assessment performance by condition and concept 205	
Figure 6.17. Student reported ease-of-use of programming concepts 207	
Figure 7.1. Completed solutiosn of the vignette interview question 220	
Figure 7.2. Images of the Blocks condition vignette (1st program) 222	
Figure 7.3. Images of the Blocks condition vignette (2nd program) 223	
Figure 7.4. Images of the Hybrid condition vignette (1st program) 229	
Figure 7.5. Images of the Hybrid condition vignette (2nd program) 231	
Figure 7.6. Images of the Text condition vignette .. 236	
Figure 7.8. The time elapsed between consecutive runs in Pencil.cc 246	
Figure 7.9. The average size of programs by condition in Pencil.cc 249	
Figure 7.10. The average number of blocks added per assignment 251	
Figure 7.11. Quick Reference page usage .. 254	
Figure 8.1. Percieved utility of Pencil.cc for learning Java (quantitative) 268	
Figure 8.2. Percieved utility of Pencil.cc for learning Java (qualitative) - Mid 271	
Figure 8.3. Percieved utility of Pencil.cc for learning Java (qualitative) - Post 274	
Figure 8.4. Students’ confidence in programing ... 279	
Figure 8.5. Students’ enjoyment of programming .. 281	
Figure 8.6. Students' responses to Programming is Fun and percieved excitement 282	
Figure 8.7. Students' responses to the Likert statement: Programming is Hard 284	
Figure 8.8. Students' responses to the Likert statement: I plan to take more computer science
courses after this one, grouped by condition .. 285	
Figure 8.9. Compilations of Java programs by week .. 289	
Figure 8.10. Compilations of Java programs by day .. 291	
Figure 8.11. Successful compilations by week ... 292	
Figure 8.12. Failing compilations by week ... 295	
Figure 8.13. Percentage of syntactically correct compilations 296	
Figure 8.14. The ten most frequently encountered Java errors 300
Figure 9.1. The three environments used in the study .. 313	
Figure 9.2. The same concept in four modalities .. 334	

 13
List of Tables

Table 3.1. The 5-week introductory curriculum ... 71	
Table 3.2. The 13 assignments of the introductory curriculum .. 71	
Table 3.3. The concepts covered in the Commutative Assessment 78	
Table 3.4. The 35 student interviews .. 82	
Table 3.5. Log events captured in Pencil.cc ... 85	
Table 3.6. Log data capatured in Pencil.cc ... 85	
Table 3.7. Data captured by JavaSeer ... 87	
Table 3.8. Student responses to why they decided to enroll in the class. 97	
Table 4.1. Mappings between Snap! and JavaScript .. 104	
Table 4.2. Student responses comparing Snappier! and Java (quantitative) 108	
Table 4.3. Student responses comparing Snappier! and Java (qualitative) 113	
Table 6.1. Sample responses of function metaphors used by students 180	
Table 7.1. Frequency of data collection events in Pencil.cc ... 241	
Table 7.2. Run events collected for each assignment ... 242	
Table 7.3. Frequency of consecutive runs in under five seconds 247	
Table 8.1. Pencil.cc concepts perceived as useful for Java .. 275	
Table 8.2. Successful compilations by Levenshtein distance ... 293	
Table 8.3. High-level descriptive patterns of failing compilations and errors. 298

 14
1. Introduction

Computation is changing our world. From how we communicate and make decisions, to

how we relax and how we shop - few aspects of our lives have been left unaffected by the long

reach of computation and the technologies that it enables. Smartphones, tablets, and laptops have

become the lenses through which we see, organize, and interpret the world. As such, for young

learners growing up in this technological landscape, being able to recognize the capabilities and

limitations of these technologies and, most critically, to be able to contribute in this technological

culture is essential. Programming is the skill that enables this participation. Programming, and

the critical thinking and problem solving skills that accompany it, constitute a new 21st century

literacy that will need to live alongside reading, writing, and mathematics as essential

competencies to empower today’s students to fully engage with our technological world. These

skills have far reaching benefits as they underpin and enable new forms of creative expression,

support learning in diverse computational contexts across a wide range of disciplines, and

provide the foundation for future careers in our increasing computationally driven economy. The

importance of these skills has been documented by a number of federal agency and industry

organizations. The Bureau of Labor Statistics estimates that 135,000 new computing jobs are

created every year in the technology sector. Similar growth of computing jobs is projected in

other fields; by 2020, one in every two jobs in the STEM disciplines will be in computing (ACM

Education Policy Committee, 2014).

Despite this momentous shift happening in our world and the far-reaching benefits that

accompany learning to program, very little programming education can be seen in today’s

schools. Computer science, the field that is driving this computational revolution, is rarely

present in K-12 education. Only an estimated 10% of schools offer programming or computer

 15
science courses (Code.org, 2014), and in schools where computer science is present, courses

are often taught in ways disconnected from the computational lives of today’s students, failing to

instill the sense of relevance and feelings of empowerment that can and should accompany such

learning experiences. Further, the students who have the opportunity to pursue programming do

not reflect the racial and gender distribution of the larger population. In 2013, 14.6% of

bachelor’s degrees in computer science and related fields were granted to female students, with

4.5% of the graduates being African American, and 6.5% being Hispanic (Zweben & Bizot,

2014). This disturbing trend is mirrored at the high school level, where only 18.6% of students

who took the 2013 AP Computer science exam were female, while 8.2% of test takers were

Hispanic, and only 3.7% were African American. Research into the cause of these low numbers

has identified numerous causes, including limited access to courses, a lack of support for

students who express interest in the field, and cultural issues that make underrepresented

populations feel unwelcome (Margolis, 2008; Margolis & Fisher, 2003).

While recent attention has focused on computer science and programming, that is just one

of the many ways the computers interact with learning. Since the emergence and recognition of

computers as ‘Protean ‘devices with widespread applications major scholars have seen great

potential in their use for learning and education (A Kay & Goldberg, 1977; Papert, 1980; Perlis,

1962; Suppes, 1966). The role computers were to play amongst these and other early advocates

of computers as tools for education differed. Some were excited by discipline of computer

science itself, while others saw it having much wider potential, spreading across disciplinary

boundaries. Some focused on the power of programming as a learning activity, including the

Constructionist learning approach, while others focused not on the practice of programming but

the tools and environments that could be built through programming, such as cognitive tutors and

 16
other forms of computer-aided instruction. Others viewed computers as supports for

standardized content-based instruction while others viewed computers as a medium for

supporting personal expression and fostering creativity, art, and the creation of personally

meaningful artifacts. Others still argued for learning computer science ideas is broadly applicable

both when working on a computer, as well as for being more efficient and success at non-

computer-based activities. Collectively, these various perspectives on the role of computation in

education and their work, along with others in the decades since, have produced a plethora of

technologies, curricula, pedagogies, and learning experiences designed to leverage the power of

computers. Having recognizing the larger picture of the intersection of computers and

computational technologies and learning, we bring the discussion back to programming and

computer science, the focus of this dissertation. A longer discussion of this broader computer and

learning landscape will be discussed in the next chapter, along with situating the work being

presented within this larger orientation.

Numerous local and national efforts are underway to address the lack of computational

learning opportunities for both underrepresented minorities and the student body at large. These

efforts are utilizing innovative materials, engaging pedagogy, and new tools and environments

for students to learn the powerful ideas of computing. This includes initiatives and learning

environments designed for informal settings like computer clubhouses (Kafai, Peppler, &

Chapman, 2009; Resnick & Rusk, 1996) and game-based learning environments (Berland & Lee,

2011; Holbert & Wilensky, 2011; T. Y. Lee, Mauriello, Ahn, & Bederson, 2014; Weintrop &

Wilensky, 2014a), as well as more formal school-based contexts. Within the initiatives designed

to teach computer science in formal contexts, a number of strategies are being used, including

creating new Advanced Placement (AP) courses that can be adopted nationally (Astrachan &

 17
Briggs, 2012) and designing new and engaging computer science courses organized around

more appealing topics like media-based computing (Guzdial & Ericson, 2009) and game design

(Papastergiou, 2009). There is also a thrust of work exploring and studying the approach of

integrating computing and computational thinking across the K-12 curriculum (I. Lee, Martin, &

Apone, 2014; Settle, Goldberg, & Barr, 2013; Weintrop, Beheshti, Horn, Orton, Jona, Trouille,

& Wilensky, 2016). Other computing outreach programs are looking at moving away from the

screen towards physical computing (Brady, Weintrop, Gracey, Anton, & Wilensky, 2015; M. S

Horn, Solovey, Crouser, & Jacob, 2009; Jamieson, 2010), Making (P Blikstein, 2013; Eisenberg,

2003; Vossoughi & Bevan, 2014), robotics (Fagin & Merkle, 2003; T. R. Flowers & Gossett,

2002; Goldman, Eguchi, & Sklar, 2004), and even fully off-line curricula like the CS Unplugged

design approach (Nishida et al., 2009). Central to many of these initiatives is the use of new,

more inviting and accessible approaches to programming that emphasize personal expression,

foreground ease-of-use, align with current youth culture, and draw on prior student knowledge

and values.

While there is need for research looking across the full spectrum of computing learning

opportunities mentioned above, this dissertation focuses on formal high school computer science

classrooms as the learning context of interest. This decision is motivated by a number of factors,

including the growing importance of computational thinking and computer science in society, the

ability to reach learners in meaningful ways in formal classrooms settings, and as an attempt to

inform the increasing number of efforts to bring computer science coursework into high schools

happening at the local and national scale. These efforts includes Chicago’s CS4All initiative that

is making computer science a graduation requirement and the New York City school districts

plans to bring computer science into every school across the city over the next ten years. These

 18
and other large-scale initiatives are being implemented in the midst of a blossoming of new

approaches to programming and the development of new and engaging programming tools.

Given this co-occurrence, it is not surprising that many of the new curricula that are being

designed and widely adopted rely on recently designed programming tools that have little

empirical evidence with respect to their effectiveness for high school aged learners in formal

settings. As such, there is great need and opportunity for investigating the effectiveness of design

features of the current generation of introductory programming tools in formal settings. This

dissertation will answer three sets of interrelated research questions all of which address different

facets of the guiding question: How best can we design high school computer science learning

environments to educate the next generation of computationally literate citizens?

The first set of questions investigates the relationship between the modality students use

while learning to program and the resulting attitudinal and conceptual outcomes. By modality we

mean to capture the representational infrastructure used to depict the program, as well as the

various forms of composition supported by the representation and the affordances it provides for

each. Understanding the impact of modality is important because, as previously mentioned, new

environments for teaching programming are emerging and becoming increasingly used in formal

educational settings, but we lack a clear understanding of the relationship between these new

tools and the resulting conceptual gains, attitudinal outcomes, and programming practices they

promote. Prominent among the features of these new environments is the introduction of

graphical, blocks-based interfaces (Figure 1.1) that allow learners to use only a mouse to drag-

and-drop commands together to form functioning programming. Led by the popularity of

environments such as Scratch (Resnick et al., 2009), Alice (Cooper, Dann, & Pausch, 2000), and

Pencil Code (Bau, Bau, Dawson, & Pickens, 2015), a growing number of formal curricula are

 19
now utilizing blocks-based programming. Examples include the Exploring Computer

Science (Goode, Chapman, & Margolis, 2012), at least two curricula being designed for the AP

CS Principles Course (Astrachan & Briggs, 2012; Garcia, Harvey, & Barnes, 2015), and many of

the curricular materials being developed and disseminated by Code.org (Code.org Curricula,

2013). Despite its growing popularity, open questions remain surrounding the effectiveness of

blocks-based programming for helping high school aged students learn basic programming

concepts and the overall effectiveness of the approach for preparing learners for future computer

science learning opportunities that rely on text-based languages. Research towards this end has

identified that representational tools greatly affect the learning process and outcomes (diSessa,

2000; Green & Petre, 1996; Sherin, 2001; Wilensky & Papert, 2010), but little work has been

done on the current generation of programming environments with respect to these questions.

	 	

(A) (B)

Figure 1.1. Comparable blocks-based (A) and text-based (B) programs

The second set of research questions looks at the suitability of these new introductory

programming approaches for preparing learners for future computer science learning

opportunities. Research is emerging that suggests that blocks-based programming environments,

while successful in changing attitudes and engaging learners, do not adequately prepare them to

transition to more conventional programming languages, thus imposing an artificial ceiling on

 20
how far learners can progress with these tools (Cliburn, 2008; Garlick & Cankaya, 2010;

Parsons & Haden, 2007; Powers et al., 2007). This finding is consequential as it calls into

question the utility of such introductory tools in formal learning contexts in the first place. The

work done to date has largely provided descriptive accounts of learners failing to transfer

knowledge and practices from introductory environments to more sophisticated, powerful tools.

This dissertation will contribute detailed accounts of students transitioning from introductory to

professional programming environments, and provide mechanistic, theoretically sound cognitive

explanations of how and why gains made in introductory environments do or do not transfer to

more sophisticated programming tools.

The third set of research questions surround the evaluation of a new hybrid introductory

programming environment that was designed and constructed as part of this dissertation. The

new environment is intended to blend the strengths of various existing programming tools in an

effort to create a tool that provides the low-threshold to entry and high level of engagement of

existing introductory approaches, with the high-ceiling and powerful expressivity of more fully

featured programming tools. Based on findings from the first two sets of questions, the newly

designed hybrid environment will serve as an empirically grounded example that can be used to

evaluate whether or not it is possible to blend the strengths of introductory and professional

environments. In creating and evaluating a hybrid environment, this work will serve as one

possible example of what a blended environment can look like and be evaluated alongside

complementary introductory and professional analogous environments.

This dissertation is built around a three-condition, quasi-experimental study comparing

three isomorphic introductory programming tools – two environments are exemplars of common

modalities currently used in introductory programming contexts, and the third is the newly

 21
developed hybrid environment developed as part of the third research question. The term

isomorphic used here and throughout the dissertation is meant to capture the fact that the

capabilities and expressive power of the environments are equivalent; anything that can be done

in one environment can also be achieved in the other two. Justification for this isomorphism will

be made in Chapter 4, which focuses on the design of the programming environments. The study

took place over 15 weeks in three sections of the same class at a diverse urban public high

school. This comparative study design in an ecologically valid setting makes this work one of the

“rare” studies investigating actual learning benefits in a scientifically rigorous way (Kölling &

McKay, 2016). Beginning on the first day of school, students spent five weeks working through

a custom designed curriculum using one of the three introductory programming environments

(the three conditions of the study). At the conclusion of the fifth week of school, all three classes

transitioned to the Java programming language and followed the same curriculum for the

remainder of the year. This study design allows for a direct, side-by-side comparison of the three

introductory environments, as well as, providing data to answer questions about their suitability

for preparing students for future learning with more conventional, professional programming

languages. The study uses a mixed-methods approach and will include qualitative, quantitative,

and computational data collection and analysis techniques. During the 15-week study, a variety

of data were collected including weekly classroom observations, one-on-one student interviews,

automated collection of student-authored programs, and pre, mid and post content assessments

and attitudinal surveys. Collectively these data were used to answer the research questions being

pursued.

Research Questions

 22
 As stated earlier, this dissertation seeks to answer three sets of interrelated research

questions. The first two are empirical questions on the relationship between the modality used to

introduce learners to programming and the conceptual understandings, programming practices,

and attitudes and confidence they engender. The third is a design question exploring and

evaluating programming language, environment, and modality designs. The three sets of research

questions are:

1. (a) For text-based, blocks-based, and hybrid blocks/text programming tools, what is the

relationship between the programming modality used and learners’ perceptions of

programming with respect to confidence, authenticity, enjoyment, and to their larger

attitudes towards the field of computer science? (b) How does the representational

infrastructure used affect learners’ emerging understandings of programming concepts?

c) What programming practices do learners develop when working in each of these three

modalities? And for each of these questions, how do the answers differ across blocks-

based, text-based, and hybrid blocks/text environments?

2. (a) How do understandings and practices developed while working in different

introductory programming modalities support or hinder the transition to conventional

text-based programming languages? (b) How do learners’ understanding of and attitudes

towards programming change as learners shift from introductory environments to more

widely used, professional programming languages? How is this different between text-

based, blocks-based and hybrid blocks/text introductory modalities?

3. Can we design hybrid introductory programming environments that blend features of

blocks-based and text-based programming that effectively introduce novices to

programming and computer science more broadly? How does such an environment

 23
perform relative to blocks-based and text-based programming tools with respect to

conceptual understanding, development of productive programming practices, and

attitudinal, motivational, and engagement outcomes for learners?

 The first set of research questions explores what effects blocks-based, text-based and

hybrid blocks/text representational systems have on learners while they are learning with them.

This includes how each tool influences learners’ emerging conceptual understanding, the

programming practices they develop with the tool, and how the tool affects learners’ attitudes

and perceptions. Each of these questions will be analyzed using isomorphic blocks-based, text-

based, and hybrid blocks/text tools. The second set of questions explores the suitability of each

of these modalities used in an introductory programming context for preparing learners for future

text-based programming learning experiences. Answering these questions involves looking at

students’ perceptions of the representation when used in introductory programming

environments and follows them as they move from them to conventional text-based languages.

Like with the first set of questions, our data sources for these questions will be gathered from

students’ work with blocks-based, text-based, and hybrid blocks/text introductory tools. The final

research question is a design question intended to explore ways to draw on the strengths of both

blocks-based and text-based programming to see if it is possible to effectively create tools that

blend the two modalities.

Intended Outcomes

There are three overarching goals for this dissertation, all with an eye towards taking the

findings of this work to make positive changes in classrooms and computer science learning

opportunities around the world. The first is to better understand the relationship between

 24
representations of programming concepts and learners’ emerging understandings, practices

and attitudes towards programming in the early stages of learning to program. The first research

question is designed to achieve this goal. The second goal for this dissertation is to produce

evidence-based recommendations on features to look for and features to avoid when choosing

introductory programming environments and languages based on their effects on students

learning as well as the suitability for preparing students for future programming and computer

science learning opportunities. With this goal, the hope is to make use of the findings from the

first two research questions to provide guidance to computer science educators who are eager for

empirically grounded recommendations. The final goal for this dissertation is to provide a proof-

of-concept introductory programming environment that blends the strengths of textual languages

with the affordances of the blocks-based programming approach to create a potentially powerful

new interface for novice programmers. The hypothesis here is that it is possible to pair the low-

threshold aspects of graphical programming tools that research has identified with the high-

ceiling, text-based programming approach used in higher education and professional contexts.

Having created this environment, and should the research bear out that such a hybrid interface is

capable of achieving this balance, the dissertation will contribute a new, evidence-backed

approach to teaching beginner to program.

 We are at a critical juncture in the history of computer science education in this country.

The ability to program is a central skill all students should develop, but it is currently absent

from the coursework of today’s students. To address this gap, educators, school administrators,

and state and national legislators are all taking action to bring computer science into the

classroom. The practices, tools, and curricula that are being developed today, will become the

standards used for years to come. Therefore, it is critical that we are confident that the curricula

 25
and environments that we advocate for today are effective at teaching the core concepts,

engaging learners from diverse backgrounds, and successful in preparing students for the

computational endeavors they will face in the future. The findings from this dissertation will

advance our understanding of how best to introduce students to these core 21st century skills and

contribute new tools that will prepare students to be successful in the computational futures that

await them.

Structure of this Dissertation

 The remainder of this dissertation is broken down into 5 main sections. The first of these

sections is a comprehensive literature review that covers the history of programming languages

and environments designed for learners and prior work on outcomes of using various

introductory programming environments with learners. Care is taken in this chapter to lay the

theoretical and empirical foundation for the questions being pursued in this dissertation as well

as identifying the gaps in the literature this study is addressing.

 The next section, chapter three, presents the methodological approach used in this study.

This includes the study design, the instruments and procedures used, a description of the various

data collected, and information about the participants of the study and the setting in which the

work was conducted. The third section (chapter four) of the dissertation is an extension of the

methods section focusing specifically on the design of the three programming environments that

lie at the heart of this work. In this chapter, the three environments used in the first year of the

study are described with a brief analysis of the outcomes from this first year. In particular, this

analysis focuses on what was learned in the first year and how it informed the design of the three

versions of the programming environment used in year two of the study.

 26
 The fourth section, which covers four chapters (chapters six – eight), is the analysis

and findings from the study. Each of these chapters addresses a separate part of the stated

research questions. Chapter five focuses on students’ attitudes and perceptions of programming

and how modality differentially influenced these aspects of the learners (RQ 1a). The next

chapter, chapter six, looks at conceptual understanding by modality (RQ 1b), specifically trying

to understand the role of modality in facilitating learners’ emerging understandings of

foundational programming concepts. Chapter seven focuses specifically on the differential

practices that form across the three variations of the introductory environment (RQ 1c). The

fourth and final analysis chapter (chapter eight) looks at if and how gains, both attitudinal and

conceptual, made in through the use of the introductory programming environments carry over to

the Java programming language (RQ 2).

 The ninth and final chapter of this dissertation constitutes the summative discussion and

conclusions. In this chapter, the findings are summarized and contributions of this work are

discussed in greater detail, synthesizing what was learned across the various analyses that were

conducted. As part of this section, the third research question, trying to understand the

affordances and drawbacks of the newly developed hybrid programming interface are discussed.

The dissertation concludes with limitations of this study, future work that is still to be done, and

potential implications of this work.

 27
2. Literature Review

A large body of research has informed this dissertation including work on the challenges

beginners face when learning programming concepts, the design of languages and environments

for novice programmers, and research on the relationship between representations and the

understandings they engender. Before diving into the literature most directly tied to this

dissertation, this chapter begins with a discussion of the historical relationship between computer

and learning and a high-level mapping of different approaches taken for teaching computer

science, discussing various dimensions along which the challenge of teaching programming has

been approached. From there we continue with a review of literature on the relationship between

representations and learning as it is this relationship that underpins the discussion of the design

of novice programming languages and environments and studies evaluating their strengths and

weaknesses that follows. We then review the history of the design of programming environments

for novices, giving special attention to the constructionist tradition from which the environments

used in the study emerged. From there, we broaden our lens to look at the larger class of visual

programming tools and empirical work that has been done evaluating them, with a particular

emphasis on the blocks-based programming paradigm. We conclude the chapter by reviewing

work that looks at the relationship between blocks-based and text-based programming and

research on students transitioning across those environments.

Computers and Learning

Early on in the history of digital computers, their utility for learning was recognized. The

earliest advocates for computers as tools for learning came from university faculty members with

experience working with computers, teaching students, and access to the computers of the day.

 28
Early advocates saw different pedagogical uses for these new digital machines. In the early

1960s, Alan Perlis, the director of the Computation Center at what was then called the Carnegie

Institute of Technology4, argued for the inclusion of programming in the curriculum for all

learners as part of as working with computers would help develop well-rounded students who

would be ready for whatever challenges the world put before them (Perlis, 1962). Perlis

envisioned students writing programs to solve real world problems, in doing so, he argued they

would improve their abilities to abstract, organize, plan, and use information from diffuse and

abstract environments. While Perlis was thinking about programming as a pedagogical strategy

at the undergraduate level, others saw the potential of learning as a powerful learning strategy for

younger learners. Papert and his colleagues at MIT and BBN Labs developed the Logo

programming language as a way to allow younger learners to engage in programming and the

various metacognitive practices that accompany it (Feurzeig, Papert, Bloom, Grant, & Solomon,

1969; Papert, 1980). In foregrounding the act of authorship and construction of programming,

this type of learning experience, which Papert called “Constructionism”, also granted autonomy

to learners, using the computer as a medium for creativity and personal expression. The view of

the computer as an expressive and powerful medium for learning has shaped decades of designs

of computational learning environments (diSessa & Abelson, 1986; A Kay & Goldberg, 1977;

Resnick et al., 2009; Wilensky, 1999). The type of learning enabled by computers and advocated

by Papert and colleagues went beyond just the act of programming to include other aspects of the

potential of computer for learning, which will be returned to below.

4 Later renamed Carnegie Melon University.

 29
Other early proponents of computers as tools for learning saw their utility in creating

computer-aided instruction. This support could take a number of forms. One argument was that

computers could use their “information-processing capacities [to] adapt mechanical teaching

routines to the needs and the past performance of the individual student” (Suppes, 1966, p. 207).

This thinking led to the development of intelligent tutoring systems, which are software packages

that are designed to replicate the personalized and customized supports that human tutors can

provide (Derek Sleeman & Brown, 1982). Later iterations of these types of computer-aided

instruction systems integrated findings from cognitive science, creating cognitive tutors, that

used computational models of cognition to try and diagnose learners misconceptions and provide

customized feedback and carefully curated questions to facilitate the learning process (Anderson,

Corbett, Koedinger, & Pelletier, 1995). In this role, the computers are providing instructional

supports and thus serving a much different role than the one previously mentioned that saw the

act of programming as a the central learning activity. Papert summarized the extreme versions of

these two approaches thusly: in computer-aided instruction “the computer is being used to

program the child” whereas in Constructionism, “the child programs the computer” (Papert,

1980, p. 5). It is important to mention both of these approaches to computers in education have

been shown to support positive learning outcomes.

As the importance of computing and computational technologies in society has grown, so

too have the ways computers have been brought into educational spaces and the arguments made

for what should be taught with respect to computers and why. With the rise in importance for

learners to be comfortable with keyboards, computers and standard software packages (notably

the Microsoft Office Suite), one thread of computing education has looked at what is often called

“Computer Literacy.” This is meant to connate a basic familiarity with computers and was once a

 30
focus of vocational and high school classes, but has since fallen in prevalence in K-12

classrooms given the increased presence of computers outside of classrooms. This dissertation is

not concerned with this portion of the computers and education landscape.

A second more recent case made for bringing computers into education is the idea that

computers and ideas from computer science can help deepen learners’ understandings of content

beyond computer science. This idea began with Logo, which was designed as a language to

allow learners to engage with powerful mathematical ideas (Feurzeig et al., 1969; Papert, 1972,

1980). Other examples followed, showing computation and programming to be a powerful

context to engage learners with ideas ranging from physics (Sherin, diSessa, & Hammer, 1993),

to complex systems (Wilensky, 2001), to language and grammar (Goldenberg & Feurzeig, 1987).

Taking this view one step further, it has been argued that computers can serve as a

medium for exploring new ideas and fields (Wolfram, 2002) as well as be tools for creating new

types of representations with which to express ideas and explore and understand aspects of our

world (Wilensky & Papert, 2010). In this view, computers and the ideas and skills from

computer science can serve as a foundational new literacy to express and communicate ideas

(diSessa, 2000). In this framing, the case for bringing computers into formal education spaces

goes beyond the improving of learning and instruction of existing subjects to now include

teaching ideas and skills that otherwise would not be possible.

In the last decade, a growing number of people have been making the argument that the

ideas from computer science are broadly useful across diverse setting, both on and away from a

computer. Collected under the umbrella term “Computational Thinking”, it has (and is) being

argued that these skills constitute core 21st century skills and deserves a place alongside reading,

writing, and arithmetic as essential content that all learners should be taught (S. Grover & Pea,

 31
2013; Wing, 2006). While this movement has been successful in gaining momentum,

attention, and commitment from decision makers at various levels of education and government,

the concept itself remains under-specified, resulting in many looking to the other literature

mentioned in this chapter for guidance.

 The last major intersection of computer and education, and the focus of this dissertation,

is formal instruction in the field of computer science. The case for the importance of teaching

students computer science has taken a number of forms in recent years, including economic

motivation and job opportunities, reasons of equity and empowerment, and responding to the

growing prevalence of computers and technology in society. These arguments are on top of those

listed in previous sections, as in many cases; formal computer science education accomplishes

the goals laid out by other motivations and approaches of brining computers and education

together. It is important to note there are still challenges associated with teaching computer

science in formal contexts. Some of which are infrastructural (like a lack of qualified teachers

and school resources) while others stem from the quickly changing nature of the disciplines and

the large open questions that remain with respect to how best to teach computer science to all

students. It is these last issues that this dissertation is seeking to contribute to solving. Having

laid out the high-level relationship between computers and education, this literature review now

begins to narrow its focus, first looking at different dimensions of computer science education

and then further narrowing its focus to cover the literature most directly tied to the questions

being answered in this work.

The Computer Science Education Landscape

 Since the emergence of the field of computer science, there has been work looking at how

best to introduce learners to the discipline. Given the growing scope and nature of the field, new

 32
and diverse approaches are constantly being developed while tried-and-true strategies are

being reimagined and reconstructed with new technologies. In deciding how to teach computer

science, or computing more broadly, there are a number of decisions that need to be made. These

decisions exist along various dimensions of the space associated with learning the discipline.

Dimensions include whether instruction is going to be online or offline, in a formal learning

context (i.e. classroom) or an informal space, whether or not to prioritize inclusivity and the goal

of broadening participation, if computer science is going to be a stand alone topic or integrated

with other disciplines, deciding which pedagogical strategy should be taken, selecting a

programming language and environment to be used, whether to use physical or virtual learning

tools, and choosing the programming paradigm that will be used (turtle graphics, object oriented,

functional, etc.). Any given designed learning experience makes decisions along most (or all) of

these dimensions, either explicitly or implicitly, and thus, when talking about a given approach

to learning computer science these various dimensions factor into the discussion. To start this

literature review, we briefly discuss each of these dimensions and highlight important work in

that space. At the conclusion of this section, we situate the approaching taken in this dissertation,

taking care to be clear about what is held constant and what is being varied and investigated.

Throughout this high-level review, when encountering work that is closely tied to this

dissertation, reference is made to later portions of this literature review chapter where the ideas

or approach are more systematically reviewed. Before presenting the landscape, it is important to

note that any given learning experience is a mix of these various dimensions. In some cases

specific features (like the language or goals of the activities) are foregrounded, but decision are

made with respect to all of the dimensions discussed below.

Learning Context

 33
As technology pervades our daily lives, there are growing opportunities to have

learners engage with ideas from computer science across diverse contexts both in formal and

informal contexts. A growing body of work is looking at ways to teach computing in informal

settings, be they at home or in shared communal spaces like libraries or museums. At the same

time, new initiatives to bringing computer science into formal spaces are also underway. In many

ways, these two approaches complement each other and have a different goals and contain a

different set of features that can draw diverse populations of learners into the field.

In the formal space, long standing courses like AP Computer Science are being

supplemented with new curricula like the AP Computer Science Principles course (Astrachan &

Briggs, 2012) and other curricula leveraging new technologies and programming environment

like the Exploring Computer Science (Goode et al., 2012) project and a Taste of Computing

course (Reed, Wilkerson, Yanek, Dettori, & Solin, 2015). Formal learning opportunities provide

infrastructure, access to teachers and extended amounts of time for learners to engage with core

ideas in computing, but are often limited by resources available to schools and other constraints

that come from being situated inside existing educational infrastructure.

Informal learning environments provide a much more open canvas upon which to create

learning opportunities and allow for types of engagement that are not possible with the

constraints of schools. Projects like the Computer Clubhouse initiative (Kafai et al., 2009;

Resnick & Rusk, 1996) give learners an open space for learners to pursue projects of their own

interest, grant greater flexibility to learners in terms of the types of activities they engage in, and

are not subject to the same constraints or expectations that accompany school-based learning.

Other after school projects offer more structure, but still take advantage of the freedom that

accompanies informal learning, such as the FUSE project (Jona, Penney, & Stevens, 2015).

 34
Other efforts look at contexts such as video games (Holbert & Wilensky, 2011; T. Y. Lee et

al., 2014; Weintrop & Wilensky, 2014a), board games (Berland & Lee, 2011; M.S. Horn,

Weintrop, Beheshti, & Olson, 2012), and online communities (Fields, Giang, & Kafai, 2014;

Resnick et al., 2009) as informal contexts to engage learning in computer science. Museums

offer another out-of-school space for introducing learners to computer science (M. S Horn et al.,

2009; M. S Horn, Weintrop, & Routman, 2014). Again, these approaches bring the ideas of

computing in to the lives and practices of the learners their trying to reach. It is important to note

there have been initiatives to bring productive aspects of informal learning into formal spaces

with varying degrees of success (M.S. Horn & Jacob, 2007; Malan & Leitner, 2007; Squire,

2005).

The Role of the Computer

 While one might initially assume that learning about computer science requires the use of

a computer, a growing body of work is showing that learners can engage with core ideas from

the field without sitting in front of a screen. This approach is especially productive when

working with younger learners, where tasks like using a mouse or typing in commands are not

trivial. The growing set of activities in the Computer Science Unplugged catalog serve as an

exemplar of what it looks like to learn computer science away from the computer. Other non-

computer based computer science learning work includes board games (Berland & Lee, 2011),

sticker books (Michael S. Horn, AlSulaiman, & Koh, 2013), and embodied motion (often called

“playing turtle”) (Papert, 1980) as ways to allow learners to explore computer science away from

a computer.

Stand Alone Versus Integrated Computer Science

 35
 Another dimension along with computer science educational work has differed is on

its relation to other fields and courses. Traditionally, computer science has been treated as a

stand-alone course akin to a mathematics or foreign language class. An alternative to this

approach that is growing in popularity is to bring computer science, or computational thinking

more broadly, into other courses including mathematics, sciences, and the arts (I. Lee et al.,

2014; Settle et al., 2013; Weintrop et al., 2016). A number of arguments have been made in

advocating for this approach including addressing issues of a lack of teachers and resources for

stand-alone computing course, pedagogical and conceptual advantages to blending computing

with other disciplines, providing a more realistic perspective of increasingly computational fields

like biology and chemistry, and finally, using other disciplines as a meaningful context in which

to situating learning core ideas from computer science. Another, related, form of this approach

comes through the use of computational modeling as a way to blend content (often science

related, but not always), with central ideas of computer science and computational thinking (I.

Lee et al., 2011; Repenning, Ioannidou, & Zola, 2000; Stonedahl, Wilkerson-Jerde, & Wilensky,

2010; Wilensky, 2001; Wilensky, Brady, & Horn, 2014).

Prioritizing Inclusivity and Broadening Participation

The field of computer science has historically struggled with both gender and racial

diversity. The most recent numbers from the annual Taulbee Survey that tracks enrollment in

computer science related disciplines find that only 14.5% of bachelor’s degrees awarded in 2013

went to women, while 6.5% went to Hispanic students and only 4.5% were to Black or African

American students (Zweben & Bizot, 2014). The male-dominated nature of the computing field

and the culture that has emerged are well documented and many interventions have been

proposed to try to address it (American Association of University Women, 1994; Fisher,

 36
Margolis, & Miller, 1997; Margolis & Fisher, 2003). Similarly that lack of racial diversity in

the field has also been the focus of much scholarship (Margolis, 2008). To address these issues

of underrepresentation, a growing number of tools, curricula and initiatives specifically designed

to attract and engage learners from these underrepresented populations have been developed.

A number of strategies for accomplishing this have been pursued. One avenue is the

creation of activities and larger curricula that draw on areas of interest and cultural relevance

(Bruckman, Jensen, & DeBonte, 2002; DiSalvo, Guzdial, Bruckman, & McKlin, 2014). A

related approach that has found success and been employed in a number of projects leverages the

practice of storytelling (Burke & Kafai, 2010; Papadimitriou, 2003). One successful tool that

builds of storytelling is Storytelling Alice. As the name suggests, Storytelling Alice is a version

of Alice, a widely used graphical programming tool, that has been altered to support storytelling

as its central activity. Studies comparing Storytelling Alice to conventional Alice (which lacks

some storytelling support features) found that girls using Storytelling Alice were more motivated

to program and spent longer working on their programming projects (Kelleher, Pausch, &

Kiesler, 2007).

Another avenue for promoting inclusivity in computer science education has been the

creation of curricula designed to directly confront existing stereotypes. One version of this

approach takes the form of courses that paint a richer, more diverse (and accurate) view of what

computing is (i.e. it’s more than just programming). The Exploring Computer Science (ECS)

course is one notable example of this strategy. The creators of the ECS curriculum took care to

build their course and train their teachers to emphasis “inquiry, culturally relevant curriculum,

and equity-oriented pedagogy” (Ryoo, Margolis, Lee, Sandoval, & Goode, 2013, p. 1).

Physical Computing & Robotics

 37
While introductory programming and computer science learning activities have

historically taken place in the virtual realm with programming featured prominently, a growing

number of toolkits and technologies are making physical computing another avenue for learning

about computing. There is a long history of technologically enhanced physical devices serving as

contexts for meaningful computational learning experiences (Paulo Blikstein, 2013; Eisenberg,

2003; McNerney, 2004). A growing ecosystem of microcontroller, like the Arduino (Jamieson,

2010), GoGo board (Arnan Sipitakiat, Blikstein, & Cavallo, 2004), Lego Mindstorms kits (Lego

Systems Inc, 2008), and the CCL-Parallax Programmable Badge (Brady et al., 2015) are

allowing learners to engage with foundational computer science ideas through physical devices.

Physical computing devices have been designed to appeal to diverse ranges of learners. For

example, the Lilypad Arduino (Buechley & Eisenberg, 2008) is a fabric based construction kit

that enables novices to design and build their own e-textiles and bring crafting and fabric-work

into the computing educational space. Likewise, robotics has served has a compelling context in

which to engage learning with ideas from computing while grounding the learning in the

construction, manipulation, and controlling of physical devices (Fagin & Merkle, 2003; Martin,

Mikhak, Resnick, Silverman, & Berg, 2000). Thus, yet another dimension along which

computing education varies is the incorporation of computationally enhanced physical devices

and artifacts.

Programming Languages and Environments

 The decision of what program language to use and when environment learners will

program in has a long been a subject of vigorous debate in the computing education research

community (Stefik & Hanenberg, 2014). As the design of programming languages and

introductory environments is closely related to the questions being pursued in this dissertation,

 38
this portion of the literature is presented in much greater detail later in this chapter. The

chapter includes discussion of textual versus graphical approaches to programming interfaces as

well as the design of languages and environment design for novice programmers.

Programming Paradigm

Along with differing languages and tools, there are also bigger picture differences around

types of languages and programming paradigms. An early paradigm for introductory

programming activities that gained lots of followers and has been replicated in various ways

across countless environments is the use of “body-syntonicity” (Papert, 1980) as a way to ground

programming understanding. Started by Papert and his colleagues in the creation of Logo, a large

family of environments leverage an embodied motion component to early programming

experiences, as can be seen in environments ranging from Scratch (Resnick et al., 2009) to Karel

the Robot (Pattis, 1981) and all its descendants. Common across these languages are primitives

that relate to egocentric motion as well as a graphical execution of programs where programs can

be visually executed. These environments are in contrast to conventional programming

environment that are entirely text-based, both in the form the programs take as well as what

output looks like. Many early environments (and vestiges of them that remain in use) constrain

the learner to a command line interface where all input and output must come from the keyboard.

 Along with the types of programs that can be authored with the language, there are also a

number of different programming paradigms that have been advocated for in terms of how

students should be introduced to the subject. A growing number of tools and educational

researchers advocate an object-oriented approach to programming as being the best suited for

beginners. As such, environments like BlueJ (Kölling, Quig, Patterson, & Rosenberg, 2003) and

Alice (Cooper, Dann, & Pausch, 2003) have been created that follow an object-oriented

 39
approach. In a separate, but equally active camp are educators and computer scientists who

advocate for functional languages as being the best suited for introductory programming contexts

(Felleisen, Findler, Flatt, & Krishnamurthi, 2004). At the same time researchers are arguing for

paradigm-based instruction, there are many instructional approaches that rely on general

purpose, multi-paradigm languages like Java and Python that usually begin with an imperative

programming orientation, saving object-oriented features or functional strategies for later in the

learner’s trajectory. A final paradigm for teaching computing that moves even further from

language features advocates teaching not a programming language, but instead grounding

computer science instruction in predicate calculus and Boolean algebra (Dijkstra, 1989).

Situating This Dissertation in the Larger Landscape

 As mentioned in the introduction of this high-level overview section, any given learning

environment puts a stake in the ground at some point along each of these dimensions. While

work can prioritize one facet over another, all must be accounted for. In this dissertation, the

focus is on the design of programming languages and interfaces, but does fall at specific points

along the other dimensions. The work takes place in high school classrooms, so falls at the

formal end of the context spectrum and does not try and integrate the material with other

coursework. The curriculum designed for the students to follow is geared toward open-ended

activities and encourages students to incorporate various aspects of their own personality and

interests into the final project, in this way, it tries to be appealing to a diverse array of learning

and create an inclusive, participatory context. As the dissertation focuses on features of

programming languages and environments, it resides entirely in the virtual world, not utilizing

offline or physical aspects that are increasingly included in introductory computer science

courses. With respect to programming paradigm, the environment includes a turtle graphics

 40
interface, so follows in the Logo tradition, but only half of the assignments take advantage of

that feature, the other half use only text. Finally, as the questions being pursued relate to the

design of languages, the dissertation does not take a specific stand with respect to the design of

introductory programming languages, but instead uses multiple conditions that live at different

points along the spectrum to provide the data that will allow us to better understand the impact of

this decision on various aspects of learning computer science.

Representations and Learning

“The tools we use have a profound (and devious!) influence on our thinking habits, and,

therefore, on our thinking abilities.” (Dijkstra, 1982)

 As stated by the Turing Award winning computer scientist Edsger Dijkstra in the quote

above, the tools we use, in this case the programming languages and development environments,

have a profound, and often unforeseen, impact on how and what we think. diSessa (2000) calls

this material intelligence, arguing for close ties between the internal cognitive process and the

external representations that support them: “we don’t always have ideas and then express them in

the medium. We have ideas with the medium” (diSessa, 2000, p. 116 empahsis in the original).

He continues: “thinking in the presence of a medium that is manipulated to support your thought

is simply different from unsupported thinking” (diSessa, 2000, p. 115). These symbolic systems,

provide a representational infrastructure upon which knowledge is built and communicated

(Kaput, Noss, & Hoyles, 2002). Adopting this perspective informs why it is so crucial to

understand the relationship between a growing family of programming representations and the

understandings and practices they promote. This literature informs the dissertation as we are

fundamentally investigating the relationship between programming representations and learners.

 41
 We begin our literature review of representational infrastructure by first investigating

the role of external representational systems broadly to understand the various purposes they

serve, which in turn will inform the role they place in cognition and learning. Palmer (1978), in

his early work forming a cognitive framework for understanding representations, states: “a

representation is, first and foremost, something that stands for something else" (p. 262-3). His

framework makes a division between the represented world and the representing world with a

correspondence existing between the two and argues that using representations involves

processing these two worlds to determine the relations held between the two. This is categorized

as a “symbol-systems” perspective (Nemirovsky, 1994; Sherin, 2000). Drawing on the work of

Bhaktin (1981) and his distinction between a sentence and an utterance, Nemirovsky (1994)

developed a framework that makes a distinction between the symbol-system perspective of

Palmer and what he calls symbol-use, shifting focus from the rules of the representational system

to an emphasis on their use and the meaning they carry within a particular in context. This

emphasis on symbols-in-use and a recognition that learners’ own knowledge and experience

should influence the representations used and how they are studied and evaluated has been a

recurring idea within the Learning Sciences (Confrey & Smith, 1994; diSessa, Hammer, Sherin,

& Kolpakowski, 1991; Lave, 1988; Noss & Hoyles, 1996; Sherin, 2000; Weintrop & Wilensky,

2014b; Wilensky, 1995). Bringing this perspective to the study of the design of programming

representation broadens our focus from the representations in isolation, to a broader analytic lens

that incorporates the contexts, activity, and learners themselves to understand the relationship

between modality and learning.

The role of representations on cognition has been studied across a variety of

representational infrastructures and their influence on various cognitive tasks. One large body of

 42
work that has emerged from studying this question is identifying the relationship between

language, literacy and thought (Boroditsky, 2001; Luria, 1982; Ong, 1982; Scribner & Cole,

1981; Vygotsky, 1986; Whorf, Carroll, & Chase, 1956). As we are less interested in thought and

natural language broadly but instead logical thinking coupled with symbolic formalisms, we

focus our review on scholarship within the mathematics domains as the structure imposed by

mathematical symbolic forms and the concepts they express are more closely related to our

domain of computer science.

 As our interest is in student learning with representations, taking a perspective that moves

past the symbol-system in isolation is essential as “a symbol systems analysis does not, in its raw

form, provide a theory of the knowledge or capabilities possessed by students. Instead, it

describes knowledge only by the function that it must perform” (Sherin, 2000, pp. 405–6).

Sherin, having identified this gap between the symbolic systems view and the understanding they

promote and usages they enable, pursued a research course to better understand this relationship

that is similar to our own. Focusing on concepts from physics and investigating the use of

conventional algebraic representations as compared to programmatic representations, Sherin

(2001) found that different representational forms have different affordances with respect to

students learning physics concepts and, as result, affects their conceptualization of the material

learned. “Algebra physics trains students to seek out equilibria in the world. Programming

encourages students to look for time-varying phenomena, and supports certain types of causal

explanations, as well as the segmenting of the world into processes” (Sherin, 2001, p. 54).

 Wilensky and Papert (2006, 2010) give the name structuration to describe this

relationship between the representational infrastructure used within the domain and the

understanding that infrastructure enables and promotes. While often assumed to be static,

 43
Wilensky and Papert show that the structurations that underpin a discipline can, and

sometime should, change as new technologies and ideas emerge. In their formulation of the idea

of structurations, Wilensky and Papert (ibid) document a number of restructurations, shifts from

one representational infrastructure to another, and provide a set of criteria with which to evaluate

them. Shifts including the move from Roman numerals to Hindu-Arabic numerals (Swetz, 1989),

the use of the Logo programming language to serve as the representational system to explore

geometry (Abelson & DiSessa, 1986), and the use of agent-based modeling to representation

various biological, physical, and social systems (Blikstein & Wilensky, 2009; Wilensky, 1999;

2001; Wilensky & Reisman, 2006). This work highlights the importance of studying

representational systems, as restructurations can profoundly change the expressiveness,

learnability, and communicability of ideas within a domain. As we will see in the next sections,

the rise of new programming modalities, representations, and tools demand that such analyses be

conducted to better understand the effects of these emerging approaches to teaching, learning,

and using ideas within the domain of computer science.

Novice Programming Environments

The previous section highlighted the critical importance of representations and their

influence on cognition and learning, with that as a backdrop, we now proceed with a review of

various design efforts indented to improve a learner’s introduction to the field of computer

science and the practice of programming. A great deal of work has been done on the design and

implementation of programming languages and environments for beginners (for reviews of this

work, see: Duncan, Bell, & Tanimoto, 2014; Guzdial, 2004; Kelleher & Pausch, 2005). In this

section we discuss some of the more influential languages and environments and theoretical

contributions that informed the environments and designs being investigated in this dissertation.

 44
Also, it is important to note that this section does not include a detailed review on all aspects

of learning to program, instead it more narrowly focuses on the design of learning environments

and the relationship between modality and learning. For larger reviews of the computer science

education literature see (Guzdial, 2015; Pears et al., 2007; Anthony Robins, Rountree, &

Rountree, 2003).

Languages and Environments from constructionist tradition

 Constructionism has a long history of producing computer-based learning environments

that empower learners and make computational and mathematical ideas accessible (Harel &

Papert, 1991; Papert, 1980, 1993). This work laid much of the important theoretical and design

groundwork upon which current movements to promote programming and computer science are

built. Languages and environments from the constructionist tradition have successfully enabled

children (as well as adults) to construct their own, personally meaningful computational artifacts,

often with little (or no) formal instruction. In this section we provide a brief history of the more

influential constructionist programming environments, beginning with Logo, the language that

started it all.

Logo

 The Logo programming language was iteratively developed by Seymour Papert and

colleagues in Boston in the 1960’s. Logo was the earliest programming language designed

explicitly for children (an early report is given in Feurzeig et al., 1969). Based on the Lisp

programming language, “Logo was designed to provide a conceptual foundation for teaching

mathematical and logical ways of thinking in terms of programming ideas and activities”

(Feurzeig, Papert, & Lawler, 2011, p. 487). In Mindstorms, Papert (1980) dedicates a chapter to

 45
discussing the theoretical roots that most directly informed the design and creation Logo. The

first stems from Piaget and his work on epistemology, recognizing that to study how a child

comes to understand a concept is to study the concept itself. Logo, in its design to teach

mathematics in a fundamentally different way, reimagines what mathematics looks like and how

the learner interacts with and thinks with mathematical concepts. This can be seen in the way

Logo shifts learners away from viewing mathematics as a domain of calculations and towards

envisioning mathematics as series of processes (Papert, 1972). The second theoretical influence

to Logo was from the field of artificial intelligence (AI). As one of the goals of AI is to build

machines that can perform intelligent behavior, such an endeavor needs to study the nature of

intelligence. An appeal of this work was that its methodology relies heavily on computation and

computational environments that force theoreticians to concretize and explicitly represent their

ideas and theories of learning by computationally reifying them. Papert saw in this line of work

the potential for giving children the opportunity to similarly think concretely about mental

processes and what it means to learn.

 Logo was designed with the principle of “low threshold, no ceiling” and saw early and

widespread international adoption and influence in the mathematics community especially

among forward thinking educators. A central contribution of Logo to introductory programming

design was the invention of the turtle – an entity (either physical or virtual) that the user controls

in the form of movement instructions, then watches the turtle carries them out. The turtle

leveraged what Papert (1980) called “body sytonicity” which enabled learners to use their own

experiences in the world as a productive resource for generating programming instructions. As

we will see throughout this review, this design feature shows up repeatedly as an accessible way

for learners to engage in, and have early successes with, programming.

 46
Naïve Realism and Spatial Metaphors with Boxer

 Boxer (diSessa & Abelson, 1986) was an early descendant of Logo that added to the

environment the feature that every object in the system had an on-screen graphical representation

that could be inspected, modified and extended. This design feature was based on the naïve

realism theory of mind and was intended to create a programming interface where “users should

be able to pretend that what they see on the screen is their computational world in its entirety”

(diSessa & Abelson, 1986, p. 861). As such, the environment presents the user with a complete

visual model of what is happening in the machine. This resulted in a design where all

computational objects in Boxer are displayed as two-dimensional boxes (hence the name). These

boxes can each be unpacked, giving the users access to its contents, creating a “glass-box”

environment where nothing is hidden from the learner. A second major design feature of Boxer

was the use of a spatial metaphor as a way to display information about the entities within a

program and their relation to each other. As such, boxes visually rendered inside other boxes

spatially depict a hierarchy of boxes. This use of visual layout of commands as a means of

communicating information about the program and the effect of such an interface will resurface

again in later environments and is at the heart of the questions being pursued in this study.

Many-Turtled Logo Environments

 A second that the Logo language was built upon was to relax the constraint that there can

be only a single entity being controlled in the environment. By allowing users to introduce as

many turtles as they want and providing tools that allow them to give instructions to only a

subset of the turtles, learners could create programs that support the investigation of emergent

and decentralized complex systems (Resnick, 1997; Wilensky & Rand, 2014; Wilensky &

Resnick, 1999). Two early version of these environments were StarLogo (Resnick & Wilensky,

 47
1993) and StartLogoT (Wilensky, 1997). The successor to StartLogoT, NetLogo (Wilensky,

1999b), has since become a very widely used implementation of a Logo-based multi-agent

programming environment.

 Building on the finding that programming and construction are effective ways for

learners to develop mathematical understandings, these multi-turtle environment environments

(subsequently named agent-based models) have extended this work beyond mathematics to

include a wide range of STEM topics. NetLogo was designed as a modeling environment that

captures emergent phenomena (Wilensky, 2001). NetLogo enables learners to use, modify, and

create models of real-world phenomena as a means to develop deep understandings of the

underlying mechanisms and properties of the topic under investigation. A core constructionist

design principle of NetLogo is that by programming models of scientific phenomena, students

will learn science more deeply while also learning programming and modeling. This approach

has been found to be effective for teaching students in a wide variety of domains including

biology (Wilensky & Reisman, 2006), electromagnetism (Sengupta & Wilensky, 2009),

chemistry (S. T. Levy & Wilensky, 2011; Stieff & Wilensky, 2003), evolution (Wilensky &

Novak, 2010) and material sciences (Paulo Blikstein & Wilensky, 2009). By situating the

programming activity within a larger goal of learner specific content introduces another oft-

replicated feature of introductory programming environment – the importance of context

surrounding the programming activity (Cooper & Cunningham, 2010; Guzdial, 2010).

Blocks-based and Graphical Logo Environments

 The last Logo descendants we include in this review are environments that use a blocks-

based or other graphical programming approach. Scratch (Resnick et al., 2009) is the most well

known of the group, but other blocks-based constructionist tools include LogoBlocks (Begel,

 48
1996), StarLogo TNG (Begel & Klopfer, 2007), and Snap! (Harvey & Mönig, 2010). These

environments replace the textual interface of Logo with a programming-primitive-as-puzzle-

piece metaphor that allows users to drag commands into place and snap them together to

assemble their programs. Other approaches that leverage similar graphical approaches include

ToonTalk (Kahn, 1999), which relies on a much more direct visual metaphor for defining

instructions, and Squeak (now e-toys) (Alan Kay, 2005), which uses a rules-as-tiles

programming mechanism. We only briefly mention these environments here, as more time will

be dedicated to graphical and blocks-based programming tools later in this chapter.

Languages and Environments from outside the Constructionist community

 While many early programming languages emerged from the constructionist research

community, the computer science education community also developed a number of

programming languages and environments designed for novices. Here we review some of the

more influential efforts that helped inform this dissertation. This includes languages designed

explicitly for educational contexts as well as software authoring tools for novices.

Beginner Programming Languages

 Early on it was recognized that the design of the language itself can support or hinder

students in their quest to master programming, which resulted in early efforts to develop more

accessible programming languages (Mendelsohn, Green, & Brna, 1990). Along with Logo,

which was explicitly designed with mathematics learning in mind, other languages emerged with

the goal being to serve as an introduction to the field of computer science. An early, influential

language designed for novices was BASIC (Kemeny & Kurtz, 1980), whose acronym stands for

Beginner's All-purpose Symbolic Instruction Code. BASIC included a relatively small

 49
instruction set, removed all unnecessary syntax, and was designed to support short turn

around times between composition and execution of programs, which collectively made it more

accessible to novices. BASIC experienced a great deal of success and was a popular language

throughout the early era of personal computing from the mid 1970’s through the 1980s.

 As the field of computer science education matured, new languages and strategies

emerged that were designed to serve as introductory tools and prepare learners for more

industrial, fully featured languages. Languages such as Blue (Kölling & Rosenberg, 1996) and JJ

(Motil & Epstein, 1998) simplified syntax and provided tools to allows learners to focus on

programming fundamentals before progressing to fully featured languages. Other languages tried

to blend the best features of various languages in hopes of developing new languages that were

both powerful and easy to learn and use (Holt & Cordy, 1988). Another direction introductory

programming languages took was to create more declarative languages in which programming

was a more direct, rule defining activity. Languages such as Prolog (Colmerauer, 1985), and later

graphical environments such as Agentsheets (Repenning et al., 2000), ToonTalk (Kahn, 1999)

and StageCast Creator (D. C. Smith, Cypher, & Tesler, 2000) utilize this strategy.

 A third approach was the use of mini-languages, which are small, simple languages

designed to support the first steps in learning to program (Brusilovsky et al., 1997). Mini-

languages often centered around specific activities and provided only the commands necessary to

accomplish the immediate task, such as Karel the Robot, which has learners write short programs

to control an on-screen robot (Pattis, 1981). These mini-languages share features with domain-

specific languages, which are not intended for general purpose programming, but instead tailor a

smaller language around specific tasks, narrowing the gap between the objective and the

representations in which intentions are encoded (Van Deursen, Klint, & Visser, 2000). In doing

 50
so, the designer of the language can leverage the existing knowledge of the user to provide a

set of tools tailored for the task at hand, narrowing what Norman (1991) calls the gulf of

execution.

 Another approach taken in the design of programming languages for novices is to bring

the programming language closer to natural language. The first language that tried to draw on

natural language grew out of an effort to create a “Common Business Language” (COBOL),

which intentionally tried to maximize the use of English in its syntax (Sammet, 1981). Another

early language that took this approach was Hypercard. When asked about Hypercard’s ancestors,

designer Bill Atkinson responded: “The first one is English. I really tried to make it English-like”

(Goodman, 1988 as cited in Bruckman & Edwards, 1999, p. 208). A more recent language that

adopted this strategy, that was designed explicitly for younger learners is the MOOSE

programming language designed to enable kids to create places, creatures and other objects in a

text-based virtual game (Bruckman, 1997). This desire for a more readable, natural language-like

aesthetical can also be seen in the blocks-based visual programming languages we will review in

the next section, as these tools use other mechanisms to facilitate the computational parsing of

programs, thus allowing the language itself to be more expressive with it’s commands. This

feature has been found to influence learners’ perceived ease of use of the language (Weintrop &

Wilensky, 2015b).

 A final strategy that is important to include in this review of approaches to designing

programming languages for novices is the creation of languages that try to address the

documented issues that novices have with the syntax of programming languages. Research has

found language syntax, the seemingly esoteric punctuation and formatting rules that must be

followed when composing programs, to be a serious barrier for novice programmers (Denny et

 51
al.; Stefik & Siebert, 2013). Through a series of controlled experiments that had novices use

one of a variety of languages that demonstrated various syntactic features, Stefik and Siebert

(2013) found that characteristics of syntax do directly influence a languages learnability. One

solution to the syntactic problem is the creation of programming tools that prevent syntax errors

through the use of visual cues and graphical composition tools. This feature is especially relevant

to the proposed study, as graphical programming proponents boast that the lack of syntax is a

key features that contributes to its appropriateness for young learners (Maloney et al., 2010;

Resnick et al., 2009), but research is finding this approach does not solve the syntax problem, but

only delays it (Parsons & Haden, 2007; Powers et al., 2007). This issue will be discussed in more

detail later in our literature review.

Integrated Development Environments for Novices

 Along with recognizing that features of the language can support or hinder learnability, it

was realized that software used to author programs (called Integrated Development

Environments or IDEs) themselves could provide a large number of supports the help the novice

overcome challenges including syntax errors, deciphering compilation errors, and problematic

sections of programs. This recognition coincided with a larger shift in the computing space that

was advocating for a shift away from users conforming to computer requirements towards a

world where the computer conformed to the user (Donald A. Norman, 1993). These efforts

initially focused on supporting experts, but educational technology designers soon realized that

what is good for the expert is often not the same as what is best for the novice and when

designing educational tools, you should proceed with the learner in mind (Soloway, Guzdial, &

Hay, 1994). As such, a growing number of IDEs have been developed explicitly with novice

programmers in mind.

 52
 An early and influential development environment designed to facility novices

specifically through a reduction on potential syntax errors was the Cornell Program Synthesizer,

which built on the fact that programs are not flat text, but instead “hierarchical compositions of

computational structures and should be edited, executed, and debugged in an environment that

consistently acknowledges and reinforces this viewpoint” (Teitelbaum & Reps, 1981, p. 563).

The Cornell Program Synthesizer provided users with templates that followed the syntactic

structure of the language and thus, when filled in, would result in valid statements that could be

added to the program. These templates were constructed by following the grammar defined by

the language’s abstract syntax tree (AST). While a number of different project and research

groups followed the lead set by the Cornell Program Synthesizer, Carnegie Mellon University

emerged as a leader in the development of programming tools that used features of the language

to support novices. Over the course of a number of projects, the CMU group iteratively

developed a family of programming environments including GNOME (Garlan & Miller, 1984),

Genie (Chandhok & Miller, 1989), and ACSE (Pane & Miller, 1993). These environments

progressively introduced features including code layout based on the language’s AST,

incremental parsing and feedback for syntax errors while editing, supporting multiple views of

the same program simultaneously including high-level design views and code navigation views,

and runtime visualization tools (a history of these environments can be found in Miller, Pane,

Meter, & Vorthmann, 1994). Differentiating these tools from the efforts in the previous section is

the fact that being environments, these tools were not necessarily tied to a specific language. For

example, GNOME environments were created for various languages including Karel the Robot,

Pascal, Fortran, and Lisp (Miller et al., 1994). The inclusion of a language’s AST as part of what

 53
determines how programs are composed is central to the blocks-based visual programming

tools of interest to this dissertation and an idea we will return to later in this literature review.

 More recently, a new generation of IDEs have been developed that are designed with a

specific language in mind and include features unique to that language and even to specific

pedagogies for learning that language. Environments such as DrScheme developed for the

scheme programming language (Findler et al., 2002), and DrJava, a similar tool developed for

Java (Allen, Cartwright, & Stoler, 2002), present an integrated, graphics-rich editor and use a

functional read-evaluate-print development cycle to assist novices in their early programming

endeavors. The BlueJ environment is a popular Java IDE designed to support an object-first

approach to learning to program in Java (Kölling et al., 2003). BlueJ was intentionally designed

to keep the interface simple as to not overwhelm the learner and emphasize the features of the

language deemed most important, which in BlueJ is the object-oriented nature of Java. Building

off of the successes of BlueJ and remaining faithful to the learner-focused design, the BlueJ team

released a second IDE called Greenfoot, designed for younger learners that adds visual program

execution to the IDE to further support younger learners and their developing understanding of

programming concepts (Henriksen & Kölling, 2004). A particular feature of Greenfoot that is of

relevance to this study is the decision to share many interface features between BlueJ and

Greenfoot to make transition between the environments easier for learners as they progress. As

we discuss below, transition from introductory to more sophisticated programming environments

and language is rarely a consideration for designers of IDEs for novices. More recently, the

Greenfoot team has released a new language called Stride, that is based off Java and supports a

new form of hybrid text-graphical editing the call Frame-based Editing (Kölling, Brown, &

 54
Altadmri, 2015), we will return to this new environment and programming approach later in

the chapter.

Visual Programming

 As the development of programming languages and environments evolved, it was found

that shifting from an all-text representation of programs to an approach that leverages spatial and

graphical features could be productive for learning and understanding (D. C. Smith, 1977).

Collected under the label “Visual Programming”, these environments are broadly defined as

“any system that allows the user to specify a program in a two (or more) dimensional fashion”

(Myers, 1990, p. 98). While this definition is intentionally broad, it excludes text-based

programming (which is considered to constrain composition of programs to a single, horizontal

dimension), software used to produce visualizations (like animation and drawing programs), and

tools that visually depict the execution of programs (like environments that visually render

memory contents or algorithmic flow of a running program). To provide a framework for

evaluating visual programming environments, Green and Petre (1996) developed a cognitive

dimensions framework that characterizes features of these environments and maps out the trade-

offs that exist between different visual design choices. These cognitive dimensions include

Abstraction Gradient (various granularities of abstraction supported), Consistency (how

formulaic is the language), Progressive Evaluation (what feedback is available from partially-

complete programs), and Visibility (how easy is it see and read the code) among others. This

framework proved to be productive and is widely used to evaluate visual programming

environments.

 55
 Direct manipulation was an early and widely implemented approach to graphical

programming that touches on a number of strengths of a graphical authoring modality. Hutchins

et al. (1985) explain the concept:

The promise of direct manipulation is that instead of an abstract computational medium,

all the "programming” is done graphically, in a form that matches the way one thinks

about the problem. The desired operations are performed simply by moving the

appropriate icons onto the screen and connecting them together. Connecting the icons is

the equivalent of writing a program or calling on a set of statistical subroutines, but with

the advantage of being able to directly manipulate and interact with the data and the

connections. There are no hidden operations, no syntax or command names to learn.

What you see is what you get. (p. 314)

Included in this definition are a number of key features of graphical programming: the presence

of onscreen icons that carry some computational or programmatic meaning that can be controlled

directly, a two (or more) dimensional space to work within, a minimization (or absence) of

syntax or commands, and a general transparency that permeates the environment and how it is

meant to be used. Bruner (1973) distinguishes between this “transparent” use of a

representational medium, where actions are guided by reasoning about the entities being

represented, and an “opaque” use of symbols, where attention is focused on the inscriptions

themselves.

Based on the promise of easier to learn, easier to use, programming systems, many visual

programming languages have been designed and evaluated. Direct manipulation tools often rely

on flow-chart or data-flow diagrams that map logical flows through instructions (Hils, 1992).

LabVIEW (Johnson, 1997; Santori, 1990), a circuit diagram program built on an electronic block

 56
wiring metaphor, often serves as an exemplar direct manipulation environment in studies of

this programming modality, with the results of these studies generally being mixed (Whitley,

1997). Flogo (Hancock, 2003), a graphical programming environment designed to facilitate

learners programming robot behaviors, used a visual dataflow view of information intended to

make programs more understandable, accessible, and modifiable. A more contemporary version

of direct manipulation software is the Lego Mindstorms NXT-G programming tool (Lego

Systems Inc, 2008), which allows children to program robots by dragging iconic representations

of program commands and robot components from a palette onto a workspace, where they can be

wired together.

 Another family of programming tools that emerged from this tradition use images and a

graphical stage rendered as a grid to allow users to program rules the system can follow.

Building on the idea of programming-by-demonstration, KidSim, later renamed Stagecast

Creator (D. C. Smith, Cypher, & Spohrer, 1994; D. C. Smith et al., 2000), was developed to

allow users to create games by defining rules using symbols and graphics, removing the need for

syntax or text-based programming commands. These graphical rules govern the behavior of the

entities (called agents) in the world being programmed making it easy to create playable video

games. Repenning and colleagues took a similar approach (although they choose to call it

programming-by-problem-solving) in the development of Agentsheets, an environment in which

users program sets of agents that move via graphical rules (Repenning & Sumner, 1995). Unlike

Stagecast Creator, Agentsheets moves beyond game-making to include the creation and

exploration of scientific models and simulations as part of its uses (Repenning et al., 2000). With

the release of Agentcubes, the two dimensional restriction of the stage has been lifted, enabling

 57
learners to create three-dimensional games and simulations (Ioannidou, Repenning, & Webb,

2009).

Two other approaches to visual programming are important to mention. The first is the

use of tangibles as representations of programming statements. Tools such as AlgoBlocks

(Suzuki & Kato, 1995), the Digital Construction Set for Lego Bricks (McNerney, 2004), and

Tern (M.S. Horn & Jacob, 2007) all explored different ways to program with physical devices. In

a comparative study with Tern, Horn and colleagues found the tangible programming approach

to be more approachable and resulted in longer engagement by visitors in a museum setting (M.

S Horn et al., 2009). The second consist of languages that do not rely on visual metaphors of

rules or objects, but visual metaphors of programming statements and abstractions directly. We

call these blocks-based programming environments and review them in more detail later in the

chapter as they are a focus of this dissertation.

Evaluating Visual Programming Environments

 In the early 1990s a thread of research, lead by Green and Petre among others,

systematically compared text-based and visual programming to understand which was superior.

While some studies showed promise in the use of visual programming tools (Baroth &

Hartsough, 1995), other studies conducted in more controlled environments found contradictory

evidence. Green and collaborators found that visual programming environments required longer

amounts of time to develop solutions and provided less guidance on strategic approaches,

resulting in more difficulty among novice programmers (Green & Petre, 1992; Green, Petre, &

Bellamy, 1991; Petre, 1995). They attributed these findings to unfamiliarity with available

secondary notations of the languages (a dimension from the Green and Petre’s cognitive

dimensions framework that captures the use of layouts and other informal cues to express

 58
structure) and the match-mismatch hypothesis (Green, 1977), which links difficulty in

generating function solutions to misalignment between the structure of a problem with the

structures supported by the language. These findings were reproduced in a later set of studies

with a larger set of visual programming tools, in which it was found that various visual

representations were at best on-par with their textual equivalents (Moher et al., 1993). For a

longer review of this work, see Blackwell et al. (2001). While much of this comparative work

was conducted over twenty years ago, the field is still active with studies being conducted with

new tools (for example Hundhausen, Farley, & Brown, 2009). We will return to these more

contemporary studies later as they focus not just on comparisons between tools, but also

transitioning between representations.

Blocks-based Programming

 The blocks-based approach of visual programming, while not a recent innovation, has

become widespread in recent years with the emergence of a new generation of tools, lead by the

popularity of Scratch (Resnick et al., 2009), Snap! (Harvey & Mönig, 2010), and Blockly

(Fraser, 2013). These programming tools are a subset of the larger group of editors called

structured editors (Donzeau-Gouge, Huet, Lang, & Kahn, 1984) that make the atomic unit of

the composition tool a node in the abstract syntax tree (AST) of the program, as opposed to a

smaller piece (i.e. a character) or a larger piece (a fully formed functional unit). In making these

AST elements the building blocks, then providing constraints to ensure a node can only be added

to the program’s AST in valid ways, the environment can protect against syntax errors. The

constraints can be provided in a number of ways. Blocks-based programming environments

leverage a programming-primitive-as-puzzle-piece metaphor that provides visual cues to the user

about how and where commands can be used as their means of constraining program

 59
composition. Programming in these environments takes the form of dragging blocks into a

scripting area and snapping them together to form scripts. If two blocks cannot be joined to form

a valid syntactic statement, the environment prevents them from snapping together, thus

preventing syntax errors but retaining the practice of assembling programs instruction-by-

instruction. Along with using block shape to denote usage, there are other visual cues to help

programmers, including color coding by conceptual use, and nesting of blocks to denote scope

(Maloney et al., 2010; Tempel, 2013).

 Early versions of this interlocking approach include LogoBlocks (Begel, 1996) and

BridgeTalk (Bonar & Liffick, 1987) which helped formulate the programming approach which

has since grown to be used in dozens of applications. Alice (Cooper et al., 2000), an influential

and widely used environment used in introductory programming classes, uses a very similar

interface and has been the focus of much scholarship evaluating the merits of the approach.

Figure 2.1 shows programs written in a number of blocks based programming tools.

(a) (b) (c) (d)

 60
Figure 2.1. Four example blocks-based programming languages: (a) BridgeTalk, (b)

LogoBlocks, (c) Scratch, and (d) Alice.

 In addition to being used in more conventional computer science contexts, a growing

number of environments have adopted the blocks-based programming approach to lower the

barrier to programing across a variety of domains. These include: mobile app development with

MIT App Inventor (Wolber, Abelson, Spertus, & Looney, 2011) and Pocket Code (Slany, 2014),

modeling and simulation tools including StarLogo TNG (Begel & Klopfer, 2007), DeltaTick

(Wilkerson-Jerde & Wilensky, 2010), NetTango, and EvoBuild (Wagh & Wilensky, 2012),

creative and artistic tools like Turtle Art (Bontá, Papert, & Silverman, 2010), and PicoBlocks

(PicoBlocks, 2008), commercial educational programming applications like Tynker (Tynker,

2014) and Hopscotch (Hopscotch, 2014), and game-based learning environments like

RoboBuilder (Weintrop & Wilensky, 2012), Lightbot (Yaroslavski, 2014) and the activities

included in Code.org’s Hour of Code (Hour of Code, 2013) and Google’s Made with Code

initiative (Made with Code, 2014). Further, a growing number of libraries are being developed

that make it easy to develop application or task specific blocks-based languages (Fraser, 2013; R.

V. Roque, 2007). This diverse set of tools and the ways the modality is being used highlights its

recent popularity and speaks to the need for more critical research around the affordances and

drawbacks of the approach (Shapiro & Ahrens, 2016; Weintrop & Wilensky, 2015a). There is

also a growing number of environments they blend blocks-based and text-based programming

approaches, including Pencil Code (Bau et al., 2015) and Tiled Grace (Homer & Noble, 2014).

Evaluating Blocks-based Programming Environments

 61
 In our review of literature focusing on the educational efficacy of blocks-based

languages, we focus on Scratch and Alice, as these two tools have the widest use in

contemporary computer science education of the blocks-based environments listed above. While

both Alice and Scratch have been used in formal education environments, it is important to keep

in mind that the two projects initially had different goals and different target age groups. Scratch

from its inception, was focused on younger learners and informal environments (Resnick et al.,

2009), while Alice was targeted at more conventional computer science educational contexts

and, as such, has a been the focus of more initiatives to evaluate student learning of

programming concepts (Cooper et al., 2000).

 We begin by reviewing literature on Scratch investigating its use as the language of

choice in formal computer science environments. Ben-Ari and colleagues have conducted a

number of studies of the use of Scratch for teaching computer science. Using activities of their

own design (Armoni & Ben-Ari, 2010), Meerbaum-Salant et al. (2010) concluded that Scratch

could successfully be used to introduce learners to central computer science concepts including

variables, conditional and iterative logic, and concurrency. While students did perform well on

the post-test evaluation from this project, a closer look at the programming practices learners

developed while working in Scratch gave pause to the excitement around the results. The

researchers found that students developed unfavorable habits of programming, including a totally

bottom-up programming approach, a tendency for extremely fine-grained programming, and

often incorrect usages of programming structures as a result of learning programming in the

Scratch environment (Meerbaum-Salant, Armoni, & Ben-Ari, 2011). Other work looking at

comparing blocks-based to text-based programming using Scratch has similarly found that

Scratch can be an effective way to introduce learners to programming concepts, although it is not

 62
universally more effective than comparable text languages (C. M. Lewis, 2010). Given

Scratch’s intention on being used in informal spaces and its emphasis on introducing diverse

learners to programming, it is important to highlight Scratch’s success in generating excitement

and engagement with programming among novice programmers (Malan & Leitner, 2007;

Maloney et al., 2008; Tangney et al., 2010; Wilson & Moffat, 2010).

 Compared to Scratch, the Alice programming environment has a longer history of serving

as the focal programming tool in introductory programming courses. Much of the motivation for

using Alice in courses is based on findings that Alice is more inviting and engaging than text-

based alternatives, and improves student retention in CS departments (Johnsgard & McDonald,

2008; Moskal, Lurie, & Cooper, 2004; Mullins, Whitfield, & Conlon, 2009). Alice has also

effectively been used by instructors who adopt an object-first approach to programming as it

provides an intuitive and accessible way to engage with objects with little additional

programming knowledge needed. Part of Alice’s success and relatively widespread use is due to

the fact that the creators of Alice have authored a number of textbooks and curricula that can

serve as texts for an introductory programming course (Dann, Cooper, & Ericson, 2009; Dann,

Cooper, & Pausch, 2011). It is also important to mention here the growing body of work looking

at blocks-based programming as an introductory tool used for preparing students for learning

more conventional text-based programming, which is discussed in the next section. Until

recently more research had been conducted around the transition from Alice to Java, as it is more

frequently featured in conventional CS contexts, but recently this line of research has expended

to include Scratch and other blocks-based tools. As this goal is at the heart of this dissertation,

we devote a full section to reviewing efforts towards this end.

 63
 A small but growing body of research is conducting systematic comparisons of

blocks-based and text-based environments. In a pilot study of this dissertation, we found that

students perform differentially on questions asked in blocks-based form compared to the

isomorphic text alternative (Weintrop & Wilensky, 2015d). These differences were not universal

however, but instead were influenced by the concept under question, with students performing

better on blocks-based questions related to conditional logic, function calls, and definite loops,

and finding non statistically significant differences on questions related to variables, indefinite

loops, and program comprehension questions. Other studies investigating learning outcomes in

blocks versus text environments found little difference in learning outcomes, but did report that

students completed activities in blocks-based environments at a faster rate. This suggests that

while the same learning can be achieved, it happens more quickly in blocks-based environments

(Price & Barnes, 2015).

From Blocks-based to Text-based Programming

 With the rise in popularity of the blocks-based approach to programming, a question of

growing importance is how well these tools prepare students for future, text-based programming

languages. Do students develop understandings that can serve as a foundation for future learning

or do students struggle to apply what they have learned in new programming contexts with more

powerful, text-based programming languages. Recent studies have begun to explore this

question of transfer of programming knowledge between blocks-based and text-based

programming. Before reviewing this literature, it is important to note that not everyone is in

agreement that blocks-based programming is indeed only to be used as a stepping-stone for text-

based programming. Some argue that a blocks-based modality is a sufficient end-point for those

who are not intent on pursing a career in programming (Modrow, Mönig, & Strecker, 2011).

 64
While we see merit to this position, as we are focused on high-school aged students, and all

widely adopted computer science assessments (notably the AP Computer Science exam) are

conducted with text-based programming languages and a vast majority of libraries and

programming tools are text-based, we see this as a question of great importance. We begin this

review by looking at studies attempting to bridge Alice and Java as it has the longest, and most

well documented history.

 From the outset, Alice was intended for formal educational contexts and was widely

shared and discussed in computer education circles. As a result, it has become a popular tool for

use in introductory computing courses at the university level, thus the challenge of transition

from Alice to Java has become an active area of research. As is often the case, results have been

mixed in studies looking at the transition of students from Alice to Java. Powers et al. (2007), in

their study following students from a semester in Alice to a semester in Java (using BlueJ)

documented a number of challenges faced by their students including issues with syntax,

frustration with the lack of progress at a similar pace as in Alice, and a feeling that programming

in Alice was not authentic due to its graphical nature. This position has been taken to various

degrees (Cliburn, 2008), with some researching going so far as to state “based on our classroom

experience, we question its real pedagogical value for programming education at the tertiary

level. Students do not seem to naturally make a strong connection between the formal coding

process and what they are doing with Alice” (Parsons & Haden, 2007, p. 213). Another study

compared students spending time using Alice compared to students working through the same

activities in pseudo-code and found that students in the pseudo-code condition performed better

on standard performance measures (Garlick & Cankaya, 2010). In contrast, other researchers

have found Alice to be an effective way to introduce learners to programming and had success

 65
using it as a tool for transition to Java. Notably, the authors of Alice developed a tool that

allowed students to move back and forth between Java and Alice which was found to be effective

at bridging this gap (Dann et al., 2012). Citing this work, classes have adopted this strategy of

mixing Java and Alice as a way to leverage the strengths of the visual programming approach

while mitigating issues cited above (Dann et al., 2009). A number of textbooks have also been

written to bridge the gap (Adams, 2007; Dann et al., 2009; J. Lewis & DePasquale, 2008), but

research evaluating the effectiveness of these texts is relatively sparse.

 A few studies have been conducted looking at the transition from Scratch to other text-

based programming languages. While many of these report only anecdotal evidence, Armoni,

Merrbaum-Salant & Ben-Ari (2015) conducted a longitudinal study looking at whether students

who had taken Scratch programming classes in middle school performed better in a high school,

text-based programming course. Overall, the researchers found little quantitative difference in

performance on assessments between students who had previous worked with Scratch and those

who had not, but were able to find some areas where the Scratch students out-performed their

peers (specifically on the concept of looping). Additionally, the authors found qualitative

differences between the two populations, with students who had prior Scratch experience

reporting high levels of motivation and self efficacy.

 Beyond Alice, a growing number of tools are being designed to address the blocks-to-text

gap, either as new stand-alone tools or add-ons to existing tools. Such efforts including the

ScratchBlocks (ScratchBlocks, 2014), Pencil Code (Bau et al., 2015), Tiled Grace (Homer &

Noble, 2014), PyBlocks (Bart, Tilevich, Shaffer, & Kafura, 2015) and SLASH (Behnke, 2013)

add-ons to Scratch, the TAIL plugin (Chadha, 2014) and the App Inventor Java Bridge (App

Inventory Java Bridge, 2014) for MIT App Inventor. PicoBlocks (PicoBlocks, 2008), TurtleArt

 66
(Bontá et al., 2010), and recently the Tynker platform (Tynker, 2014) all come with the

ability to view text-based equivalents to programs constructed with the blocks-based interface.

Other tools provide native language translation, for example, the Blockly toolkit comes with

built-in language generators that allow you to convert graphical scripts to equivalent JavaScript,

Python, or XML files (Fraser, 2013). Additionally, Blockly is architected in such a way as to

make it easy to add additional generators to the library making it extensible for future blocks to

text transformations. The DrawBridge project is noteworthy in it’s effort to bridge blocks-based

and text-based programming by introducing pen-and-paper drawing and program-by-

demonstration features into its larger pedagogical strategy (Stead & Blackwell, 2014). Game

authoring has also been used as a context to motivate blocks-to-text programming as

demonstrated by the Flip project, although this environment’s text-programming uses natural

language expressions over conventional text-based programming syntax (Howland & Good,

2014).

While these environments provide a one-way transition from a blocks-based interface to

the textual form, a growing number of tools are providing bi-directional support for new and

established languages. Pencil Code (Bau et al., 2015) provides a two-way transition between

blocks and Coffee Script, JavaScript, and HTML, while tools have also been built for Java

(Matsuzawa, Ohata, Sugiura, & Sakai, 2015), Python (Bart et al., 2015), and Grace (Homer &

Noble, 2014). Little work has been published on these hybrid environments. One notable

exception is Matsuzawa et al.’s (2015) study in which they taught a semester long introductory

programming course using an environment that allowed users to program with either a blocks-

based or text-based Java interface. The authors found that over the course of the class, students

systematically transitioned from blocks to text on their own, and also found a correlation

 67
between learners’ initial confidence and the modality they chose to work in (Matsuzawa et

al., 2015).

It is also important to note the difficulty in transferring between graphical and text-based

programming environments should not be surprising as researchers have documented difficulties

in novices transferring knowledge between two text-based programming languages (Scholtz &

Wiedenbeck, 1990; Wiedenbeck, 1993), so seeing similar difficulties across modalities is

unsurprising.

This concludes our review of the various literatures that have informed the design of this

study. In the next chapter, we layout the study design used to answer the stated research

questions, including the data sources used, settings in which the research was conducted, the

population we recruited, and the analytical methodology used to evaluated the collected data.

 68
3. Methodology

 The study that makes up the heart of this dissertation is a three-condition, quasi-

experimental study designed to understand the effects of using blocks-based, text-based, and

hybrid blocks/text programming tools in formal introductory computer science classrooms. The

study is broken up into two phases: A Three-way Introduction to Programming followed by The

To-text Transition. During the three-way introduction, we followed three sections of an

introductory programming class at the high school level for the first five weeks of the school

year. The To-text Transition follows those same three classrooms as the students transition from

the introductory tools to more a conventional text-based programming environment. The second

phase commences immediately following the conclusion of the three-way introduction phase and

will last for 10 weeks. This is a mixed-methodology study, so a variety of data sources were

used, including classroom observations, written assessments, student and teacher interviews, and

the collection of student-generated artifacts. This chapter presents the various methodological

aspects of the study, including a detailed description of the study design, information about the

setting and participants, and a discussion of the data that were collected. We also present the

analytic approach taken for each set of data collected.

Study Design

 Like many studies in the field of the Learning Sciences, this study is inspired by the

design-based research methodology (Design-based Research Collective, 2003; Collins, Joseph,

& Bielaczyc, 2004,). In design-based research, designed artifacts are used to inform our

understanding and advance our theory of how students come to understand the topic under

investigation. In this study, the three variations of our introductory programming tool serve as

 69
the central design component with which to investigate student understanding. A central

characteristic of design-based research studies is their iterative nature, where earlier trials with a

given tool are used to inform and revise the designed artifacts. This study was conducted over

two consecutive school years. The first year was used as a pilot study for the programming

environments, the curriculum, and the data collection methodologies. The data collected in the

first year were used to inform and revise the materials and procedures for the second iteration of

the study5. Both years of the study followed the same study design and were conducted in the

same setting. As the findings presented in this dissertation focus on data collected in the second

year, we will focus our methodological discussion on that iteration of the study.

Phase One: A Three-way Introduction to Programming

 The first phase of the study was designed to examine the use of three different versions of

the same introductory programming tools in a high school level introductory programming

classroom. This phase of the study follows three classrooms during their first 5 weeks of a

yearlong introduction to programming course. Each of the three classes used a different variant

of the same programming environment called Pencil.cc (a customized version of the Pencil Code

environment). The difference between the three versions of the environment is in how programs

are represented and authored. One class used a blocks-based interface, the second used a text-

based authoring interface, and the third version of the tool used a hybrid blocks/text approach.

While there are many differences that exist between the introductory environment and

conventional Java programming environments, the focus in this work is on the role modality

5 The findings from the pilot study and a discussion of how they informed the design of the tools
used in the second study are discussed in the next chapter, which focuses on the design of the
introductory programming environments.

 70
plays in influence novice programmers’ experiences. The three environments are discussed in

greater detail in the next chapter. These three classrooms make up the three conditions of our

quasi-experimental design. All three classes worked through the same set of activities and

engage in the same classroom discussions. One teacher taught all three classes, allowing us to

control for teacher effects, though some overall results will be influenced by the specific teacher.

The design of the three environments, which is central to this dissertation are discussed in detail

in the next chapter.

Curriculum

 The five-week curriculum for the introductory course is based on the Beauty and Joy of

Computing course designed by Daniel Garcia and Brian Harvey at UC Berkeley (Garcia et al.,

2015), along with an assortment of other introductory computing activities grounded in the

Constructionist programming tradition pioneered by Papert and others around the Logo

programming language (Harvey, 1997; Papert, 1980). An emphasis of this design was to allow

students creative freedom in each assignment, confronting the traditional approach to

programming assignments where each assignment is the same. This approach resonated with

students, as one students said at the conclusion of the five-week curriculum: “I liked the fact that

we were able to, like, we were given a prompt and we were able to go from there, for most

projects. That was cool, I found that fun. It kind of let me go off, it let me tinker a bit, but it also

let me stay focused. I really liked that.”

 Over the course of the five weeks, four major conceptual topics are covered: variables,

conditional logic, looping logic (including both definite and indefinite loops), and procedures.

Throughout the activities, care was taken to blend visually executing programs (like traditional

Logo graphics drawing assignments) and number or text processing activities. Table 3.1 and

 71
Table 3.2 provide a high-level outline of the curriculum, a more detailed description of the

curriculum, including detailed descriptions of the specific activities can be found in Appendix A.

Table 3.1. A high-level summary of the 5-week introductory curriculum.

Week 1: Introduction to Pencil.cc and Variables
The goal of the first week is to acclimate students to programming in Pencil.cc.
This includes introducing them to the environment, the quick reference menu
where additional information can be found, and various basic commands (mostly
associated with moving the on-screen turtle and basic I/O).

Activities: Quilt, Mad-Libs, Tip Calculator
Week 2: Conditionals

In this second week we introduce students to conditional logic and predicates.
Activities: Color-by-Quadrant, Movie Recommendation Engine, Grade Ranger
Week 3: Iterative Logic

In week three, we introduce looping logic. This includes an assignment having
students draw repeating figures using definite loops and concentric shapes with
indefinite loops.

Activities: Guessing Game, Radial Art, Squiraling
Week 4: Procedures

The fourth week begins with an activity showing students how to define new
procedures and how to pass parameters into them. The second half of the week
includes an assignment that asks students create procedures and also use
conditional and looping logic.

Activities: PolyGoner, Connect Four, Brick Wall
Week 5: Summative project

The final week of the curriculum has students develop their own projects. The
only requirement is that projects must include all of the concepts students have
encountered (variables, iterative logic, conditional statements, and define
functions). Students spent four days working on their projects then presented them
to their peers on the final day of the initial phase of the study.

Table 3.2. A high level description of the 13 assignments given during the 5 week introductory
portion of the course.

Assignment Graphical or Text-based? Concept
1 Quilt Graphical Introduction
2 Madlibs Text-based Variables
3 Tip Calculator Text-based Variables
4 Paint by Quadrant Graphical Conditional Logic

5
Movie Recommendation
Engine

Text-based Conditional Logic

6 Grade Ranger Text-based Conditional Logic
7 Guessing Game Text-based Iterative Logic
8 Radial Art Graphical Iterative Logic

 72
9 Squiral Graphical Iterative Logic
10 Polygoner Graphical Procedures
11 Connect 4 Graphical Procedures
12 Brick Wall Graphical Procedures
13 Final Project Graphical Summative Project

Phase Two: The To-Text Transition

 The second phase of this study is intended to shed light on the question of how well each

of the three introductory tools used in phase one prepared students for future computer science

instruction in a more conventional text-based language. In this phase we followed students as

they transition from the introductory programming environments used in the first five-weeks of

class to the Java programming language, which is the language they will use for the remainder of

the school year and also the language the school’s AP Computer Science class. All students

learned Java and used the same basic text editor for their programming assignments, regardless

of what condition they were in during the first phase of the study. The choice for using a basic

text editor that does not include common programming editor features like syntax highlighting or

auto-formatting was the teacher’s.

 We followed the students through their first ten weeks in Java. The course follows the

Java Concepts: Early Objects text book (Horstmann, 2012) which, as the name suggests, uses an

objects-first approach. This means students encounter the concepts of objects and classes before

conditional logic and loops. During the ten weeks of the Java portion of the study, students

encountered basic input/output, variables, data types, creating objects, and calling functions.

While there is not complete content overlap between the introductory curriculum and the first ten

weeks in Java, there are concepts that were encountered in both, notably variables and

procedures.

Methods and Data Collection

 73
 This study utilizes a mixed-method approach to answer the stated research questions.

This includes quantitative and qualitative methodologies as well as computational methods to

analyze the large dataset of learner-authored materials. In this section, we breakdown each data

source used, present our data collection schedule and describe what the data is and how and

when it was gathered. We begin by discussing our quantitative data sources then continue with

our qualitative and then computational data.

Quantitative Data Sources

 The main quantitative data sources for this study are a series of attitudinal surveys and

content assessments. The surveys were administered three times over the course of the study: (1)

at the outset in week 1, (2) between phase 1 and phase 2 which is after students have completed

the portion of the study where they will be using the introductory programming environments,

and (3) after the conclusion of the first Java unit, which was roughly 10 weeks into the course.

Each administering of the surveys helps us answer a different question. The initial set of data

gives us a base line for each student and the classes as a whole. The second set allows us to

measure the impact of the introductory programming environments, both within each condition

as well as how they do relative to one another. The third data set will allow us to measure

students’ initial experiences learning to program in Java. This data set gives us insight into

students’ attitudes and whether or not confidence has shifted since moving to text-based

programming as well as information about if and how concepts learned with the introductory

tools are still salient after leaving those tools behind. Administering these two instruments

multiple times over the course of the study gives us power to speak to the effects of the tools

immediately, comparatively, as well as their lasting effects.

 74
 The surveys were administered online during class time on consecutive days so as to

minimize testing fatigue. The attitudinal survey took students around 20 minutes and the content

assessment took close to 25 minutes. The assessments were given at the same time for all three

classes. The surveys were hosted on Google Forms and the responses were recorded in a Google

spreadsheet. Students who were absent the day it was given were asked to take the survey

outside of class time, although not all did as course credit could not be given for completion of

the surveys under the agreement made with the school district.

Attitudinal Surveys

 The attitudinal surveys are loosely based on materials used as part of the Georgia

Computes initiative (Bruckman et al., 2009). The questions in this survey are designed to gain

insight into a number of attitudinal and perceptual facets. The three versions of the survey were

largely the same, with a few additional questions being added with the second and third

administrations asking students to reflect on their experience in the class. The survey begins with

17 Likert scale (1-10) questions asking students about their confidence in taking the course, their

excitement for the course, and their general perception of the field of computer science. The

survey then continues with 9 short answer questions about motivations for taking the course,

prior experience with programming and computer science culture, things they are excited to learn

as part of the class, and some open-ended prompts about how they view the field of computer

science. In the first administration of the assessment, we ask a number of questions about

students’ prior experience with computer science and technology. A full copy of the attitudinal

survey can be found in Appendix B.

The Commutative Assessment

 75
 For this dissertation a customized content assessment was designed.

Across educational research broadly there is a recognized need for high quality and validated

assessments, a position echoed in computer science education circles (Tew & Dorn, 2013).

Towards this end, a number of assessments have been developed and validated with the goal of

improving our ability to evaluate and measure student learning across a variety of languages,

environments, and contexts (Shuchi Grover, Cooper, & Pea, 2014). Related work has sought to

define the process one follows to develop quality computer science assessments, beginning with

identifying the goals of the assessment and the material to cover, through validating, piloting,

and refining the instrument (Buffum et al., 2015). Additionally, new techniques are being

developed and applied to programming assessments to improve accuracy and build confidence in

new assessments (Sudol & Studer, 2010). One notable example of a rigorous, validated

assessment is the Foundational CS1 assessment (FCS1) (Tew & Guzdial, 2011), which is a

language independent instrument designed to decouple concepts from the language used to

represent them. This makes it useful to learners regardless of the language used during

instruction. This is in contrast to most validated programming assessments developed by testing

boards, like the Advanced Placement (AP) CS exam and the A-level General Certificate of

Education in Computing, both of which are currently designed for the Java language.

 There are a growing number of projects working towards developing assessments for the

blocks-based approach to programming that we are investigating herein. Much of this work looks

to assess not programming specifically, but computational thinking more broadly (Shuchi Grover

et al., 2014). For example, the Fairy assessment (Werner, Denner, Campe, & Kawamoto, 2012),

designed for middle school aged learners, uses Alice and presents learners with partially

completed, or buggy, programs that need to be fixed in order for in-world characters to

 76
accomplish a specific task. In taking this approach, the Fairy assessment evaluates both

comprehension (learners understanding of what a written program does) as well as gives learners

a chance to problem solve, design and implement algorithmic solutions to assessment tasks. This

design addresses the critique that process is often lost in conventional assessments of

programming knowledge (Piech, Sahami, Koller, Cooper, & Blikstein, 2012). Another

innovative assessment approach to computational thinking comes out of the Scalable Game

Design group that developed an automated way to measure the frequency of computational

thinking patterns in student-authored programs as a way to assess learning (Koh, Basawapatna,

Nickerson, & Repenning, 2014). Despite this growing number of assessments that incorporate

the blocks-based modality, prior to this dissertation study, there did not exist an assessment that

could be used to comparatively evaluate student understanding across blocks-based and text-

based modalities. In response to this, the Commutative Assessment was developed.

 The central feature of the Commutative Assessment is that every question can be asked

using one of three isomorphic programs. One version of the question presents the program in a

textual form, the second uses the Pencil Code blocks representation, and the third is how the

program would be written in Snap! (Harvey & Mönig, 2010), a widely used blocks-based

programming environment that includes a larger set of visual cues in rending its programs.

Figure 3.1 shows the three different forms that a single question’s program may take on the

assessment. The assessment is called The Commutative Assessment to reflect the fact that the

modality of the program included in each question can be swapped between administrations of

the assessment. Details of the assessment are provided later in this section, after a discussion of

the content areas covered by the Commutative Assessment.

 77

Snap! Pencil Code Blocks Pencil Code Text

Figure 3.1. The three forms programs may take in the Commutative Assessment.

 While a standard concept inventory for introductory computer science has yet to be

established (Taylor et al., 2014), there are a set of concepts that are recognized as being central

for such courses. The content assessments primarily draw on two resources in deciding what

concepts to include in the assessments. The first is the recently released 2013 CS Curriculum

(ACM/IEEE-CS Joint Task Force on Computing Curricula, 2013) that is meant to provide

guidelines for university computer science departments. This curriculum breaks down the field

of computer science into broad categories and recommends how much time should be committed

to each category and at what point the material should be covered. The assessment focuses on

concepts that were emphasized as being foundational early in a students’ career. The second

resource the assessment draws on is the work of Tew and Guzdial (2010, 2011) and their effort

to create a validated CS 1 assessment. As part of this effort, they reviewed the contents of 12

introductory computer science textbooks along with other published curricula to establish a list

of core CS1 concepts. Their final list consists of:

• Fundamentals (variables, assignment, etc.)
• Logical Operators
• Selection Statements (if/else)
• Definite Loops (for)
• Indefinite Loops (while)
• Arrays
• Function/method parameters
• Function/method return values

 78
• Recursion
• Object-oriented Basics (class definition, method calls)

Informed by these two resources, the Commutative Assessment focuses on the subset of these

concepts that could fit within our five week curriculum. This included the following five

categories from Tew and Guzdial’s work: fundamentals, selection statements, definite loops,

indefinite loops6, and function/method parameters. Based on the review of the CS2013

Curriculum and what it emphasizes for introductory courses, as well as the desire to broaden the

assessment beyond programming specifics, the Commutative Assessment also includes two

additional content categories: program comprehension (interpreting the behavior of short

programs), and algorithms (natural language descriptions of steps to be followed to solve a

problem). Table 3.3 shows the final list of concepts included in the newly designed assessment

and how it maps on to Tew & Guzdial (2010) and the CS2013 curriculum.

Table 3.3. The computer science concepts covered in our content assessment.

Commutative Assessment Mapping to Tew & Guzdial
(2010) Categorization

Mapping to CS 2013
Curriculum Category

Variables Fundamentals Fundamental
Programming Concepts

Conditional Logic Selection Statements Fundamental
Programming Concepts

Iterative Logic Definite Loops;
Indefinite Loops

Fundamental
Programming Concepts

Functions Function/method parameters;
Function/method return values

Fundamental
Programming Concepts

Program Comprehension - Development Methods
Algorithms - Algorithms and Design

6 Definite and indefinite loops were collapsed and taught together in our curriculum and at times
grouped together in our analysis. In this document, references to iterative logic refer to both of
these forms of looping structures.

 79
The Commutative Assessment includes 30 questions, five in each content area. All of the

questions are multiple choice or true/false and, with the exception of the algorithm questions,

which take the form of a short piece of code that students are asked to interpret. The algorithm

questions have plain text descriptions of a problem then ask the students questions about steps

that need to be taken to solve that problem. Each question on the assessment has three possible

programs that could be displayed. For each administration of the content assessment, there is

roughly an equal number of questions asked in each modality, additionally, within each

conceptual category, every modality is present at least once. As the assessment was given three

times during the study, it ensured that every student answered every question in every modality.

This means the questions in the second administration of the Commutative Assessment included

the same set of questions, but used different modality than the version the student saw in the first

administration. Likewise, the final time the learner took the assessment, each question was

presented in the format he or she had not yet seen. Figure 3.2shows a sample variable question

from the assessment. When taking the assessment, students see only one version of the program.

What will be the value of x and y after this script is run?

(or)

(or)

A) x is equal to 15 and y is equal to 15
B) x is equal to 5 and y is equal to 10
C) x is equal to 15 and y is equal to 10
D) x is equal to “x + 5” and y is equal to “x”
E) x is equal to 10, 15 and y is equal to 10

Figure 3.2. A question from the Commutative Assessment.

 80
The multiple choice answers were informed by misconceptions that have been identified in

the literature (see appendix A of (Sorva, 2012) for a summary of misconceptions). The set of

available choices includes the correct answer as well as responses drawn from the literature on

misconceptions around variable assignment. Option A would be chosen by a student that holds

the misconception that when one variable is assigned to another, the two values are linked and

that whatever happens to one, happens to the other (du Boulay, 1986). If a student incorrectly

thinks that a value gets passed from one variable to another (i.e. the variable does not retain its

value if another variable is set to it), then the student would choose option B. Option D would be

chosen by a student who thinks expressions do not get evaluated during assignment (Bayman &

Mayer, 1983; Sorva, 2008). Finally, option E would be chosen by students who think that

variables “remember” prior values (Doukakis, Grigoriadou, & Tsaganou, 2007; du Boulay,

1986). We also choose to write out “is equal to” instead of using an equals sign to be explicit

about the meaning of the choices. Throughout the assessment we tried to follow this approach as

much as possible to shed light on potential misconceptions conveyed or supported by the

different modalities. Including responses drawn from the misconceptions literature is intended to

help provide evidence for linking certain modalities with misconceptions about the concepts that

are being demonstrated. The full Commutative Assessment can be found in Appendix C. Basic

validity measures were run on the responses collected in the second year of the study and showed

the assessment to have an acceptable reliability score across all items (Cronbach’s α = .80).

 It is important to note that while the goal of this assessment is to understand the effect of

programming modality on learning, there are other factors complicating the issue, most notably,

differences in the language itself. For example, in Figure 3.2, the syntax and keywords used in

variable declaration and assignment are different between the two modalities, making the

 81
difference between the two forms of the question more than just a shift in modality. This is a

constant challenge with this work as a feature of the blocks-based modality is the ability to

support more conversational and readable commands (Weintrop & Wilensky, 2015a, 2015c).

 The design of the Commutative Assessments makes it possible to group the responses

along a number of dimensions that can yield insight into the relationship between modality,

tools, and emerging understanding. The dimensions include grouping responses by: condition

(what tools the students used), representation used in the question (graphical vs. textual), concept

(conditional logic, iterative logic, etc.), prior computer science experience), and various

combinations of those groupings. The details of this analysis are presented later in the Findings

chapters.

Qualitative Data Sources

 A number of qualitative data sources were gathered as part of this study to compliment

the quantitative data just discussed. These data sources included: classroom observations, semi-

structured student and teacher interviews outside of class, and the collection of non-

computational student generated artifacts.

 The major qualitative data source for this study is semi-structured clinical interviews with

students and the teacher. These interviews occurred outside of class time throughout the fifteen

weeks of the study. For the student interviews, the researcher sat alongside the student either

asking the student questions about their experiences in the class or having them think-aloud as

they work activities designed to illicit specific types of thinking around computer science

concepts. The goal of these interviews was to more deeply probe students’ emerging

understandings and identify if and how understandings are bound up with the representations

they are using in the classroom. Three rounds of interviews with students were conducted. Each

 82
set of interviews included students from all three conditions of the study. Three protocols and

sets of activities were designed, one for each wave of the interviews. The interview protocols can

be found in Appendix D The first wave of interviews began at the start of the course, the second

at the conclusion of the introductory tools portion of the study (weeks 5 and 6), and the third and

final wave occur during the last two weeks of the study, after students have been programming in

Java for 10 weeks. The interviews were recorded with screen capture software and the

computer’s on-board camera and microphone and serve as the primary data source for

understanding the relationship between the representation used and students’ emerging

understandings. A total of 35 interviews were conducted. Table 3.4 provides information on the

students that were interviewed.

Table 3.4. The 35 student interviews conducted during the study.

 Pre Interviews Mid Interviews Post Interviews
Blocks Condition 4 Interviews (2M, 2F) 4 Interviews (3M, 1F) 4 Interviews (3M, 1F)
Hybrid Condition 4 Interviews (4M) 3 Interviews (3M) 4 Interviews (4M)
Text Condition 4 Interviews (3M, 1F) 3 Interviews (2M, 1F) 5 Interviews (5M)

 Two teacher interviews were also conducted: once after the conclusion of the first phase,

and again at the end of the study. The teacher who taught all three sections of the class also

participated in the pilot study, so an additional three interviews were conducted the previous

year, which covered topics including background and personal pedagogy beliefs. The two

teacher interviews were conducted outside of class during the teachers’ preparation period. The

interviews asked the teacher to reflect on the tools being used in her classes and to compare these

classes to each other and to prior years when other introductory tools were used. We also

discussed specific assignments and students in each of the classes. The goal of these interviews

 83
was to draw on the teacher’s expertise to gain insight into how she perceived the students

were reacting to the different tools.

 Over the course of the study, the classrooms were regularly observed. Each observation

included field notes capturing what was happening during the course of the period. These

observations were focused on student questions, teacher strategies, and characteristics of the

class dynamic that are influenced by the programming environment. The final form of qualitative

data we collected was non-computational student created artifacts. In particular, the teacher has

students keep a journal over the course of the school year. In these journals the teacher has

students write pseudo-code, respond to class prompts about different computer science concepts,

and reflect on in-class activities. We gathered and recorded the content of these journals to serve

as a further data source for understanding the relationship between how students understand

concepts and how they compose solutions (in the form of pseudo-code) and the programming

modality they have used in class.

Computational Data Sources

 The third component of the data collection plan involved collecting snapshots of the

programs students wrote throughout their time participating in the 15-week study. In taking this

approach we developed computational data collection strategies and employed various

computational methods to identify trends in how students developed programs and the unique

characteristics of the programs they produced, looking for patterns across the three conditions.

 Conducting this analysis was dependent on the ability to record every iteration of every

program written by students participating in this study. Over the course of the 15-weeks, we

recorded a snapshot of a student’s program each time they compiled and/or ran it. As two

different environments (and thus languages) were used during the study (Pencil.cc and Java), two

 84
different sets of data collection tools were deployed. Both tools were built on top of the same

data collection infrastructure. We will begin with a brief description of our data collection and

storage backend before discussing our two unique logging instruments.

 To gather and store information on student authored programs, we instrumented both the

way learners compiled their Java programs as well as the Pencil.cc programming environment to

push data about student actions and student programs to a remote web-server. In both Java and

Pencil.cc, each logged event produced a call to a RESTful webservice that would handle the

inbound request and parse and store the data it received in a server-side database. The data

logging web service is build using the django framework and hosted on the Heroku platform.

The service has a number of endpoints that our learning environments push data to depending on

the learner-triggered event, which we will discuss in more detail in the next section. The

collected data was then exported from the databases using custom actions written for django’s

administrative interface, which makes it easy to manipulate, organize, and selectively export data

based on custom defined goals. To date, over 220,000 programming events have been logged

using this system. In our analysis section, we will provide more specifics about the frequency

and content of these logged events.

Pencil.cc Data Collection

 All three versions of our introductory tools were built on top of the Pencil Code

programming environment use the same data collection system. The customized version of

Pencil Code used for this study (called Pencil.cc) was instrumented to log data about the state of

the learners program at various times during the learners use of the tool. This was achieved by

issuing an asynchronous HTTP request in the background of the programming environment (the

browser) that posts the contents of the composed program along with other pertinent information

 85
to a server that we control. Table 3.5 describes the different events that trigged a log message

to be sent to our server. The last three events in Table 3.5 (all starting with the Block-drop

prefix) were not logged in all conditions; Block-drop-addition was logged for Blocks and Hybrid

while the last two were only logged in the Blocks condition. These provide additional insight

into programming patterns but were not included in the text condition of the study as there are no

blocks provided and thus, the events could not be triggered.

Table 3.5. The events that trigger a log event to be captured in Pencil.cc

Event Type How the Event is Triggered
New A new program is created
Load An existing program is opened
Save A program was saved by the user
Logout The user exits Pencil.cc
Run The user ran a program
Block-drop-addition A block is added to the program
Block-drop-deletion A block is removed from the program
Block-drop-floating A block is dropped outside of the current program

 Each log event included information about the user, the state of the environment and the

contents of the program. Table 3.6 describes the content of each entry in our Pencil.cc log event

table.

Table 3.6. The values stored for each logged event in the Pencil.cc environment.

Column Name Description of data being stored
StudentID A unique identifier for the author of the program
Assignment The assignment the student is working on
Hostname The url where the assignment can be found
ProjectName The student defined name of the current project
TimeStamp The time (to the millisecond) that the logging request was recorded
Condition The condition of the student the student is in (blocks, text, hybrid)
EditorMode If the program is rendered in blocks or text
PaletteVisi
ble If the blocks palette is visible to the user

EventType The cause of the event to be logged (see Table 3.5 for possible values)
Program The full contents of the program at the time of the log event

 86
FloatingBlo
cks The value of any floating blocks7 if any are present

ProjectHTML Any user defined HTML in the program
ProjectCSS Any user defined CSS in the program

Java Data Collection

 As with Pencil.cc, the learners’ Java programming environment was instrumented to log

the contents of each program the learner wrote, along with additional environmental and learner

data. Like with the introductory tools, this logging happens in the background of the environment

and is transparent to the learner and thus does not interfere with classroom practice or the

programming experience. Student programs are stored on the same remote web server as the

Pencil.cc logs, although in a different table as a slightly different set of data is collected. For the

Java portion of the study, students compile their programs using the command line javac call.

To record these compilation events we developed a tool called JavaSeer that replaces the

students’ javac command with a script that wraps the compilation call with additional logic to

capture the student program and compiler feedback. JavaSeer accomplishes this by creating an

alias to the javac command line call within the terminal on the computers the students use.

When students run javac, JavaSeer reads in the arguments the student passed to javac, which

includes the list of files the student intends on compiling. Inside JavaSeer, javac is called with

the same commands the student passed in, then records the output from javac and passes it

back to the user as output. Additionally, JavaSeer reads in the contents of the files being

compiled and sends them, along with the compilation output and other information to the

JavaSeer server via an HTTP request. This whole process is invisible to the student. This

7 Floating blocks are blocks that have been added to the canvas but are not connected to any part
of the program. This is the blocks-based equivalent to commenting out lines of a program, so
they are present but not executed.

 87
approach to logging student programs was informed by the Git Data Collection project and

the work built as part of that effort (Danielak, 2014). Table 3.7 describes the data that we collect

for each program via JavaSeer.

Table 3.7. Data recorded via JavaSeer, our automated data collection tool for command line
compilation.

Column Name Description of data being stored
StudentID A unique identifier for the author of the program

JavacCall The argument(s) passed to javac (which will be the list of
file names)

TimeStamp The time (to the millisecond) that the logging request was
recorded

JavaProgram The contents of the java files that are being complied
JavaCompilerOutput The compiler output from the call to javac

Data Analysis Approach

 A central component of this dissertation is the use of a mixed-methodological approach,

which uses findings from one methodology to support and validate the findings of another.

Having described the various types of data that were collected and the larger shape of the study,

this chapter continues with a high level description of the analytic approach for each type of data

collected. All of the methods pursued will be further discussed in more detail later in the findings

chapter.

Quantitative

 The design of the Commutative Assessment and the attitudinal surveys provide the ability

to speak to a number of the research questions posed in this dissertation. By looking at student

performance on different conceptual questions based on the modality they were answered in, we

advance our understanding of the relationship between modality and conceptual understanding.

By looking at differential performance on the assessment based on the introductory tool used by

the participant, we can start to understand how those modality support learning and

 88
understanding of different concepts. Additionally, because the surveys were given at three

distinct points, we can look for learning gains over the introductory tool period, as well as, over

the first ten weeks in Java. These content assessment findings are complemented by the

attitudinal surveys, which allow for shifts in perceptions, confidence, and attitudes towards

programming and computer science to be tracked. By looking across these two quantitative

sources, we can see correlations across the various dimensions of the study, including attitudes,

learning, and tool use.

 When calculating differences across conditions or modalities, an analysis of variance

(ANOVA) test is run, revealing if there is a statically significant difference among the groups.

When significance is identified by the ANOVA test, a Tukey HSD post-hoc test is run, which

reports the differences between each pair of groups that were included in the initial ANOVA test.

In cases where the test is looking within a group across time periods on Likert scale questions

(i.e. differences in a responses to a specific questions between the Pre and Mid surveys), a

Wilcoxon Signed Rank test is used. This test is appropriate given the ordinal nature of the Likert

responses and because it is a non-parametric test used to compare paired samples. As these data

are within the same population over time and there is no guarantee of an underlying normal

distribution, this test is a better fit than alternatives like a t-test (which is parametric) or a Mann-

Whitney U-test (which is appropriate but does not take advantage of the paired nature of the data

being analyzed). When comparing across time periods on continuous data sets (i.e. student

performances on the Commutative Assessment), paired t-tests are used given the structure of the

data and the fact that the same students participated at each point in time. Similarly, on the

content assessments, when looking for changes over time, an ANCOVA calculation is used,

which allows for the comparison across the three groups while also adding the ability to control

 89
from covariates. On these analyses, the covariate is students Pre scores when looking at Mid

differences and Mid scores when looking at Post outcomes. The reason for this is to better

attribute changes in outcomes to the tools, as opposed to prior differences.

Qualitative

 The primary qualitative data source of the study are the pre, mid, and post interviews

conducted with students from all three conditions and the free-response questions asked on the

attitudinal surveys. The analysis of these data follows an iterative approach, beginning with

content coding to understand the breadth of what is present and describe the various aspects of

the topic being discussed that are attended to. Once this is complete, we then do a second pass

over the interviews taking a grounded theory approach, employing both open and axial coding

(Strauss & Corbin, 1994). The goal of open coding is to gain a sense of the overall features of the

phenomenon under study, while axial coding is a more focused approach to coding qualitative

data as it is informed by theory and previous findings, trying to evaluate if expected patterns or

concepts are encountered. Given the relatively small number of interviews conducted (35) and

responses to interview questions (~80), codes that emerged from these analyses were applied by

a second coder to the complete dataset to calculate inter-rater reliability (IRR) measures. The

procedure for calculating IRR was to calculate the Cohen’s Kappa for each individual code then

average those values across the given dataset. If you read this, send me an email and I will buy

you a beer if/when we meet. You have earned it for making it this far into my too-long

dissertation! This approach was necessary as many of the codes applied where not mutually

exclusive, so Kappa could not be calculated for the full set of codes together. IRR scores are

reported in the text when the data is presented. After the data had been coded by the secondary

coder, the two researchers met to resolve any differences found and the coding manuals were

 90
updated to reflect the agreed upon resolutions. The coding manuals for every systematic

qualitative analysis conducted can be found in Appendix E.

Computational

 A growing body of research is looking at the use of big data for studying student learning

in increasingly nuanced and sophisticated ways (Baker & Yacef, 2009). In particular, this

approach is productive for open-ended, constructionist, learning experiences (Berland, Baker, &

Blikstein, 2014). Computational data analysis has been especially active in the domain of

computer science education as the incremental building of programs by students lends itself well

to the gathering of time series data and the imposing a relative uniformity to data making it

possible to computationally compare across large data sets (Jadud & Henriksen, 2009). Recent

work has looked at trends in how students write programs (specifically looking at frequency and

size of incremental updates), intermediate program states the students visit as they work toward

the final project, and the predictive nature of programming features on students’ final course

grades (Berland, Martin, Benton, Petrick Smith, & Davis, 2013; P Blikstein et al., 2014; Werner,

McDowell, & Denner, 2013). The strategy for collecting and analyzing student projects in this

dissertation follows this line of work.

 One of the questions this dissertation seeks to answer is how programming differs

between different modalities and if and how practices developed in one modality persist or fade

when moving to another. As the dissertation will collect data on students programming in

introductory graphical, hybrid, and textual introductory environments along with data from those

same students programming in a conventional text-based programming environment, the data set

will allow us to begin to answer these questions. The analytic approach that used in this work is

similar to the approach used in Blikstein et al. (2014). The contribution to this approach is the

 91
inclusion of three different modalities and two programming languages that grant the ability

to look across modality and language to compare various aspects of resulting programs. In

particular, analyses of the content of programs, the nature of how they were composed, and

meta-information about the programs (like frequency complications) will all be included in our

computational analysis. A more detailed account of the computational methodologies employed

will be discussed in the findings section.

Setting and Participants

 In this section we present information about the setting of the study and information

about the various participants involved.

School information

 This study was conducted at a large, urban, public high school in a Midwestern city,

serving almost 4,000 students. The school is a selective enrollment institution, meaning students

have to take an exam and qualify to attend. In this school district, students are selected based on

their performance on the admissions test relative to other students from their school (as opposed

to all other applicants). As a result, students attend this school from across the city and there is an

equal representation of students from under-resourced middle schools and from schools in more

affluent parts of the city. The student body is relatively diverse 44% Hispanic students, 33%

White, 10% Asian, 9% Black, and 4% multiracial/other8. A majority of the students in the school

(58.6%) come from economically disadvantaged households, with the student body also

8 These numbers are reported annually by the district. Similar breakdowns for the study
participants are given later in this section.

 92
including a small number of second language learners (0.6%) and diverse learners9 (4.5%).

Being a selective enrollment school, students are academically high achieving; reporting an

average growth in student performance on the ACT in the 66th percentile national and a average

ACT scores that was in the 95th percentile nationally. Ninety-five percent of freshmen at the

school are on track to graduate at the end of their first year and reports 86.1% of graduates

continued on to college.

 The school was selected for a number of reasons. First and foremost is the fact that

school has a well established and well supported computer science department. This had a

number of beneficial aspects with respect to the study including the existence of three sections of

the same class for the three-condition experimental design, sufficient technological capabilities

to conduct the study, exceptional teachers willing to take on the challenges the accompanied

teaching a class in the study, and a faculty and administration invested in this work and thus

willing to commit class time and teacher resources to the project. The administration in this

school has shown a great deal of support both for computer science education and for pursuing

innovative educational programs making it especially well suited as a research site for this work.

Second, an important aspect of the project was working with a diverse student population,

including students from backgrounds that have not historically excelled in computer science,

which meant working in a diverse, urban setting. Finally, the faculty of the computer science

department at the school are active in the local computer science teachers association (CSTA)

chapter and national educator-oriented computer science education research communities, thus

providing an easy way to develop a relationship with the researchers as well as being well

9 The diverse learners designation is often referred to as special education students or
differentially-abled students.

 93
connected and well informed with respect to the latest trends, technologies, and curricula in

the computer science education space.

Class and Classroom Information

 The experiment was conducted in an existing Introduction to Programming course.

Historically, the class spent the entire year teaching students the Java programming language.

The course did not follow a specific published curriculum, but instead was a combination of

materials designed by the teachers and following the structure provided by the course textbook,

Java Concept, Early Objects (Horstmann, 2012). In participating in the study, the class schedule

was shifted back five weeks to allow the classes to go through the five-week introductory

curriculum before moving to Java. The class is an elective and open to students from all four

years of high school.

 The classroom the study was conducted in was a recently renovated space designed to

have an open flooring plan and a collaborative studio feel. Each class had around 30 students and

each student was assigned a laptop computer which they used everyday for the duration of the

study. Students sat in individual desks that were on wheels, that allowing them to move their

desks around the room. As such, there were no assigned seats, no fixed seating arrangement, and

students were given freedom to sit where they wanted. Most instruction was project based, with

the teacher doing some lecturing from the front of the class using an interactive white board to

display programs and lead instruction. Figure 3.3 is a picture of the classroom in which the study

was conducted.

 94

Figure 3.3. The classroom in which the study was conducted.

Teacher Participant Information

 The design of the study put the researcher in an observer role and relied on the course

teacher to lead all instruction, including during the experimental portion of the course. The same

teacher taught all three sections of the course, allowing us to control for teacher effects. The

teacher holds an undergraduate degree in technical education and corporate training. The year

she participated in the study was her eighth year of teaching (third at this school). Along with the

Introduction to Programming course, she has also taught Exploring Computer Science, AP

Computer Science, Android Application Development, and Web Development. She was also one

of two teachers that participated in the pilot study for this work, so was familiar with both the

goals of the project as well as the high level course and tool design before agreeing to participate.

The curriculum taught in the class was largely designed by the lead researcher but the lead

teacher did contribute ideas, lessons, and customize the activities while teaching them.

 95
Student Participant Information

 The computer science course used for the study is an elective class but historically has

attracted students from a variety of racial background and been taken by both male and female

students. A total of 90 students participated in the study. The self reported racial breakdown of

the participants was: 41% White, 27% Hispanic, 11% Asian, 11% Multiracial, and 10% Black.

Relative to the larger student body, White students were overrepresented and Hispanic students

were slightly underrepresented, with the other racial groups roughly matching the larger school

demographics. The three classes in the study were comprised of 15 female students and 75 male

students. This gender disparity is problematic, but as recruitment for the courses was out of the

control of the researchers, there was little that could be done to address this10. Of the students

participating in the study, almost half (47%) speak a language other than English in their

households. Throughout this dissertation, where vignettes are presented, details about the

participants will be shared, otherwise, all data reflects the full set of participants in this study.

 At the outset of the study a pre survey was given to understand students existing

computer science knowledge, their prior computing experience, and to gain insight into the

motivations and goals of the students and why they chose to enroll in an introductory

programming class. An analysis of early responses shows the large role the computing plays in

the lives of learners. Figure 3.4 shows student responses to the prompt: How much time do you

spend on a computer at home each day? The fact that this chart skews towards students spending

more time versus less on computers outside of school (only 10 of the 87 respondents use a

10 It is important to note that this gender disparity is an issue the computer science department
and the school administration are working to address through a number of initiatives.

 96
computer for less than 1 hours a day outside of school), speaks the relatively large role of

computation in their lives and their comfort with computers.

Figure 3.4. Time spent on a computer outside of school.

 A similar predisposition and prior experience with programming can also be seen in the

set of participants. Of the 88 students that filled out the pre attitudinal survey, just under half of

the students (40) responded saying they had some prior computer science experience, ranging

from taking a non-programming oriented introductory computer science class (30 students), to

spending their free time over the summer learning a trendy web application framework (1

student), with only 17 of the 89 respondents saying they had never used any programming

language before (including languages like HTML and Scratch). Thirty-two students reported

some experience with a text-based programming language, with that number growing to 63 by

including HTML, CSS and JavaScript (which was a single category). Students were also asked if

they knew any professional programmers, of the 88 respondents, just under one-third of the

students (29) knew a programmer personally, often a member of their family. This speaks to the

number of first generation programmers in this learning community.

0	

5	

10	

15	

20	

25	

30	

35	

I	don't	use	a	
computer	

Less	than	1	
hour	

Between	1	
and	2	hours	

Between	2	
and	3	hours	

More	than	3	
hours	

N
um

be
r	o

f	S
tu
de

nt
s	

Daily	Time	Spent	on	a	Computer	
Outside	of	School	

 97
To get a sense of students initial motivations for taking the course, students were

asked the following open-ended question on the pre-survey: Why are you taking this course? A

coding scheme was developed based on student responses to form a larger categorization to

accurately describe students’ motivations for taking the course. Five major reasons were

identified from the data, which are described in Table 3.8.

Table 3.8. Student responses to why they decided to enroll in the class.

Code Description
Personal &
Enjoyment

Response alludes to enjoyment (I want to take it), specific creative or
personal goals (I want to make video games) or enjoyment (It seems
fun/I like computer science)

Learn to
Program

Response speaks specifically to learning to program being the goal
itself (I want to learn to program)

Future
Job/Major

Response specifically refers to getting a job or being able to pursue a
specific career or major in university

Broadly Useful Response alludes to the broad applicability of computer science
(Computer science opens a lot of doors)

General
Interest

Responses suggest a general interest in computers - but not a specific
reference to wanting to learn to program

As students could write as much or little as they wanted, responses could be coded for

multiple reasons. For example, one student responded: “I am taking the course because it is a

good skill to learn and I may want to get a job involving programming in the future.” This

response was coded for both Future Job/Major and Broadly Useful. Figure 3.5 shows the result

from coding the full set of student responses. Unsurprisingly, given the course is called

Introduction to Programming, the desire to learn to program was the most frequently cited reason

for taking the class. Slightly more surprising is the fact that more students saw computer science

as broadly useful than saw the course as a stepping-stone towards a specific job or pursuing a

degree in computer science. The final thing important to point out in this data is the prevalence

of student taking the course because of their enjoyment of programming or desire to learn to

 98
program for personal reasons (like making video games, which was cited by four students).

Other reasons students gave for enrolling in the class include things like them wanting a

challenge, their needed to add one more class in their schedule, or to try something new.

Figure 3.5. Student responses for why they enrolled in the course.

 These free-response reactions given were echoed in the pre-interviews conducted at the

outset of the study. For example, when asked why they were taking the course, students said

things like: "I think it will be helpful for college and some things I was looking into said that, to

get in, it'd be helpful to get some CS background" and “I like learning things that could help me

later, like maybe with a job that would use some of this stuff”. The responses weren’t always so

grounded in specifics, for example, another students made the general comment “Computers are

becoming the future, I wanted to take at least one computer course before going to college and I

figured programming was a decent one.” The opening of this quote nicely captures how many

students viewed this course and the importance of computers, and technology more broadly, in

their futures.

0%	
5%	
10%	
15%	
20%	
25%	
30%	
35%	
40%	
45%	
50%	

Personal	&	
Enjoyment	

Learn	to	
Program	

Future	Job/
Major	

Broadly	
Useful	

General	
Interest	

Other	

Pe
rc
en

t	o
f	S

tu
de

nt
	

Reason(s)	for	Taking	the	Course	

 99
 This chapter presented the various dimensions of the design of the study, including

the settings in which it took place, the materials used, the data sources and assessment

instruments, and details about the participants of the study. The one component of the study that

was not given adequate description is the focus of the next chapter: the introductory

programming environments that are at the heart of this dissertation.

 100
4. Design

 At the heart of this dissertation lies the design of introductory programming environments

and an investigation into the impact of modality on novice programmers. The two iterations of

this study relied on two different programming environments, with the second being informed by

the design of, and findings from, the first. This chapter presents the two programming

environments: Snappier! and Pencil.cc. Each environment is discussed with respect to the

environment upon which it was based (Snap! in the case of Snappier! and Pencil Code for

Pencil.cc), as well as the various features that were added to it in order to create the three

conditions used for the studies. As Snappier! was used in the first year of the study, findings

from that year are briefly reported with a focus on aspects of the environment that informed

designed aspects of Pencil.cc. Limitations and potential future extensions for each environment

are also discussed. But first, the chapter begins by laying the theoretical groundwork for our

conceptualization of modality upon which this dissertation is built.

Modality

 Before diving into the environments and their designs, it is important to be explicit about

what is meant by the term modality. Given a semantics, a modality is a way of composing within

that semantics. In this way, modality is not a characteristic of the representation alone, but also

captures the relationship between the representation and how one uses it. In this way, a modality

can be thought of as similar to the notion of affordance (Gibson, 1986; D. A Norman, 1990) in

that it captures a characteristic of the interaction between an actor and the thing being acted

upon. A named modality (like text-based or blocks-based) is a label given to the set of

affordances provided by a given representation. Thus, it is possible for different representations

 101
to be of the same modality (like Java and C++ both being text-based modality) or the same

representation to support different modalities (like Pencil Code providing both a text-based and

blocks-based modalities). While modalities are characteristics of representational systems, the

environment in which the representation is situated also shapes the modality. For example,

writing a Java program in a basic text editor is different than writing a Java program in an

Integrated Development Environment designed for Java, which can also include code completion

features, predefined code templates, code refactoring tools, and code navigation options. While

the underlying representation is shared (both text-based Java code), the way the user interacts

with the representation and the set of possible operations that can be executed differ.

Colloquially, the term modality is often used to describe the representation itself (i.e. “the

blocks-based modality”). This usage is consistent with the previous definition in so much as it

serves as a proxy for the more nuanced and robust articulation of what modality means given

above.

 This dissertation is primarily concerned with two programming modalities, blocks-based

programming and basic text-based programming11. The basic text-based modality allows

character-by-character interactions through the use of a keyboard, while the blocks-based

modality provides a drag-and-drop form of composition. These two modalities can be seen in

Figure 1.1 and will be discussed in much greater detail throughout this chapter. While text-based

programming is most common programming modality and blocks-based programming is

becoming increasingly popular, they are but two of a larger set of programming modalities.

11 The qualifier “basic” is added here to refer to a text-based modality that does not include
advanced coding interactions like autocomplete or code refactoring. The text-based modality
referred to throughout this manuscript requires that every character be manually entered.

 102
Looking across the history of computer science we can see a diversity of other programming

modalities. Early programming with punch cards provides one example of a different modality

(Figure 4.1a). In this form of programming, the author wrote instructions by using tools to

physically punch holes in paper cards for the computer to read. The programming-by-

demonstration paradigm is another alternative modality (D. C. Smith, Cypher, & Tesler, 2001).

In environments that use this approach, such as KidSim (later renamed Cocoa then Creator) (D.

C. Smith et al., 1994) and Agentsheets (Repenning et al., 2000), users program instructions by

defining rules that are created by acting out the desired behavior, in this way programs are

authored without interacting with an underlying textual grammar (Figure 4.1b). There are also

more recent examples of new programming modalities. For example, Horn et al.’s (2013)

computational literacy sticker books allow children to write programs by placing stickers in a

specific order (Figure 4.1c). A second example of a recently emerging programming modality is

the Ozobot (http://ozobot.com), which is a robot that can be programmed by drawing colored

lines on a sheet of paper. The robot can either follow the pen-trails defined, or can roll over a

sequence of different colored pen trails and interpret the colors as a set of instructions (Figure

4.1d).

(a) (b) (c) (d)

Figure 4.1. Four examples of programming modalities beyond blocks-based and text-based: (a)
punch cards, (b) programming by demonstration, (c) computational literacy sticker books, and
(d) path-following.

Year One – Snappier!

 103
 Having laid the theoretical groundwork for thinking about modality, we move on to

presenting the two sets of programming environments used in this dissertation. The three

environments for the first year of the study were all derived from the Snap! programming

environment (Harvey & Mönig, 2010). Snap! is a JavaScript-based implementation of a blocks-

based programming language that can run in any modern web browser. Programs in Snap!, like

other graphical blocks-based programming environments (such as Scratch and Alice), center

around controlling on-screen avatars, called sprites, as they move around a stage. Programming

in these environments largely entails giving behavior to sets of interacting sprites to create

animations, games, and stories. The Snap! user interface (Figure 4.2) is broken down into five

main sections: the Palette where language commands are organized, the Scripting Area where

programs are composed, the Stage where programs are visually carried out, the Sprite Corral

where the available set of sprites are displayed, and the Tool Bar which provides menus for

additional capabilities (like saving and loading programs).

Figure 4.2. The Snap! interface with sections labeled.

The Three Versions of Snappier!

 104
 The Snappier! environment was built on top of the base Snap! functionality, thus has

the same visual execution environment and, as much as possible, shares language semantics,

behavioral properties, and design aesthetics with Snap!. This means in Snappier! programs were

visually executed on the Stage and largely centered around defining behaviors for sprites.

Snappier! was designed to introduce text-based programming aspects into an otherwise

completely blocks-based interface. To accomplish this, Snappier! added a mapping from each

block in the Snap! palette to an equivalent and valid JavaScript call. This mapping was

accomplished using Snap!’s Code Mapping capability, which allows the user to

programmatically associate a block with a piece of code. For Snappier!, a full set of JavaScript

mappings were defined and the user interface was restricted to prevent the user from overwriting

these mappings. To make the mapping more linguistically direct, a series of helper functions

were written to introduce more legible commands. Table 4.1 shows a subset of the mappings

between the Snap! blocks and the functional JavaScript equivalent.

Table 4.1. A subset of the mappings between Snap! blocks and the JavaScript equivalent12.

Snap! Block JavaScript Equivalent

12 In both columns, the images shown are taken directly from the Snappier! environment.

 105

 This mapping served as the main addition to the Snap! codebase, along with supporting

functionality that enabled learners to view, edit, and run code written in JavaScript. Using this

newly added functionality, three versions of Snappier! were created. The first version of

Snappier! did not expose any of the new text-based functionality, making it equivalent to the

Snap! environment; this version constituted the graphical condition of Snappier!. The second

version of Snappier! gave the user the ability to right click on any blocks or script and see the

JavaScript equivalent of the blocks-based program that had been written. This was called the

Read-Only version of Snappier!. Figure 4.3 shows the interface for the Read-Only condition as

well as a short program that can be viewed by the user. It is important to note that, in this version

of Snappier!, it was not possible for the user to write any JavaScript.

(a) (b)

Figure 4.3. The context menu that users could use to open the JavaScript Viewer (a) and a
picture showing the Snappier! environment with the JavaScript Viewer open (b).

 The third version of Snappier! included the ability for the user to right-click and view the

JavaScript behind any block or script and added the ability for the user to write their own

JavaScript into new blocks. This was called the Read-Write version of Snappier! To support the

user in writing new JavaScript, the environment was modified so that when a user defined a new

 106
block (akin to creating a new function in a conventional programming language), Snappier!

presents the user with a code editing window (called the JavaScript Editor) for writing their own

JavaScript. This is in contrast to defining the new block’s behavior using blocks, as would

normally be the case. The JavaScript Editor and Viewer is an embedded instance of the

CodeMirror library, which provides is a JavaScript-based code editor that supports various code

editing features including basic error detection, syntax highlighting, and auto-formatting. Once

the user was done writing the new JavaScript code, the block was saved and could then be

incorporated into a script alongside any other block. When the execution thread came across a

custom defined JavaScript block, the JavaScript inside the block would execute. In this way,

users would write JavaScript code inside the blocks-based environment. Inside the JavaScript

editor, users would have access to arguments that were passed in as well as globally scoped

objects in the execution space. Figure 4.4 showing a picture of what it looks like to define your

own custom block in Snappier!

(a) (b)

Figure 4.4. The Block Editor that allows the user to define the name and arguments of the new
blocks (a) and the JavaScript Editor where the behavior of the block is defined (b).

 These two modes of Snappier! (Read-Only and Read-Write), along with the default

Graphical mode, constituted the three conditions used in the first iteration of the study. The next

section of this chapter briefly reports on some of the findings from the pilot study, focusing

 107
specifically on the findings that informed the design of the programming tools in the second

iteration of the study.

Findings from Year One with Snappier!

 One of the analyses conducted on the data collected in the first year sought to understand

how students perceived the blocks-based programming modality. Do they find it easy to use? If

so, what do they attributed that ease-of-use to? What, if any, drawbacks do they see with respect

to using blocks-based programming tools in a high school computer science class? These

findings have been published elsewhere (Weintrop & Wilensky, 2015b), but are recounted below

as the outcomes from this analysis informed the design of the hybrid environment used in the

second year of the study. For an extended discussion of these findings and methodological

details, please refer to the previously published paper.

Ease-of-Use

 The first research question pursued was to understand if students thought blocks-based

programming was easier than text-based programming, and if so why. To answer this question,

data from the surveys administered at the midpoint and conclusion were analyzed. The surveys

asked students to compare Snappier! with Java (either based on experience or expectation), with

questions specifically asking what they viewed as the major difference between the two. The

responses were then analyzed, identifying which answers attended to ease-of-use as contributing

to the difference between Snappier! and Java. Of the 84 responses collected, more than half of

students (58%) included ease-of-use as a major difference between the graphical and text-based

environments. Table 4.2 shows the outcome of the coding of the responses that attended to ease-

 108
of-use as a difference. The subscript numbers in Table 4.2 show the breakdown by the three

Snappier! conditions (Graphical, Read-Only, Read-Write).

Table 4.2. Student responses comparing Java to Snappier! - coded for ease-of-use of the
environment.

Perception Count (Graph/Read-only/Read-write)
Text-based Programming is Easier 4 (0/1/3)
Blocks-based Programming is Easier 42 (14/15/13)
Comparable Difficulty 2 (0/1/1)
Did not attend to Difficulty 41 (13/13/14)

 In this analysis, care was taken to only include responses that clearly attended to a

difference in difficulty between the two environments. For example, the response “[In Java]

there are no blocks to help out, it is basically done from scratch” was coded as attending to ease-

of-use, since the blocks “help out”, while the response: “Java is more writing as if it was a

language, while Snap! you use logic to put blocks together” was not coded as attending to ease-

of-use because the student did not make it clear that this difference made one environment easier

than the other. While many responses required some interpretation, others were very clear on

which environment they found easier, giving responses like: “Learning Java is more complicated

than Snap!” and “Java is much easier for me than Snap!” Additionally, two students attended to

ease-of-use, but specifically said the two modalities were comparable: “one is hard and the other

is equally as hard.” These data show that students found the blocks-based programming

approach of Snappier! to be easier than Java, thus supporting the general view of blocks-based

tools being easier for novice programmers.

Reasons for Ease-of-Use

 Having established that students perceive blocks-based interfaces as easier than text-

based programming tools, the follow-up analysis sought to understand what features of blocks-

 109
based tools contribute to this perception. The reason for pursuing this question was to distill

design principles for future hybrid tools. To answer this question, a first analysis was conducted

using the pre and mid interviews to see what students initial impressions were of blocks-based

interfaces compared to text-based alternatives. A secondary analysis to supplement these first

findings was conducted using the short answer responses from the post survey. The emphasis of

this analysis was on how and when students attended to features of the blocks-based modality

contributing to its ease-of-use.

 The first aspect of the blocks-based tools that students identified as helpful was the

descriptive, easy-to-read labels on the blocks. “Well, I mean, if you can read it…for humans this

looks better, it's easier to understand.” Despite its looking less like a text editor when compared

with the text-based code, a number of students viewed the blocks-based representation as closer

to English than its text-based counterpart. “With blocks, it's in English, it's like pretty, like, more

easier to understand and read,” a second student highlighted this difference, saying: “Java is not

in English it's in Java language, and the blocks are in English, it's easier to understand.” A third

student explained: “[the blocks] are basically a translation of what [the JavaScript] is doing, in, I

guess, English for lack of better words. It is describing what [the JavaScript] is doing, but it's

describing it in an English form...like a conversion.”

 The second feature students identified that makes blocks-based programming easy is the

visual nature of the blocks and the graphical cues that each block provides for how and where

they can be used. Four of the nine students interviewed explicitly mentioned the shape of the

blocks as being useful. For example, when an eighth grade student was asked why some blocks

have rounded edges and others have diamond shaped edges, she explained that it was so “the

user knows that…they have a limited choice so that you don't make the mistake, because if all of

 110
[the blocks] were the same, it might not work. If [the block is] rounded or diagonal, they'll

know the difference; they'll know that you can't put [a diamond block] in [an oval slot], it's like a

puzzle.” A second student echoed this fact when asked how he knew that Boolean blocks could

be used with control structure blocks and numbers and that mathematical operators worked with

motion blocks he explained: “it’s because of their outline; [the Boolean blocks shape] is the

same as [the control blocks inputs] and then in motion, the [oval input] is the same as [the

mathematical blocks].” The shape was identified as being useful to see how blocks fit inside each

other, as well as how sequences of blocks could be built, which was helpful for making sense of

the resulting behavior. “When [the blocks] are attached to each other, you know that the first one

is going to affect the ones underneath it…everything is connected and it's easier to understand

what is going on…I guess it's more intuitive too, because you can see how they all connect.”

Students said that these shape cues helped not only to see where blocks could be used, but also

the larger idea of the importance of the sequence of commands, “[the environment] teaches you

that order is important.”

 A third advantage identified by students was how the act of composing a program was

easier with blocks. This is in part due to the shape of the blocks discussed above, but also a

product of a number of other features of the blocks-based modality. The first is that the act of

dragging-and-dropping commands is easier and less error prone than having to type in

commands character-by-character: “If you type it, with like one word or one period or one

something that's wrong it's going to mess everything up…it’s just harder to write with the

codes.” Another student put it slightly differently saying: “I like visualizing things more so with

Snap!; it's a lot easier than having to type everything in,” The student continued by saying how

with text-based programing “you have to be pretty precise with your punctuation, you have to

 111
type everything in.” A third student succinctly put it, with blocks “you don’t end up making

as much mistakes.” Along with the ease of composing valid programs, a number of students

highlight how blocks make it easier to tinker with a program. “You get to play around with

[blocks]…because if you do it with writing, you like, have to erase everything or like start all

over. It's not as easy to change and make new things. With blocks, you can just drag them and

change what it's going to do.” This benefit can be seen when watching students compose

programs, often taking a block or sets of blocks and putting them off to the side while trying new

blocks in their script, only to ultimately reintroduce the removed blocks back into the script.

 The final feature of blocks-based programming that emerged from the interviews was

identified by four of the nine students and stems from the ease of finding blocks and

understanding what they do through their organization within the programming environment.

More specifically, how the blocks themselves alleviate the memorization that is required in text-

based programming. “[The blocks] kind of jog your memory, so you can see something and be

like 'oh, I remember how to do that now', but with [text-based programming] you don't really

have anything there to help you remember how to code something.” As a second student put it:

“[In JavaScript] you need to like, know all the code words to draw something. Let's say you want

to draw something, you need to type in a certain word to do that when in scratch you could just

like, find the pen down block13 or something.” This last point is critical; blocks-based

environments provide an easy and organized way to browse all the available blocks, making it

possible to use the blocks themselves as a source of ideas, as one student put it: “everything is

here that you can do.” Another student focused on how easy it was to browse the available set of

13 The pen down block is a block that asks the sprite to leave a trail behind it as it moves.

 112
blocks as being a key reason blocks-based programming was easier, saying “it's just because

of the blocks and how they're separated into categories…so it's just much simpler to find the

blocks and put them in to the pane.” The utility of the organization and ease of browsing of the

blocks was evident throughout the interviews. For example, during an interview with a grade ten

student, when asked if he could draw a square on the screen, he successfully did so, but relied on

the forever block in his program. When asked how he would change his program so it would

be possible to draw a second square next to the first, he opened, the Control category where

looping blocks were stored, read through the blocks, and said “I’m not really sure, I think it's in

the tab somewhere though,” showing how the organization of the blocks within the environment

can support novices in constructing programs.

 After analyzing the interviews, two questions from the mid and post survey were coded

for additional sources of ease-of-use. On the mid-study survey the question: “The thing that will

be the most different about programming in Java compared to programming in Snap! is” was

analyzed. Students answered this question after using Snap! for five weeks but before they had

started working in Java. Five weeks later, after students had been working in Java, the same

question was asked, shifting from the future tense to the present tense. A total of 85 students took

the mid-study survey with one fewer student taking the final survey, resulting in a total of 169

responses. These two sets of responses were coded and categorized by what students chose to

identify as the largest difference between the two modalities. Figure 4.5 shows student responses

to these questions grouped by the difference identified, the point-in-time, and the version of

Snappier! the respondents used.

 113

Figure 4.5. Student reported differences between Snappier! and Java given on the mid and post
surveys.
 This analysis revealed three new categories on top of the four themes that emerged during

the interviews about what makes blocks-based programming easier. The new categories include

the presence of prefabricated commands, the ease of trial-and-error programming in Snappier!,

and the different types of programs authored in Snappier! versus Java. Table 4.3 provides

examples of student responses for each category identified.

Table 4.3. Sample responses to the question having students compare Snappier! and Java

Category Example Responses

Ease of
Readability

“The programming language will no longer be translated to English
completely for a user to easily understand what is going on.”
“Snap! was easy to read.”

Visual
Layout

“There aren't going to be anymore colorful blocks.”
“I will have to code without having help from blocks.”

Ease of
Composition

“Actually having to type everything out instead of dragging and
dropping.”
“Java is all hand typed while in Snap! you grab and drop blocks.”

Browsability
“You will not have the blocks to aid you anymore and you will have to
memorize and learn the Java script for everything you are trying to do.”
“Not feeling as restricted and having to think more because you don't
have all the options in front of you.”

Support for
Trial & Error

“Java is not a trial-and-error program. If I make a mistake, then I must
fix it on my own. There is no guessing involved, and I think I will have a
really difficult time adapting to this process.”

 114
“In Java, I will not be able to test out blocks and incorporate them and
see if they work.”

Prefabricated
Commands

“There will be no set blocks that will provide you with pre made
functions.”
“You do everything on your own without the help of preset blocks for
the code, and you have to compile the file.”

Visual
Outcomes

“Java is more about having things such as text be displayed while Snap!
was more about making sprites do things such as move or complete a
goal etc.”

 The first new category identified was how Java was not as conducive to the use of trial-

and-error programming. This is particularly interesting as the trial-and-error approach is as

valuable in text-based programming as in blocks-based, and nothing about text-based

programming prevents the programmer from using the strategy. There are also potential

consequences to thinking trial-and-error is not possible or not acceptable in text-based

programming. Papert (1980) addresses this in his discussion of the difference between learners

perceiving errors as wrong versus errors as fixable and how the errors-as-fixable orientation is a

much more productive learning strategy. If the shift from blocks-based to text-based

programming also carries with it a shift from the trial-and-error strategy being supported to it

being viewed as impractical or even not possible, it is important that we as designers and

educators be aware of this misconception and try and address it.

 The second new category to emerge was the lack of pre-fabricated commands in text-

based programming. Whereas a single block can do something in Snappier!, like move a sprite

or ask a question, students thought that with text-based programming, the individual commands

were more fine-grained, requiring more commands to be used to accomplish comparable

behavior. While this is not necessarily true when calling APIs or other pre-defined functions, this

reported difference highlights the perceived contrast in the size of atomic block commands and

text-based language primitives. The final new category captures students identifying the visual

 115
enactment of programs as being a major difference between Java and Snappier! This

difference speaks less to the blocks versus textual nature of the languages themselves and more

to the larger environments in which the programming is occurring. Interestingly, this was only

identified by one student as a difference before the Java portion of the course, but was

highlighted by eight students at the end of the study.

Drawbacks to Blocks-based Tools

 Over the course of the ten-week pilot study, students identified a number of drawbacks to

blocks-based programming. The data presented below were drawn from the same data sources as

the previous section. Across this dataset, three drawbacks to programming in a block-based

environment were raised. The first drawback to blocks-based programming students cited was

that block-based programming was viewed as a less powerful programming technique compared

to the text-based alternative. Power in this case refers to the set of things that are possible with

the language. As one student said, with text-based programming “you can do a lot more.” A

second student reiterated this point, saying: “blocks are limiting, like you can't do everything you

can with Java, I guess. There is not a block for everything.” This comment is interesting as one

could rebut that there is not a command for everything in Java either. The student who made this

comment did not know how to program in Java, but nonetheless held the belief that the two

representations were not equally powerful or expressive. Another student made these same

points saying: “In Java you can make it more complex than something you make in Snap! or

Scratch.” She then continued: “I'm pretty sure there are going to be some things that are too big

to put in blocks...too complex.” This student viewed the blocks-based interface as a simplified

version of Java, saying: “I think what Snap! does it just takes the simpler things in Java and then

turns them into blocks.” This last statement is particularly interesting given that the available set

 116
of primitives provided by Snappier! is largely a superset of the keywords reserved in Java,

not the other way around. When asked why we chose to start the course with Snappier! before

moving to Java, a grade ten student responded: “to increase understanding of programming. I

mean like, Snap! is an awesome program, but there is only so much you can learn in it. But in

Java, you can like figure out how to do like, all the other stuff.” When pressed, the student was

unable to articulate what “other stuff” consisted of, but still, this reveals a perceived limitation of

what can be accomplished with blocks-based programming environments. In the post survey, one

student summed up the difference between Java and Snap! succinctly by saying of Java: “there

are more possibilities.”

 The second drawback brought up by a number of students was the time and number of

blocks it takes to compose a program in the blocks-based interface compared to the text-based

alternative. For example, when comparing Snap! to her previous experience making web pages, a

9th grade interviewee said: “I know you have the variables [in Snap!] that you can edit and mess

around with but sometimes that takes a lot of time, but HTML and CSS you can kind of get

creative and quickly just type something in to do something different”. This was reiterated by a

second student who said: “if you want a specific block and it's not there, you're going to have to

put a lot of blocks together to make it do what you want it to do, and I think with JavaScript, it's

just, like, one sentence I guess.” While it is unclear what is mean by a “sentence” in JavaScript,

this comment provides insight into how the student perceived text-based programming to be

advantageous. Text being more concise was identified as not only useful for composing

programs, but students also thought that the resulting shorter text-based programs could be easier

to understand. “It seems like when there is more blocks it's more confusing…when we did the

games, we did a lot of, like a whole bunch of blocks, it was really hard to find where mistakes

 117
were. [Text-based programming] seems easier when there is like a lot.” During the five-week

study, programs rarely exceeded the size of the screen the students were working on, but in this

case, the students experience with longer blocks-based programs lead to the recognition that

longer blocks-based programs can be difficult to manage.

 The third and final drawback identified about the use of blocks-based tools is potentially

the most damaging with respect to the effectiveness of their effectiveness when used in

introductory programming courses for older learners. Some of the students we interviewed

expressed concerns over the authenticity of blocks-based programming. Authenticity here refers

to how closely the programming tool and practices adhere to conventional, non-educational

programming contexts. As one student said: “Java is actual code, while Snap! is something

nobody will let you code in.” This same point was made by another student who said: “if we

actually want to program something, we wouldn't have blocks.” It is important to note that this

view was not universally held. As part of the interview protocol, students were asked if they

thought what they were doing in Snappier! constituted programming, to which every student

answered in the affirmative. A number of students recognized blocks-based programming as

being an introductory tool, giving responses like “I think [blocks-based programming] is the

same thing, just easier” and “I would say [blocks-based programming] is like beginners

programming”. This suggests that even when perceived as potentially inauthentic, students still

recognize the pedagogical utility of blocks-based tools. This drawback in particular seems like it

is more likely to affect older learners who are eager to develop skills that can be used beyond the

classroom, be it for a job or further computer science coursework.

Limitations of Snappier!

 118
 While Snappier! served as an informative first iteration, there are some limitations of

the environment with respect to answering the stated research questions. First and foremost being

that Snappier! lacked a full text condition. Even in the read-write condition, students did most of

their program authoring using a drag-and-drop interaction, with the text-programming being

limited to defining custom block behavior. Additionally, when students were doing the text-

based programming, they could (and often did) first write the script with the blocks, before

viewing the text version of that script and then copy/pasting that code into the custom block text-

editor. This further limited the amount of text-based programming and supported an approach to

text-based programming quite different than conventional text-based programming (defining the

program in blocks then copy/pasting versus writing in text from scratch).

 A second limitation of Snappier was that by restricting the text-based programming to be

inside new block definitions, there are some programming activities that rarely, or never

happened. For example, students in the text condition would never define new functions, since

they were already inside a new function definition. Similarly, the act of defining new event-

driven actions conceptually wouldn’t make sense inside of a function as the event definition

itself was already playing the role of defining how/when the code would be executed.

 A third limitation of the Snappier! condition is that the hybrid form of programming that

was supported still kept the two modalities separate. Yes, students were writing text programs in

a blocks-based environment, but the act of composing the text instructions was essentially no

different than using a normal text editor. This approach situates text-programming in a blocks-

based world, but is a very limited exploration of the potential hybrid space.

 A final limitation of Snappier! as an environment for answering the stated research

question is the nature of the types of programs that are best supported by the environment.

 119
Snappier!, following the lead set by Scratch and Alice, primarily supports writing programs

with graphical outcomes in the form of on-screen sprites moving around and interacting with

each other. This is quite different than the types of outputs normally supporting by textual

languages, which often have outputs that are textual or numerical (like printing words to the

screen or doing mathematical calculations). The lack of these types of outcomes is important as

students often blur the lines between the language, the modality, and the larger programming

environment in which the programing is situated (Weintrop & Wilensky, 2015b). This means

that comparing the textual programming of sprites moving around in the world to the textual

programming of number and text manipulations results in a larger gap than just the specifics of

the programming language. Despite this set of limitations, the Snappier! pilot study proved to be

a fruitful first iteration and lessons learned from the study helped inform he design of the

programming environment used in the second iteration of the study.

Year Two – Pencil.cc

 For the second year of the study, a new programming environment was developed.

Starting with the Pencil Code environment (Bau et al., 2015), Pencil.cc was created. Pencil.cc

defined three distinct modes of interaction: text only, blocks-only, and a hybrid blocks-text

interface. The three distinct versions of Pencil.cc will be discussed below, but first is a

description of Pencil Code. All of the aspects of the environment discussed in this section were

present for all three versions of Pencil.cc unless otherwise stated.

 Pencil Code is an online tool for learning to program. Its interface (Figure 4.6) is split

into two panes: on the left is a dual-modality programming editor that supports both visual

blocks and textual code, while the right side is a webpage that can visually run the program the

 120
learner creates. The dual modality feature was the primary reason Pencil Code was chosen as

the base environment for this study.

Figure 4.6. Pencil Code’s Interface with the coding area on the left and program output on the
right.
 Students can click a button (Figure 4.7b) and see their programs transition between the

blocks-based (Figure 4.7a) and text-based modality (Figure 4.7c). The two modalities are

completely isomorphic, meaning any program written in one modality can be rendered in the

other, and the user can freely move back and forth between the two modalities as they choose.

The ability for the user to shift between the two modalities was suppressed in Pencil.cc as part of

the study design (this will be further described in the sections that follow).

(a) (b) (c)

Figure 4.7. Pencil Code’s two modalities: (a) Blocks and (c) Text, with a button presented to the
user (b) that allows her to move back and forth between the two.

 121

 Pencil Code embeds all student work in the Web: every student project is actually

JavaScript on an HTML page, with an accessible URL that can be linked to, run, and embedded

on all modern browsers. Pencil Code is a "high ceiling" learning environment that it is careful to

avoid placing artificial barriers around the learner.

 Pencil Code as an environment supports a number of programming languages. For this

study, the basic language of choice was CoffeeScript. This was chosen as it is syntactically

lightweight and also sufficiently different from Java; thus students in the text condition will still

experience some transition difficulty when moving from Pencil.cc to Java in the sixth week of

the study. Pencil Code was designed to encourage two main types of programming activities. In

the spirit of the Logo language, traditional coding concepts such as loops, conditionals and

functions can be exercised by creating turtle graphics drawing programs starting from a single

line of code such as fd 100. At the same time, real-world applications can be created by

building webpages with HTML images, buttons, animation and music, that will appear no

different to a visitor to the page than any other website online. This means programs can be

written that output text or numbers onto the screen in a form that is akin to writing programs that

output characters in a terminal.

 Pencil Code differs from similar introductory coding environments in three main ways.

First, unlike offline programming tools such as Python, Java, C, or Alice, it is a fully cloud-based

online environment that does not tie the student to a specific device. The editor runs in a

browser, and students save edit, share, and publish their work online, incorporating the Web as a

resource. Second, unlike traditional learn-to-code online courses such as those offered by

Codecademy, it is designed to be welcoming to the timid beginner. Pencil Code draws design

 122
lessons from block-based environments and provides visual primitives that give concrete and

immediate feedback. Finally, unlike limited sandboxes such as Scratch, Snap! or code.org, it is

an open-ended high-ceiling environment that allows unrestricted use of CoffeeScript, jQuery,

and web resources. Collectively, these characteristics create a compelling introductory

programming environment while also supporting key features at the heart of this dissertation,

namely the ability to support both a fully textual and a fully graphical programming interface.

Pencil.cc adds a few additional features to the Pencil Code interface. The first, and most

prominent to the user, is the addition of the Quick Reference menu. When a user hovers over the

Quick Reference menu (Figure 4.8a), they are shown a series of topics related to programming in

Pencil Code, grouped in the same high level categories as the blocks (i.e. Move has Curves and

Speed options, Art has Colors and Pens). When a learner clicks on a menu option, an overlay

appears (Figure 4.8b) giving instructions on how to use that aspect of Pencil Code, including

examples that can be run. The Quick Reference was added specifically to provide embedded

scaffolds for the text-only condition, so those students wouldn’t be fully reliant on the teacher for

guidance.

(a) (b)

Figure 4.8. Pencil.cc’s Quick Reference feature.

 123
 Other added features to Pencil.cc include added instrumentation in support of data

collection as the learner interacts with the environment and the removal of the buttons that allow

the users to switch between modalities. This was added as part of the experimental design as

participants are only able to see and use one modality. The hybrid version of pencil code, which

is discussed in more detail in the next section, was also a new addition, although much of the

implementation work for that feature was done by developers at Code.org as part of their App

Lab environment. The final new feature to Pencil.cc was a login page (Figure 4.9) that was used

to ensure learners saw the correct version of the environment, as well as to serve as a place to put

other study-related materials like surveys and consent materials.

Figure 4.9. The Pencil.cc login page.

The Three Versions of Pencil.cc

 124
 The previous chapter laid out the three-condition experimental design used in this

study. These three conditions are based on the three versions of Pencil.cc used across the three

classes: blocks-only, text-only, and hybrid blocks/text.

Blocks-Only Pencil.cc

 As the name suggests, in the blocks-only version of Pencil.cc, students were only able to

view and compose programs in the blocks-based modality (Figure 4.7a). It is still possible to

click on a block and type commands into the editor (either as arguments, like how far you want

you turtle to move for a forward command, or by hitting return and starting to type, which

upon completion of your typing, the editor will parse into blocks). The blocks-only version of

Pencil.cc includes many of the features identified by learners in year one of the study, such as the

browsability of blocks in the palette and the ease of composition through the drag-and-drop

interface. It is also important to mention that, in the blocks-interface, users can hover over the

blocks to get a short description of their behavior thus providing additional in-editor scaffolds to

go along with the previously mentioned Quick Reference feature.

Text-Only Pencil.cc

 The text-only version of Pencil.cc had students exclusively use the text interface (Figure

4.7c) and, thus, never saw the blocks-based feature of the programming environment. In this

condition, students had to type all of their commands in manually and had to rely on the Quick

Reference for any embedded help with respect to the command available and the syntax for

them. The text editor does include syntax highlighting as well as basic compile-time error

checking (this took the form of a red X to the left of the line number when students typed invalid

commands). There has been some research on how novices parse compiler warning and error

 125
messages (Hartmann, MacDougall, Brandt, & Klemmer, 2010; Nienaltowski, Pedroni, &

Meyer, 2008), but Pencil Code does not follow these recommendation, instead using a relatively

standard approach to displaying error messages taken by many editors. While such additions

could be useful for Pencil Code’s text editor, it is beyond the scope of the proposed study.

Hybrid Blocks-Text Pencil.cc

 The third condition is a hybrid blocks/text interface that is a first attempt to answer the

third stated research question on the design space between blocks-based and text-based

introductory programming environments. The approach is to have learners still program using

the text editor while providing the blocks-palette. Figure 4.10 shows Pencil.cc’s hybrid interface.

(a) (b)

Figure 4.10. Pencil.cc’s hybrid blocks/text interface. The left image (a) shows how learners can
drag-drop blocks into the text editor; the right image (b) shows the results.

 This hybrid approach was informed by findings from the first year of the study. In asking

students to reflect on why Snappier! was easier-to-use than Java, high school students attended to

a number of aspects of the blocks-based interface that are preserved in this hybrid approach. This

 126
includes features such as browsability, drag-and-drop composition, and pre-fabricated

commands. Similarly, the conceptual grouping of commands and the ability to hover-over blocks

to see how there are used are other supports that have been identified as helping novice users. At

the same time, the text-editor interface tries to address some of the drawbacks identified by

learners in blocks-based tools, such as perceived inauthenticity and issues with blocks-based

environment being less powerful or slower than text-based alternatives. As will be discussed in

the findings chapters, users took advantage of the hybrid interface in a various ways, sometime

relying on the drag-and-drop approach, other times typing in instructions with the keyboard.

Limitations of Pencil.cc

 While the intention of the design of the three versions of Pencil.cc was to understand the

various affordances and drawbacks associated with blocks-based and text-based programming,

each of the three interfaces has limitations that narrow the scope of the claims that can be made

from this study.

Blocks-Only Pencil.cc Limitations

 A challenge of studying the affordances of blocks-based languages is the fact that there

are so many features of blocks-based tools that contribute to users successful interactions with

the tool (Weintrop & Wilensky, 2015a). While Pencil.cc captures many of those aspects (like the

drag-and-drop composition mechanism, and the visual representation of blocks), there are some

common features of blocks-based environments not captures by Pencil.cc. Figure 4.11 shows the

same script implemented in Snap! and Pencil.cc, demonstrating a number of these differences.

 127

(a) (b)

Figure 4.11. Renderings of the same script in Snap! and Pencil.cc.

 One difference between Pencil.cc and other blocks-based environments is that Pencil.cc

does not provide the same level of visual cues that other blocks-based tools do. For example, in

Snap!, predicates have a diamond shape and slots that expect predicates to match that shape,

while in Pencil.cc predicates have the same shape as numerical or string blocks. This same

difference exists with defining new functions and the shape the function call takes, and is

potentially problematic as this feature has been linked to supporting conceptual understanding of

function calls (Weintrop & Wilensky, 2015b). Snap! and Scratch also use a more diverse color

palette and take better advantage of the natural language capabilities of blocks. Due to the

isomorphic text-to-block relationship, Pencil.cc is constrained by the compiler in terms of how it

presents commands.

 A second difference between Pencil.cc and other tools is that in Pencil.cc, only a single

script executes while other tools offer the ability to execute scripts placed anywhere on the two

dimensional canvas, a feature found to be productive for learners (Weintrop & Wilensky,

2016b). This constrains the user to programming in a single, vertical dimensions, which is true of

text-based programming and some blocks-based tools (like Alice), but not true in other blocks-

based tools like Scratch or Snap!. This feature is a central mechanism in the event-based model

used by tools like Scratch, where “hat” blocks can be used to link up scripts with various events

like user inputs, sprite events, or broadcast messages.

 128
 A final limitation of the blocks interface is that it is still possible to compose

commands in text. If a user presses the return key when the cursor is inside one of the text slots,

a new blank block will appear where the user can type in a command that is parsed into a block

afterwards. While this is a powerful feature of the environment, it starts to blur the lines between

the fully blocks-based condition the study had intended and the hybrid block/text condition.

Hybrid Blocks/Text Pencil.cc Limitations

 While the hybrid mode of Pencil.cc brings together a number of productive aspects of the

blocks-based interface with the text-editor, there are some limitations to this mode that leave

room for improvement. One major drawback is that, once a command has been added to the

program (either by drag-and-drop or by typing), from that point forward it loses its blocks-based

affordances, and thus is seen as text and can no longer be drag-and-dropped the way blocks can

in fully blocks-based environments. This is a general feature of text-based editors and only

recently have new approaches been introduced to address this, with BlueJ 3’s frame-based editor

being a prominent example of this approach (Kölling et al., 2015).

 A second limitation of this hybrid implementation is that there are some design issues

that have yet to be completely ironed out. Notably, when a block is dragged out that does not

have an obvious default value (like the terms being compared in an if statement or the body of a

while loop), it is unclear how the editor should depict these empty ‘slots’. Pencil.cc’s solution

was to display two tic marks (``) in place of the empty slot, but this introduced confusion around

where arguments should go inside of these tic marks or if they should be replaced (which is the

correct behavior). This was a source of confusion for many learners and will be revisited in

future versions of this hybrid editor.

 129
 The final limitation of the hybrid interface is that there are many possible design

directions that can be pursued, with this design being but one of those. Other directions include

frame-based editing (Kölling et al., 2015), editors that allow users to move between different

modalities (Bau et al., 2015; Matsuzawa et al., 2015), or provide text-based inputs for blocks-

based editors (Mönig, Ohshima, & Maloney, 2015).

Text-Only Pencil.cc Limitations

 Just like with the blocks and hybrid interfaces, there are also limitations to the text-only

condition of this study. The first is that, while there are some basic complication and runtime

error supports in the form of red Xs in the margins and some user-friendly messages in the case

of runtime errors, the error handling left much to be desired relative to other more fully-featured

development environments. This is left as a possible direction for future improvements in the

text mode. A second drawback of the text condition is that the Quick Reference menu, which

provides the in-editor scaffolds for helping users learn what is possible and provides syntax

supports, did not have the exact same coverage as did the blocks palette. For example, the blocks

palette includes a Snippets category that provides short scripts to do basic things like have the

turtle follow the mouse, or are a keyboard listener to respond to user input. While all these things

can be implemented in the text mode, they were not included in the Quick Reference menu as a

block of code that could easily be copied and pasted into the editor in the same way that could be

done in the blocks or hybrid conditions.

 This chapter presented the various design aspects of the environments used in this

dissertation. Having laid out the research questions, reviewed relevant literature, and presented

the study and environments designs, the next chapter finally gets to the good stuff: the findings.

 130
5. Attitudes and Perceptions

 The first research question this dissertation is investigating is the comparative

affordances and drawbacks of the different programming modalities: Blocks, Text, and the

Hybrid blocks/text interface. This chapter focuses explicitly on the attitudinal and perceptual

differences across the three conditions (blocks-based, text-based, and hybrid blocks/text) in this

dissertation study. It begins with an analysis of students’ initial perceptions of the introductory

programming environment and the modalities used. The goal of this portion of the chapter is to

understand high school learners’ perceptions of the three modalities before and after they use

them. This includes a discussion of perceived design affordances and drawbacks of the three

modalities. An analysis of students’ perceptions of the different programming interfaces with

respect to authenticity, enjoyment, and usefulness is presented next, followed by an analysis of

the Pre, Mid, and Post attitudinal survey responses given. This section includes an analysis of

within-student shifts over time on Likert questions, trying to understand how confidence,

enjoyment, perceptions of programming, and interest in computer science change based on

modality. It also looks at comparative change between the three modalities. The chapter

concludes with a discussion of the attitudinal and perceptual findings presented. As a reminder

the three classes were taught by the same teacher, followed the same curriculum, spent the same

time-on-task, and had roughly the same number of students (30 students in the Blocks class, 31

in the Hybrid section, and 32 in Text condition).

Incoming Perceptions and Initial Reactions to Introductory Environments

This section looks at students’ incoming perceptions of modalities and what it means to

program. It begins by exploring students’ initial expectations for the class and the assumption of

 131
a text-based programming experience. It then reports findings into why students think the

classes chose to use the various modalities it did. In asking this question, we fill in another aspect

of student perceptions of different modalities as it relates to learning and pedagogy. Finally, this

section presents students reactions to learning to programming in a given modality; looking

across the three conditions to understand what students attend to based on different modalities.

During the first week of the study, four students from each condition were interviewed.

As part of this interview, students were shown the version of Pencil.cc they were going to be

using for the next five weeks. This sections presents data from these pre-interviews, revealing

students’ incoming perceptions of programming as well as their initial reactions to the modality

they would be using for the next five weeks of class.

Assumption of a Text-Driven Experience

 One thing that became clear early in the interviews was that students entered the study

perceiving programming as a text-based activity -- and that Pencil.cc was not exactly what they

had expected. This was true of students across all three conditions. For example, one student

from the Text condition said: “I watch a lot of CSI and Criminal Minds and I thought it would be

more characters and underscores and very intense coding, instead of just like making the turtle

move. But this is cool.” This gap between the initial perception of what the course would be like

and CoffeeScript, the language used in Pencil.cc, could also be seen from students in the Hybrid

condition: “[Pencil.cc] is a little different, I thought we'd mess more with brackets but I do like it

because it's helping me.” This comment is interesting because the Hybrid condition uses a text-

based editor, so this perceived difference is not due to any environmental factors, but instead due

to the choice of using the syntactically light CoffeeScript programming language, which does not

have brackets. Students in the Blocks condition picked up on this difference, and unsurprisingly

 132
cited the drag-and-drop feature as part of what contributed to the gap between what they

expected in the class and what they were doing: “I wasn't really thinking about dragging things

to make something”, when this student was asked what she did expect, she continued: “like

typing something to do something, but not having set things already there.”

It is important to note that not all students were surprised to see a non-text-only first

programming environment. As one student from the Hybrid condition said: “I knew we’d

probably start with something simple, like this or Scratch, because, from what I hear, we'd

probably start with one of these to get into the language first, so yeah, I figured it'd be something

relatively simple like this.” It is not too surprising that at least some students knew to expect an

introductory environment that incorporated visual component, in part due to the frequency of

prior computer science experience across the classes, and also due to the growth in popularity

and awareness of blocks-based programming environments like Scratch and Code.org’s Hour of

Code activities. From these quotes we see that students at the beginning of the school year

already have some set of expectations about what programming looks like and what to expect

with respect to language features (like brackets) and visual presentation/modality.

Why Use Non-Professional, Introductory Programming Environments

 In open coding students’ initial reactions to the use of Pencil.cc in an Introductory

programming course that teaches Java, two main themes emerged: that they thought that

introductory tools can lay the foundation upon which Java can build and that introductory

environments are easier and friendlier than their fully-featured professional counterparts. This

analysis includes students attending to features specific to modality as well as other, more

general, aspects of Pencil.cc and it’s use as a programming environment designed for beginners.

This broader lens is included to help gain a fuller understanding of the how modality is situated

 133
within the larger webbing (Noss & Hoyles, 1996) of the programming environment.

Additionally, this discussion is included in response to the challenges of isolating modality from

the larger programming context, which at times is possible, but in the eyes of the learner is often

blurred with the larger programming environment.

Laying a Foundation for Future Learning

One of the more frequently cited reasons for starting with an introductory environment

like Pencil.cc given by students across the three conditions was the ability for the environments

to lay an effective foundation for future learning. Numerous students verbalized this view, for

example, one student said: “it's a good foundation for us rookies to start. This is a beginners

class and this helps teach me the very basics.” In this view, students also cited how Pencil.cc

would prepare them for shifting to Java, for example students also said things like: "I think it’s

because it's easier to learn on something that is a little less advanced and more like, it's a good

start, then once we know the commands and everything, we can move on to Java” and

“[Pencil.cc] is kind of like practice, it gets you ready for [Java], because I'm pretty sure this is

way easier than what we're going to be doing later in the year, just getting us ready for what

we're going to be doing.” Another student said that Pencil.cc has the “basic structure to help you

learn other codes in the future, like c++.” With these quotes we see students recognizing the

temporary nature of the introductory environment and its use as laying a foundation for future

learning. In viewing introductory programming environments in this way, some students also

distinguished them as something different from the tools and languages they would later be

using. For example, another student said: “[Pencil.cc] could form the basis of programming, but

it's just basic stuff, not like professional or anything.” So even in praising the environment, this

 134
student saw a potential drawback with it in the form of its inauthenticity with respect to what

was viewed as “professional” programming.

The recognition of Pencil.cc serving as a launch pad for future learning shows some

sophistication on the part of the students in that they recognized similarities across languages and

that some concepts and practices are universal across programming languages. Likewise, the

different modalities did not interfere with students making this connection. This can be seen in

one student’s response from the Hybrid condition who responded to the question of why the

class was starting with this specific programming interface by saying “probably just to build up

those fundamental things, you got to know, like variables, that's always going to be in any

language or like, algorithms, you need that no matter what language you transition to. Just like

basic stuff, even though each language probably has it's own pros and cons, these are just stuff

that are always going to be a constant.”

There is also some evidence that the Hybrid condition further supported this perception

of laying the foundation but in a more accessible way. For example, one student, while looking

at the hybrid interface, responded to the question of why the class started with Pencil.cc by

saying “possibly so that kids can get a feel of the syntax and understand like how to put things

together, [it] helps me understand like how specific I should be, or how exactly what I want to

type.” The expression “get a feel for” and “put things together”, suggests that the learner sees the

relationship between the dragging-and-dropping that can happen in the hybrid interface and the

long-term goal of programming in an all text environment.

Ease and Friendliness

The second reason cited for the use of programming environments designed for novices

at the start of the year was due to the perception that it would provide an easier entry into the

 135
world of programming. When a student in the Blocks condition was asked if Pencil.cc was

what he expected, he responded: “I had no idea what to expect. This is definitely more, I'd say

this is friendlier, than what I expected it to be.” A number of factors are cited for this perceived

friendliness and ease-of-use. For example, one student in the Text condition attended to the

visual outcomes of Pencil.cc, saying “[Pencil.cc] is easier…it's more clear what is

happening…you get to see the immediate action of your code on the screen.” Another students in

the text condition echoed the importance of the immediate visual outcome: “you can see the

results immediately by pressing the play button.” As will be shown later in this chapter, visual

outcomes was a salient feature of the three versions of Pencil.cc used, but was cited far less

frequently than other features, including those related to modality.

Students in the graphical conditions keyed in on different features of the introductory

environment. For example, when a student in the Blocks condition was asked why we chose to

start with Pencil.cc, she responded:“[Pencil.cc] is easier, if you want to go forward, that's

already there for you, so you don't have to type it out. Everything is kind of already there, so you

just, guess and check sort of, so if something doesn't work out, you need to try something else, so

like if the number 100 doesn't work how you want it to, you could do like, 200.” When asked if

this same approach could be used in Java, she responded “yes, but maybe not as easy though.”

Here a number of aspects of the blocks modality she was looking at are cited as contributing to

the ease of use, including the pre-fabricated blocks and the ease of guess-and-check, two features

identified in year-one of the study that were intentionally retained in the Hybrid condition.

Students in conditions where the blocks palette was present also cited the visual and

graphical aspects of the blocks-based modality as contributing to the ease of getting started,

saying things like “it’s simple, easier to understand, maybe to get people engaged because it's

 136
colorful, and got the game aspect” and “You can just mouse over and it'll tell you what you

can do. You know the commands 'cause it's right there, for the most part.” Collectively, these

aspects echo the previous analysis in year one, where a variety of reasons were given for the use

of specially designed introductory environments.

Perceived Affordances and Limitations of Pencil.cc and the Three Modalities

 In the first year of the study, students were asked to compare the three versions of the

introductory programming environment used with the Java language. This question was asked at

the midpoint and conclusion of the study. The results of this analysis were presented in the

Chapter 4 and summarized in Figure 4.5. In the first year of the study, little attention in the

analysis was paid to differences between the three conditions (Graphical, Read-only, and Read-

write) due to the overall similarity between the three environments.

In the second iteration of the study, there was significantly more difference between the

Blocks, Text, and Hybrid conditions, making a side-by-side comparison by condition more

fruitful and relevant for the research questions being pursued in this dissertation. For the second

iteration of this analysis, student responses to open-ended survey questions were open coded

looking for students attending to various features of Penicl.cc. Figure 5.1 shows a summary of

student responses to the question: “The thing that will be the most different about programming

in Java compared to programming in Pencil.cc is.” It is important to remember that when

students were asked this question, the students will envision either the blocks-based, text-based,

or hybrid version of Pencil.cc based on the version they used for the first five weeks of the

school year. This was asked on the mid-survey, after students had spent five weeks working in

Pencil.cc, but had not yet used Java. The finalized coding manual used to code these responses,

along with an example of a response from each category can be found in Appendix E. The

 137
responses in this and the next figure were coded by two researchers. Cohen’s κ was run to

determine agreement and consistency of the application of these codes, and found there to be

agreement between the coders, κ = .80, all differences were resolved through discussion 14.

Figure 5.1. Student reported differences between Pencil.cc and Java at the midpoint of the study.

 There are a few interesting things that stand out in this chart. First is the difference in

features identified by the Blocks condition (blue columns) compared to the Text condition (red

columns), and how the Hybrid condition (purple columns) frequencies often landing between

them. Students in the Blocks condition identified the Visual Layout and the Ease of Composition

as the two most salient differences, with Browsability and Syntax sharing the position of third

most frequently cited differences. Students in the Text condition, on the other hand,

overwhelming identified Syntax as the most distinct difference, with In-editor Help being the

14 Note some of the Cohen’s κ’s that are reported in this dissertation are below the conventional
.80 threshold. This is due to the relative infrequency of some of the codes and the fact that not all
codes are mutually exclusive, thus providing smaller distribution of codes, which were then
aggregated together. Cohen’s κ is known to not handle skewed and sparse datasets particularly
well (Feinstein & Cicchetti, 1990), so the relatively low values are not viewed as problematic.

15	

12	

4	

1	 1	
2	

1	

6	

3	

0	
1	 1	

12	

4	

0	 0	 0	 0	

2	

16	

4	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

Visual	Layout	 Ease	of	
Composi:on	

Browsability	 Prefabricated	
Commands	

Visual	
Outcomes	

Syntax	 In-editor	Help	

Co
un

t	o
f	S

tu
de

nt
	R
es
po

ns
es
	

Student	Perceived	Differences	-	Mid	

Blocks	

Hybrid	

Text	

 138
second most oft-cited difference. The focus on syntax was particularly common among more

advanced students, as one student said in a later interview: “In my personal agenda i was

focusing on syntax, Making sure everything would work well and then I got to see how each code

works.” The fact that a student came in with a personal agenda to learn syntax speaks to where

his attention lay early in the course. No students in the Text condition cited either of the two

most popular differences from the Blocks condition. This serves as evidence for the salience of

modality in learners’ perceptions of introductory environments. The Hybrid condition, seeing

both the blocks palette and the text editor, cited both blocks-centric features (like the Ease of

Composition) and more text-centric differences (Syntax) in their responses, never identifying a

feature more frequently than either the Blocks or Text groups. Interestingly, no students in the

Hybrid condition cited Browsability as a major difference between Pencil.cc and Java, this is

surprising given that part of the motivation for the specific form of hybrid interface chosen was

based on the utility of the blocks palette to support browsing and relax the need for the user to

memorize the set of available commands. This does not mean that students did not use this

feature, as we can see some evidence of its utility in responses coded for other categories like In-

editor Help, but that the blocks palette provided other supports or was just not the most salient

difference. An example of non-Browsability support provided by the blocks palette can be seen

in this student response: “[Java] will not have blocks and captions that can help me identify my

codes and what errors I made in my program.” In this response, the student is attending to the

fact that she can hover the cursor over a block in the palette and get a brief description of what

the command does. In this way, she is highlighting an affordance of the blocks-palette that is not

related to the ability to browse the full set of commands available in the language.

 139
Returning to Figure 4.5 and comparing it to Figure 5.1, it is also interesting to note

the disappearance of two categories that were identified in the first year of the study: Ease of

Readability and Support for Trial & Error. The disappearance of the Readability category is not

that surprising given the semantics of Pencil.cc are taken from CoffeeScript, so do not have the

natural language feel that Snappier! had (e.g., the set x to 10 Snappier! command becomes

var x = 10 in Penci.cc). The fact that Support for Trial & Error was not cited is a little more

surprising and not as easily explained. One possible explanation could be that unlike Snappier!,

in Pencil.cc, the user cannot click on a block or a subscript to run it independently from the main

program. This ability to run smaller scripts or commands directly from the blocks palette

contributed to the larger trial-and-error approach and was not supported in Pencil.cc. It is

important to note that this explanation draws not on a feature of the modality, but instead a

characteristics of the environment in which the blocks were situated.

The second year also saw the emergence of two new categories, Syntax, which

dominated responses from students in the Text condition, and In-editor Help, which was used to

capture student responses that attended to the Quick Reference menu or the ability to hover over

a block to get information about a block’s behavior (two features that were not present in

Snappier!). The inclusion of features of the editor is interesting as it blurs the line between a

language (like Java) and a larger programming environment (like Pencil.cc), disentangling these

two and how students conceptualize this relationship was a challenge throughout this analysis

and is a planned avenue of future research.

 At the conclusion of the 15-week study, after students had worked in Java for 10 weeks,

they were again asked to reflect on the differences between Java and Pencil.cc, this time, the

open response question that the students responded to was: “The thing that is the most different

 140
between Pencil.cc and Java is:”, the results of which are presented in Figure 5.2 below.

Again, the responses were coded by two researchers and Cohen’s κ was run to determine

agreement and consistency of the application of the codes. There was found to be moderate

agreement between the coders, κ = .68, all differences were resolved through discussion.

Figure 5.2. Student reported differences between Pencil.cc and Java at the conclusion of the
study.

 There are a few things to note about these results relative to the responses from the

midpoint survey shown in Figure 5.1. First, is that the pattern is largely the same across the three

condition, with Blocks responses trending toward features of the Blocks themselves (the left-

most categories) while the Text condition mainly cited syntactic differences between the

environments, with the Hybrid student responses again living between the two. A second shift to

note is the significant decrease in the number of students that cited In-editor Help as being the

most salient difference between Java and the their experiences in Pencil.cc. On the Mid survey,

10% of responses referenced this difference, on the Post, that number fell to only two students.

10	 10	

3	

2	

1	

7	

0	

1	

2	

0	

1	

2	

15	

1	1	

0	 0	

2	

4	

17	

1	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

Visual	Layout	 Ease	of	

Composi;on	

Browsability	 Prefabricated	

Commands	

Visual	

Outcomes	

Syntax	 In-editor	Help	

Co
un

t	o
f	S

tu
de

nt
	R
es
po

ns
es
	

Student	Perceived	Differences	-	Post	

Blocks	

Hybrid	

Text	

 141
There are a number of potential explanations for this including: the increased salience of

other differences between the environments, the fact that ten-weeks had elapsed since using

Pencil.cc so students may have forgotten these features of the environment, or a growing

recognition of the difference between a programming language (like Java) and the larger

programming environment in which the language is used (Pencil.cc in this case). In responding

to this question, learners no longer attended to features peripheral to the language itself. The

comparison between Mid and Post responses also shows a shift for students in the Hybrid

condition away from visual features as being the salient difference towards Syntax, the

difference most frequently cited by students in the Text condition. In other words, after students

spent time working in Java the salience of Syntax as a difference grew among learners from the

Hybrid condition. One thing that is important to mention is that in some cases, when students are

referring to syntax, they mean more than just semicolons and keywords (i.e. what is

conventionally covered by the term syntax). In a Mid interview, one student explained the

importance of syntax by saying: “So it's not just knowing how to make the syntax correct, but

knowing what your syntax is.” This prompted the interviewer to ask the student what he meant

when he said syntax, to which he responded: “knowing when to use an if/else condition, using a

for loop, a while loop.” This lead the interviewer to respond: “oh, so by syntax you mean more

than just semi colons and curly braces” to which the student responded with a nod of his head.

This is important to note as it introduces a layer of complexity to the notion of syntax and that it

cannot be assumed that the learner is talking only about punctuation. A final thing to note in this

analysis is the appearance of responses from the Text condition in the Prefabricated Commands

category. It is only two responses, but it is interesting given that none of the 30 respondents cited

this difference on the Mid survey.

 142
 In the first year of the study, there were a number of students who cited drawbacks

and limitations of the Snappier! environment. These critiques fell into three broad categories:

Inauthenticity, Less Powerful, and Slower Authoring. In conducting the same analysis in year

two, we found less evidence of students taking issue with Pencil.cc. In analyzing the responses to

the differences between the environments (which was part of the data corpus for the year one

analysis), we find only three students who attended to drawbacks of Pencil.cc. Two of these

responses came from students in the hybrid condition with one coming from the Text condition,

which means no students in the Blocks conditions raised concerns. Two of the three responses

talk about how Java is more authentic, saying “There will be more actual coding involved as

opposed to using predetermined blocks of code.” The other limitation cited for Pencil.cc is that

the environment is only used for drawing, saying: “for Pencil.cc, all you can really do is draw.”

This limited list is in stark contrast to the longer, and more elaborated drawbacks identified in

year one. There are a number of possible explanations for this, including the Pencil.cc interface

being seen as more authentic and having a higher ceiling, the fact that all of the Pencil.cc

commands are valid CoffeeScript, so have the feel of more conventional programming languages

(i.e. are not natural language), or that the activity of writing programs that produce actual

websites that can be linked to and shared engendered a sense of authenticity that was lacking in

Snappier! A more careful analysis of these perceptions of Pencil.cc is explored in the next

section.

Perceptions of Introductory Programming Environments by Modality

 Trying to understand students’ perceptions of the three versions of Pencil.cc used in the

study requires looking to a number of data sources as there are many facets to how the tool can

be perceived. For example, students had perceptions of Pencil.cc with respect to utility,

 143
enjoyment, authenticity, and effectiveness. As this dissertation is trying to broadly

understand the impact of the modality used to introduce learners to programming, the analysis

looks across these different dimensions. This section looks specifically at students’ perceptions

of the introductory programming environment as it relates to their own learning and if and how

programming in the modality they used matches their view of authentic programming practices.

In later chapters, a similar analysis will be presented looking at whether or not students viewed

their time with the introductory environment as productive with respect to the goal of learning to

program in Java. After looking at perceptions of the introductory environment by modality

specifically, the next section will investigate students’ perceptions towards programming and

computer science more broadly.

Authenticity of the Activity by Modality

 One drawback identified in using blocks-based programming environments with high-

school aged learners is the perceived lack of authenticity and a recognized difference between

what it looks like to program in blocks-based languages versus text-based professional languages

(Weintrop & Wilensky, 2015b). In the first year of this study, the analysis of this question found

that students did raise concerns over the authenticity of the Snappier! environment, but it was

unclear where the source of that inauthenticity lay. A number of factors could have contributed

to this view, including the blocks themselves, the drag-and-drop programming mechanism, or the

larger context of giving instructions to an on-screen sprite being a very different type of program

output than what typically accompanies programming. In the second iteration of the design,

questions were designed to tease apart the role of the modality specifically in contributing to this

perception. On the Mid and Post attitudinal surveys, students were asked if what they did in the

first five weeks of the course was similar to what “real programmers” do. Responses were given

 144
on a ten-point Likert scale, with a higher score meaning students agreed more strongly.

Figure 5.3 shows student responses by condition to this prompt given on the Mid and Post

surveys15.

Figure 5.3. Student responses to the prompt: Pencil.cc is similar to what real programmers do.

 Overall, the mean student response on the Mid survey was 6.22 (SD = 2.15), while on the

post survey, the mean was 5.9 (SD = 2.22). This means that overall, students tended to agree

with the statement that what they did in the introductory environment was similar to what real

programmers do. A Wilcoxon signed rank test comparing the aggregated Mid to Post scores

shows the two time points to be different from each other at a p = .05 level (Z = 1143, p = .05),

meaning an overall shift did occur, although with the statistical power these data provide, the

change was only just reached the conventional statistical significance threshold of p = .0516.

15 Note: the y-axis scale for this and all figures in this chapter do not start at zero, but all are on
the same scale so can be compared relatively
16 An alternative test that could be used here is a pair-wise t-test, which gives a comparable result
of t(76) = 1.89, p = .06. The Wilcoxon signed rank test is preferred due to the ordinal nature of
the underlying Likert data, so will be used throughout the dissertation.

5.89	
5.69	

6.04	
6.12	

6.71	

5.69	

5.00	

5.50	

6.00	

6.50	

7.00	

7.50	

8.00	

Mid	Survey	 Post	Survey	

M
ea
n	
Li
ke
rt
	S
co
re
		

Pencil.cc	is	Similar	to	What	Real	
Programmers	Do	

Blocks	

Hybrid	

Text	

 145
Running an ANOVA test on normalized Z-scores for the two time points shows there is not a

statistically significant difference between the three conditions at the Mid point F(2, 78) = 1.15, p

= .32, or at the conclusion of the study F(2, 80) = .32, p = .76. The convergence of scores on the

Post survey relative to the Mid suggests differences may exist at the Mid point, but that the data

in this study does not have the statistical power to make that claim. To understand whether there

was a significant shift in perceived authenticity between the two surveys for each of the

conditions a Wilcoxon signed ranks test was run. The test shows a significant change in the

perceived authenticity of the introductory environment for students who were in Text condition

(Z = 166.5, p = .02) in the negative direction. This means that students in the Text condition

found Pencil.cc to be less similar to “real programming” after ten weeks of working in Java.

Non-significant shifts in the positive direction for the Hybrid condition (Z = 64.0, p = .35) and a

negative direction for the Blocks condition (Z = 135.5, p = .49) were observed but neither were

significant.

 To understand if the changes between the Mid and Post surveys were significant across

the three conditions, normalized Z-scores were calculated for each condition, then an ANOVA

was run on the deltas of students’ reported responses across the three conditions. In other words,

this test is looking to see if the slopes of the three conditions are different from each other, and if

so, where the statistical significance lies. The ANOVA calculation on the changes in perception

of authenticity across the three conditions was F (2, 74) = 3.5, p = .03, thus a statistically

significant difference does exist across these groups. A post hoc Tukey HSD test shows the

change in attitudes between the Text and Hybrid conditions was significant, p = .03, and that no

statistical significance was found for the other pairings (Text/Blocks, p = .24, Hybrid/Blocks p =

.54)

 146
 Taken together, this analysis reveals a few conclusions about how modality affects

students’ perceptions of the authenticity of a given programming environment. Students in the

Text condition initially saw Pencil.cc as the most similar to what real programmers do, but this

perception shifted downward after working in Java for 10 weeks, suggesting that in gaining

experience with Java, that initial perception changed. As can be seen from Figure 5.1 and Figure

5.2, a lot of this difference is driven by syntax, which is an immediately visible difference

between the Pencil.cc and Java experiences. As one student put it in his interview after starting

Java, “I just like Java, the syntax makes me feel more complete. I’m actually coding.” This

perception can be seen across the data in various places, and will be explored more deeply in the

chapter looking at the transition from Pencil.cc to Java. The issue of long-term utility was also

raised in interviews with students after working with Pencil.cc. For example, one student, in

reflecting back on his time with the introductory environment said: “I feel like Java will be more

useful in the long run than what [Pencil.cc] could offer me”. This view was echoed by another

student, who in his post-Pencil.cc interview said “[Pencil.cc] is a bit too limiting for someone

who goes into this class thinking I’m going to make something that is going go be used in

industry.” In these quotes, the students long terms plans with programming can be seen and how

Pencil.cc does not fit into them. Like in other places, the cause of these views include features of

modality along with other aspects of the programming environment, but as is shown in Figure

5.1 and Figure 5.2, a number of aspects of modality play a significant role in shaping students

perceptions of the differences.

Looking across the three conditions, students who worked in the Blocks condition had the

lowest average response on the perceived similarity of Pencil.cc to professional programming

after the introductory portion of the study, and, like Text, saw their perceptions drop over the 10

 147
weeks working in Java. In contrast to the other two conditions, the Hybrid condition saw the

authenticity of their experience during the first five weeks increase after working in Java for 10

weeks (although not significantly). In comparison to the other two conditions, this shift was

statistically significant. There are a number of possible explanations for these collective

outcomes. One theory is that students in the Text condition had an easier time doing a direct

comparison between Pencil.cc and Java, since they were in the same modality, and thus, the

shared modality made the differences more salient. The Blocks condition had the opposite

problem, from the beginning, students perceived the blocks interface to be different and unlike

what real programmers do, and the shift to Java reinforced this. The Hybrid condition however,

potentially benefitted from a best of both worlds effect. The underlying text editor makes clear

that what they are doing is the same type of activity (i.e. manipulating text) but was different

enough, thanks to the presence of the blocks, to not provoke a direct comparison with Java. Java

and the Hybrid form of Pencil.cc are both programming (i.e. both manipulating text to give

instructions to a computer), but are also different from each other, but not in a way that

necessarily delegitimizes Pencil.cc, which is recognized as being a useful introductory approach

(a finding that will discussed below). Another possible explanation for the Hybrid condition’s

different outcome stems from the fact that only in that Condition do students interact with more

than one modality (graphical blocks and text side-by-side), thus possibly showing students that

programming is not a uniform activity, but instead, that the act of programming and

programming languages and environments can take many shapes and rely on many modalities,

interfaces, and technologies.

Learning to Program by Modalities

 148
 A second dimension of students’ perceptions of different programming modalities

that is of interest in this dissertation is whether or not they felt that using a given modality made

them better at programming. This analysis looks at the three modalities used in Pencil.cc in

isolation to see if they were viewed as a productive with respect to the goal of learning to

program, not whether it was effective for preparing them for something else (i.e. Java). Figure

5.4 shows students’ responses to the following prompt: Pencil.cc made me a better programmer.

Like with the last question, students experience of Pencil.cc will refer to different modalities

depending on which condition they were in. This question was asked on the same Mid and Post

surveys and on the same 10-point Likert scale as the question in the previous section. The mean

score on the Mid survey was 7.5 (SD = 2.1) and the mean on the Post survey was 7.0 (SD = 2.2).

This suggests that overall, students felt that all three modalities improved their programming, but

did not hold particularly strong feelings about this statement.

Figure 5.4. Student responses to the prompt: Pencil.cc made me a better programmer.

7.44	

6.90	

7.35	 7.12	

7.79	

7.03	

6.00	

6.50	

7.00	

7.50	

8.00	

8.50	

9.00	

Mid	Survey	 Post	Survey	

M
ea
n	
Li
ke
rt
	S
co
re
s	

Pencil.cc	Made	Me	a	Be4er	Programmer	

Blocks	

Hybrid	

Text	

 149
The first thing to notice from this chart is the negative slope for all three conditions,

meaning overall, students’ view of how helpful the introductory environment was with respect to

learning to programming decreased after spending 10 weeks learning Java, regardless of

modality used. The mean response on the Mid survey was 7.5 (SD = 2.14), while the mean Post

response was 7.01 (SD = 2.21). Running a Wilcoxon signed rank test on for the whole set of

responses shows a significant difference between student responses on the Mid survey and the

Post survey Z = 1100, p = .01. This provides evidence that there was in fact a significant decline

in students’ perceptions of whether or not Pencil.cc made the students better programmers.

Running this same test on each condition individually shows a significant effect for the Text

condition (Z = 163, p = .03), and smaller, non-significant effects for the Blocks (Z = 121.5, p =

.12) and Hybrid (Z = 95, p = .38) conditions. An analysis looking across the three conditions

found no signification differences between the three conditions either on the mid survey (F(2,

78) = .14, p = .87), the post survey (F(2, 80) = .07, p = .93), or on the difference in performance

by condition (i.e. the slopes) (F(2, 74) = .949, p = .39).

These quantitative findings are supported by data from the student interviews conducted

after students finished the introductory portion of the course, which reveal that students found

Pencil.cc productive for learning to program. For example, when asked about this topic, students

gave responses like “It has definitely given me the basis of like, a computer follows everything,

with like, total logic. Like if you say, write something in quotes and then don't end that quote, it's

not going to work. You have to be very specific with your code. [Pencil.cc] just kind of taught me

how much syntax and semantics matters” and “It was good to learn basic concepts.” Students

also had similar constructive comments about the introductory environments across modality

when talking about it preparing them to learn Java, a topic that will be explored in further detail

 150
in chapter 7. It is important to note that not all students felt this way. Some students,

especially students with prior programming experience did not find Pencil.cc to be as productive.

“Pencil.cc helped a little bit, it helped other people too, it didn't help me too much because I

knew some of these things already.”

These findings begin to show one of the features of this study design. The data reveal that

students’ perceived utility of working with Pencil.cc dropped after spending 10 weeks learning to

program Java, independent of the modality used. However, there is no difference in students’

perceptions across the different conditions. This can be interpreted to mean that modality was not

a significant factor contributing to this perceptual shift. This leads to the explanation that other

aspects of the Pencil.cc environment or the larger intervention are potential causes of this

decline. This may include the CoffeeScript language, the setting of creating interactive drawings

and webpages, or the curriculum that the students followed during the five weeks spent working

in Pencil.cc. It is also important to mention that with a larger dataset and thus more statistical

power, significant differences may emerge. For example, the fact that the Hybrid condition was

initial seen as the least effective modality for learning programming, but after 10 weeks in Java

became the most effective with respect to students’ perceptions suggests there may in fact be

some interaction between modality (or rather mixed-modalities) and perceived utility.

Changes in Attitudes and Perception over Time

 Along with perceptions of the three modalities used in the study, this dissertation seeks to

understand how modality affects students’ attitudes toward programming and computer science

more broadly. This includes questions of how much they like the field, if they think they will be

successful in their programming endeavors, and whether or not they plan to enroll in future

computer science learning opportunities. This section looks specifically at attitudinal and

 151
perceptual changes between the start of the school year and the midpoint of the study, after

students completed the introductory portion of the course but had not yet begun working in Java.

Shifts after the transition to Java, and how they relate to changes that occurred during the first

five weeks of the study, are discussed later in the chapter looking at the transition from Pencil.cc

to Java. Four attitudinal dimensions are investigated: confidence, enjoyment, perceived

difficulty, and interest in continuing with more computer science learning opportunities.

Confidence in Programming Ability

 The first attitudinal dimension discussed is students’ perceived confidence in their own

programming ability. To calculate a reliable measure of confidence, student responses to the

following two Likert scale statements were averaged together: I will be good at programming (or

I am good at programming on the Post test) and I will do well in this course. These questions

show an acceptable level of correlation, having Cronbach’s α scores of .79 on the PRE survey,

.80 on the Mid survey, and .88 on the Post survey, which are all near or surpass the .8 threshold

commonly used to define an acceptable level of reliability. The aggregated confidence measure

at the Pre, Mid and Post points in time are shown in Figure 5.5. In this section, the figures show

all three time points even though only the Pre and Mid values are discussed here, the Post scores

and the Mid to Post differences are discussed in a chapter 8 which looks at the transition to Java.

Also note that all figures in this section are on the same scale, but do not cover the same range,

so can be compared relatively, but not absolutely, and like the previous sections, the y-axis in

these figures do not start at zero in order to make the trends more clear.

 152

Figure 5.5. Calculated levels of students’ confidence in programing at three points in the study.

 The mean confidence scores at the outset of the study was 8.11 (SD = 1.47) on a 10-point

Likert scale, which is rather high. After spending the first five weeks of school working in

Pencil.cc, students’ confidence scores inched up to 8.19 (SD = 1.67), a change that is not

statistically significant (Z = 3296, p = .48) after running a Wilcoxon signed rank test. This lack

of change is possibly explained by the fact that the students came in extremely confident (this is

a selective enrollment school, so the students have historically been successful in academic

contexts), so there is a possible ceiling effect on this measure. An alternative explanation is that

five weeks in the introductory environments did not have any effect on students’ confidence,

possibly because they did not get any better at programming or that what the students were doing

was found to be too easy or different from the type of activity that would increase their

confidence with respect to programming.

The next step in this analysis is to look at differences by modality. In calculating the

ANOVA on the Pre scores, the results show that there is a slightly significant difference between

the three starting data points, F(2, 84) = 2.46, p = .09, meaning that the three samples were not

7.64	
8.11	

7.45	

8.48	 8.31	

8.28	8.18	 8.14	

8.33	

6.50	

7.00	

7.50	

8.00	

8.50	

9.00	

9.50	

Pre	Survey	 Mid	Survey	 Post	Survey	

M
ea
n	
Ag

gr
ea
te
	L
ik
er
t	S

co
re
	

Aggregate	Confidence	Score	

Blocks	

Hybrid	

Text	

 153
the same with respect to their initial confidence levels. A Tukey HSD post hoc calculation

shows there to be a difference between the Blocks and Hybrid conditions (p = .08), but no

difference between the other two conditions (p = .33 and p = .71). This difference in confidence

cannot be explained by other factors of the class that were collected (like grade, gender, or prior

computer science experience), suggesting that a prior difference does exist. For analytical

purposes, this leads us to be less interested in absolute comparisons of values at the mid points or

the changes across conditions (since they are not the same initially), but does allow us to look at

within-group differences.

 Running a Wilcoxon signed ranks test on the three conditions and their changes between

the Pre and Mid surveys shows a significant change for the Blocks condition (Z = 46, p = .05),

but not a significant change for either Hybrid (Z = 108, p = .61) or the Text condition (Z = 98.5,

p = .82). Given the positive slope of the change in the Blocks condition, this difference can be

interpreted as showing that students in the Blocks condition saw a significant increase in their

confidence in their own programming abilities. This finding correlates with how useful students

found the blocks-based modality to be in preparing them for Java, which found that students in

the Blocks condition found Pencil.cc to be the most useful at the five-week point of the study.

This data will be presented and discussed in a later chapter. This outcome is consistent with other

less quantitative studies suggesting that the blocks-based programming interface is effective at

increasing students confidence in their own programming ability (Maloney et al., 2008; N.

Smith, Sutcliffe, & Sandvik, 2014). Further, this positive increase in confidence supports one of

the arguments made in favor of blocks-based language and their affective strengths, although, as

will be discussed in the next section, not all such claims are supported by this study. The lack of

positive trends for the Hybrid and Text conditions can be interpreted in a few ways. One

 154
explanation is that these modalities do not improve students’ confidence in programming, for

which a number of possible explanations could be given (e.g. they find it difficult or did not feel

successful in their time with it). A second plausible explanation for these data is that there was a

ceiling effect, meaning the students started with a high level of confidence, so there was little

room for them to become more confidence, which was not the case in the Blocks condition.

Enjoyment of Programming

 The second attitudinal dimension is whether or not students’ enjoyment of programming

differed based on the modality they used. To calculate a measure of enjoyment, responses to the

following three Likert statements from the Pre, Mid, and Post surveys were combined: I like

programming, Programming is Fun, and I am excited about this course. These three questions

were found to reliably report the same underlying disposition at all three time points (Pre

Cronbach’s α = .79, Mid Cronbach’s α = .84, Post Cronbach’s α = .89). Figure 5.6 shows the

aggregated enjoyment scores for students across the three conditions at all three time points,

although, again, in this section only the Pre and Mid scores will be discussed.

 155

Figure 5.6. Calculated levels of students’ enjoyment of programming by condition at three
points in the study.

 At the outset of the study, the overall average mean enjoyment response 8.31 (SD = 1.39)

on the 10-point Likert scale. After five weeks in the course, the mean enjoyment response

increased slightly to 8.42 (SD = 1.60). A Wilcoxon signed rank test shows that these two scores

are not statistically significant from each other (Z = 3227, p = .34), meaning on average, students

did not like programming any more or less after using Pencil.cc than they did before. Unlike the

responses for initial confidence, there is no difference between the three condition at the outset of

the study (F(2, 84) = .047, p = .95). After working in either the blocks, text, or hybrid interface

of Pencil.cc for five weeks, the survey did not reveal a difference in enjoyment across the three

conditions (F(2, 78) = .08, p = .93). Given these two results, it is not surprising to find that there

was no difference in the changes between the three groups (F(2, 75) = .14, p = .87). Looking

within each condition, a Wilcoxon signed ranks test did not show any significant changes for the

three conditions (Blocks: Z = 70.5, p = .20, Hybrid: Z = 72, p = .22, Text: Z = 93.5, p = .68).

This lack of significant finding by condition suggests that modality plays a relative small role

8.29	

8.52	

8.18	8.28	
8.38	 8.40	8.38	

8.36	

8.56	

6.50	

7.00	

7.50	

8.00	

8.50	

9.00	

9.50	

Pre	Survey	 Mid	Survey	 Post	Survey	

M
ea
n	
Ag

gr
eg
at
e	
Li
ke
rt
	S
co
re
s	

Aggregate	Enjoyment	Scores	

Blocks	

Hybrid	

Text	

 156
with respect to perceived enjoyment of programming. Also, the high scores for all three

conditions at all three points speaks to a potential limitation due to the fact that this is an elective

course which students have self-selected into. Qualitatively, this graph does show a positive

slope for both the Blocks and Hybrid conditions and a slightly negative slope for the Text

condition, which suggests there may be differences here, but these data do not have the statistical

significance to support such claims.

Digging in a little deeper, looking at the three underlying questions individually does

reveal a significant finding, on the question “I like programming”, the Hybrid group saw a

statistically significant increase (Z = 36, p = .05). This provides a little piece of evidence that in

fact that there may be a difference based on modality that a larger study with more statistical

power might be able to reveal. It is interesting to note that the only significant gain for any of

these questions between the Pre and Mid time points came from the Hybrid condition, as

opposed to the Blocks condition, which suggests that the Hybrid condition may be tapping into

the enjoyment that comes from blocks, but that the authenticity of the hybrid condition reported

earlier in the chapter may also contribute to the sense of enjoyment, meaning that the Hybrid

condition may be benefiting from the best-of-both-worlds.

Programming is Hard

 The attitudinal survey included the Likert statement: Programming is Hard. Initially this

was intended by be part of the Confidence aggregate score, but ended up not correlating with the

other two confidence questions (Pre Cronbach’s α = 0.48, Mid Cronbach’s α = 0.57, Post

Cronbach’s α = 0.67), as all three time periods fall well below the .8 level generally agreed to be

threshold for adequate correlation. As such, this question is treated independently. Figure 5.7

shows the Pre, Mid, and Post scores for students grouped by Condition for this question.

 157

Figure 5.7. Average responses to the Likert statement: Programming is Hard.

 The average response to this statement across the three classes during the first week of

school was 5.72 (SD = 2.29). By the end of the fifth week, the mean response had shifted to 6.36

(SD = 2.28), resulting in a moderately significant increase (Z = 3009.5, p = .10), meaning

students thought programming was harder as a subject after spending five weeks using one of the

modalities of Pencil.cc. This shift is largely driven by the steep increase in the responses among

students in the Blocks condition. An analysis of variance (ANOVA) calculation on the Pre

survey responses shows no significant difference between the three conditions (F(2, 84) = 1.28, p

= .28) at the outset of the study and a significant difference emerging by the Mid survey F(2, 78)

= 4.36, p = .02. A Tukey HSD post hoc analysis shows a significant difference between the

Blocks and the Hybrid condition (p = .03) and the Blocks and Text condition (p = .04), while the

Text and Hybrid conditions were comparable (p = .96). This means the Blocks condition was a

significant outlier with respect to perceived difficulty of programming. As will be shown in the

next chapter, the Blocks condition did not perform significantly differently than the other two

6.25	

7.37	

7.07	

5.66	
5.77	

5.92	

5.30	

5.93	

5.90	

5.00	

5.50	

6.00	

6.50	

7.00	

7.50	

8.00	

Pre	Survey	 Mid	Survey	 Post	Survey	

M
ea
n	
Li
ke
rt
	S
co
re
	

Programming	is	Hard	

Blocks	

Hybrid	

Text	

 158
conditions on the content assessments. In fact, on the total score, the Blocks condition

performed the best. This means that this perceived difficulty of programming does not match the

Blocks students’ performance on the assessments. One possible explanation for this outcome is

that it serves as another data point suggesting that students did not view what they were doing in

the Blocks-based interface as being the same as “real” programming. Comparing the Pre to Mid

changes across the three groups shows that while there are different levels of change (i.e.

different slopes), those differences are not significantly different from each other (F(2, 74) = .76,

p = .47).

 Looking within the three conditions, only the Blocks group saw a significant change in

responses. A Wilcoxon signed ranks test returned Z = 42, p = .02 for the Blocks condition, but

nothing significant for the Hybrid condition (Z = 72.5, p = .57) or the Text condition (Z = 96, p =

.51).

Interest in Future CS

The last attitudinal category is looking at whether or not the modality used in the

introductory programming environment affected students’ interested in enrolling in future

computer science courses. More specifically, students were asked, on a ten-point scale, how

much they agreed (10) or disagreed (1) with the following statement: I plan to take more

computer science courses after this one. Figure 5.8 shows the average response for students

grouped by condition.

 159

Figure 5.8. Average responses to the Likert statement: I plan to take more computer science
courses after this one, grouped by condition.

 The mean scores of the Pre (8.14, SD = 2.40) and Mid (7.80, SD = 2.57) surveys show a

slight decrease in overall interest in wanting to take future computer science courses, however

not at a significant level (Z = 442, p = .28). Although there was no overall trend between Pre and

Mid when all students scores were aggregated together, Figure 5.8 shows a rather different story.

The survey administered at the start of the school year showed no significant difference between

the three conditions (F(2, 84) = .37, p = .69). After five weeks working in the three modalities, a

numerical difference emerged, although in this case did not reach a level of statistical

significance (F(2, 78)=2.22, p = .12). At the Mid point, the students who were using the blocks-

based version of Pencil.cc had moved from being the least interested in future computer science

classes to the most interested, while both the Hybrid and Text conditions saw their level of

interest decline. The differing slopes approach statistical significance (F(2, 75) = 2.88, p = .06).

 While there was a slight difference in the changes across the three groups, only the

Hybrid condition’s Pre to Mid change showed moderate levels of significance. A Wilcoxon

7.93	

8.59	

8.31	8.45	

7.65	 7.84	
8.03	

7.18	

7.90	

6.50	

7.00	

7.50	

8.00	

8.50	

9.00	

9.50	

Pre	Survey	 Mid	Survey	 Post	Survey	

M
ea
n	
Li
ke
rt
	S
co
re
s	

I	Plan	to	Take	More	Computer		
Science	Courses	A8er	This	One	

Blocks	

Hybrid	

Text	

 160
signed ranks test for the Pre to Mid scores for the Hybrid condition returns Z = 91.5, p = .07,

while the Blocks condition and Text condition failed to reach any level of significant (Z = 25, p

= .15 and Z = 110, p = .29 respectively). This finding is interesting, as it does not entirely fit with

the previous sections, which showed that students working in the Blocks condition viewed

programming to be the most difficult and were not outliers with respect to enjoyment or

confidence. Despite this similarity on the other measures, students in the Blocks condition were

more interested in pursuing future computer science learning opportunities. In the next section,

which concludes this chapter, the results from this section are brought together with the other

findings from this chapter and are synthesized in order to try and answer the stated research

question being addressed in this chapter: how does modality affect students’ attitudes towards

and perception of computer science.

Discussion

 This chapter presented data towards answering how modality affects students’ attitudes

and perceptions of programming and computer science more broadly. The data drew from the

initial student interviews as well as from the Pre, Mid, and Post attitudinal surveys (Appendix B).

Two sets of analyses of student perceptions were performed in this chapter. The first set

investigated students’ perceptions of the use of different modalities in Pencil.cc while the second

was on their emerging relationship with programming. As is often the case, the answer is not as

simple “the Blocks condition improved attitudes” but instead a more complicated, nuanced

answer that reveals along which dimensions attitudes shifted and when modality is the reason for

that shift. This discussion provides a short summary of the findings presented above and situates

them relative to the other data presented.

 161
Students’ Perceptions of Pencil.cc

 The first finding from this chapter is that the use of an environment like Pencil.cc, which

includes a graphical output and editor with various scaffolds differs from what high school

students expect to see in an introductory programming class. Despite encountering this

unexpected environment, students were able to recognize its utility, citing the environment’s

friendly interface, ease of writing successful programs, and ability to lay the foundation for

future programming instruction as reasons for its usefulness. This shows that high school aged

students are sophisticated enough about programming, computer science, their own learning to

recognize the utility of the environments they are working with.

 The sophistication of the learners’ understanding of the learning environments and the

modalities used within them emerged in analysis of student responses to an open-ended survey

question asking them about what they found to be most useful about the Pencil.cc environment.

In these responses we start to see stratification by modality. Blocks students were more likely to

attend to blocks-related futures of the environment, citing the ease of the drag-and-drop

mechanism and the visual layout of the set of possible commands as being useful, while the Text

condition students attended more to features tied to the text modality, like syntax and the

available in-editor scaffolds like real-time compilation warning and the Quick Reference feature.

 Following this thread of investigation into students’ perceptions of the utility of the

Pencil.cc environment, an analysis of Likert survey questions pertaining to the authenticity and

utility of the environment was presented. In looking at students’ perceptions of Pencil.cc with

respect to its authenticity, on the Mid survey, students on average reported that the version of

Pencil.cc they used was similar to what “real programmers” did and that the environment helped

them in learning to program. This paints a generally positive picture of students perceptions of

 162
the Pencil.cc environment, however, other data suggests it is not so simple. For example,

after working in Java for 10 weeks, a majority of students (79%) across all three conditions

found Pencil.cc to be less useful than they had initially reported, and almost half of the students

(42%) thought Pencil.cc was less like real programming after working in Java. At a condition

level, only the Hybrid condition on the authenticity question showed a positive change after

learning in Java. This suggests a shift occurred in students’ perception of what programming is

between the Mid and Post surveys. This suggests that the conceptualization of what

programming is after working in Pencil.cc is different than what programming means to learners

after 10 weeks of working in Java. How students’ experiences with the introductory tools shaped

their experience in Java will be explored in greater detail in Chapter 8.

Students’ Attitudes Toward Programming

 The second set of analyses presented in this chapter looked at students’ attitudes towards

programming grouped into four categories: confidence, enjoyment, difficulty, and interest in

pursuing computer science. For each of these categories, the analysis looked both across and

within conditions to try and understand the role of modality in shaping student attitudes. Across

these aspects of attitudes categories, the data show student’s confidence and enjoyment growing

slightly, their interest dropping slightly, and a significant increase in students’ perception of the

difficulty of programming. That gives the highest-level overview. Breaking these aggregate

trends down we see a more nuanced story emerged, finding that modality does seem to effect

some of these attitudinal dimensions but not others.

 When looking at perceived difficulty, plans to take future computer science courses, and

students’ overall confidence levels, we find differences by condition. In these three cases, it was

the Blocks condition that differed from the Text and Hybrid conditions. Students in the Blocks

 163
condition found programming to be more difficult but also experienced the greatest gains in

confidence as well as the largest increase in terms of wanting to pursue future computer science

courses. One possible way to explain this would be to say that students in that condition enjoyed

programming more than the other two, but our analysis of enjoyment found that, while the

Blocks group did report improved enjoyment, so did the Text and Hybrid conditions. Another

possible explanation alluded to above is that students in the Blocks condition saw what they were

doing as a simplified version of programming. Thus, the fact they were doing well in the Blocks

condition (a fact that will become more clear in the next chapter) could explain their confidence

and desire to take more computer science classes in the future, while also explaining how they

view programming to be difficult, because what they are doing is not the same as programming,

but a simplified version of it. This explanation partially holds up to the findings of the

authenticity question, which shows why Blocks students saw their condition as the least

authentic, but the gap between Blocks and Hybrid is small enough that, if this were the whole

story, we’d expect to see a similar pattern in the Hybrid responses.

 In the same way that finding differences between the conditions is an interesting result, a

lack of differences also tells us something about the modalities. The lack of difference between

the Blocks, Hybrid, and Text conditions with respect to the enjoyment of programming suggests

that modality is not the driving characteristic behind students finding Pencil.cc-style

environments engaging, at least among high school aged learners. Looking specifically at the

Hybrid and Text conditions, we see little significant differences between them, but for the most

part, the Hybrid condition shows more desirable numbers (more confident, slightly higher levels

of enjoyment, and more likely to take another computer science course). This suggests that the

 164
drag-and-drop ability to add commands to programs and the browsability of commands do

not significantly contribute to differences on attitudinal measures.

How Did the Hybrid Condition Fare?

 The Hybrid condition was designed to blend features of blocks-based and textual

programming interfaces. The goal for the design is that it would be able to leverage the

attitudinal strengths of the blocks-based modality while also easing the difficulty observed when

students move from graphical, drag-and-drop interfaces to more professional languages. This

chapter starts to shed light on whether or not this came to be with this specific hybrid approach.

 First, the analysis of the perceived affordances of the three conditions found a bimodal

set of responses, with relatively little overlap between the Blocks and Text responses. The

responses from the Hybrid group spanned both ends of our categorical spectrum. This means that

the chosen Hybrid interface was successful in drawing on features of both modalities to support

learners, and that the learners themselves were aware of and attuned to those supporting features.

Among the four attitudinal dimensions analyzed, the Hybrid condition largely followed

the same pattern as the Text condition, at times living between Blocks and Text (as in the case of

the future computer science question), while also sometimes coming out with the highest score at

the mid point (confidence) or the lowest (difficulty). Following similar trajectories as the Text

condition suggests the Hybrid interface used in this study was too similar to the Text condition to

gain the positive attitudinal benefits we found in the Blocks condition. Given the expanse of the

design space of Hybrid environments, this suggests that more design work might be needed to

bring the text editor portion of this hybrid interface closer to the Blocks interface that yielded the

positive attitudinal outcomes.

 165
 Finally, in looking at how students perceived the Hybrid condition, while there was

little difference across the three conditions, in both measures (authenticity and utility for learning

programming), the Hybrid condition had the best outcome of the three conditions at the end of

study. On the authenticity question, the Hybrid condition was the only one that saw an increase

after learning Java, and on the question about if Pencil.cc helped the students learn, the Hybrid

condition went from the least useful to most useful after Java was introduced. These outcomes

suggest that the real value of the hybrid condition emerges only after Java is introduced, so that a

Hybrid condition might not be best for learning contexts where a hybrid tool is the end goal, but

instead, serves as a successful stepping-stone to text-based languages when that is in fact the

goal. This question is further explored in Chapter 8.

Conclusion

 This chapter presented data answering the first part of the first research question on how

modality affects learners’ attitudes towards and perceptions of programming and computer

science more broadly. With the findings presented above, part of the larger picture of the role of

modality on the learner is starting to come into view, although there is much that remains to be

filled in. For example, some of these analyses only told half of the story, focusing on students

shifting attitudes over the course of the first five weeks of the study when students were working

in the introductory tools. Data was also collected to understand if these attitudinal shifts persisted

or changed after working in Java. Likewise, little has yet been said about the nature of student

programs, the practices they develop or their conceptual understanding of the ideas encountered

over the first 15 weeks of the study. It is this last topic, conceptual understanding, that constitutes

the second half of the first set of research questions and the focus of the next chapter.

 166
6. Conceptual Learning Outcomes

 This chapter presents findings on student’s conceptual understanding of central

programming concepts looking for differences and similarities across the three conditions of the

study (Blocks-based, Text-based, and Hybrid Blocks/Text). The chapter is broken down into two

sections. First is a presentation of students’ emerging conceptualizations of core computer

science ideas. This section draws on qualitative data sources (interviews and open-ended

responses) to characterize how students are coming to understand the programming ideas

covered in the opening five-week curriculum. The second section presents a quantitative analysis

conducted with data from the three administrations of the Commutative Assessment: one given

at the beginning of the study (Pre), one five weeks into the study after students had finished

working in the Pencil.cc environment but before they had started working in Java (Mid), and one

at the conclusion of the study after students had spent 10 weeks learning Java (Post). The

quantitative analysis section begins with a brief review of the Commutative Assessment and a

description of how it was administered. The first analysis investigates the relationship between

modality (graphical blocks vs. textual) and specific programming concepts, revealing that

modality does indeed matter, which helps to motivate the analysis conducted in the remainder of

the chapter. The second half of the section looks at how conceptual understanding differs by the

version of Pencil.cc used during the first five weeks of the study. Results from the Pre

assessment, which serves as a baseline for the analysis that follows, is presented first. It shows a

lack of differences across the three conditions. From there the analysis looks at learning

outcomes by condition, answering the question: were there differences in performance on the

content assessment across the three conditions of the study? The next portion of the chapter asks

a similar question, but now looking at differences by modality by condition, extending an

 167
analysis conducted on data collected during the first year of the dissertation. After analyzing

the responses by modality, the next section looks at differences by the concepts included on the

assessment, asking: Do learning outcomes for specific concepts differ by condition or modality?

The chapter concludes with a discussion and summary of the various findings presented. Before

presenting the findings, it is important to reiterate that when comparing across conditions

(Blocks v. Hybrid v. Text) the only difference was the modality in the programming

environment, all other class-related factors were held constant17.

Emerging Conceptual Understandings

 After students concluded the five-week introductory portion of the study, they were asked

short answer questions about the four central programming concepts covered in the curriculum:

variables, conditional logic, iterative logic, and functions. This section presents the results of

open coding these responses and grouping them by condition. The goal of this analysis is to

understand if students’ conceptual understanding of concepts is informed by the modality they

used to first interact with and use the concepts, and if so, how. For each concept, students

responded to the following open-ended prompt: What do ___ do? And how are they used in

programs? Where the ___ in each questions was replaced with “variables”, “for loops and while

loops”, “if and if/else statements”, and “functions”. This direct questioning approach admittedly

does not yield a nuanced understanding of learners’ conceptualizations, but is nonetheless useful

for beginning to understand how students are thinking about these concepts. Student responses to

these questions were open coded using a grounded theory approach (Strauss & Corbin, 1994), in

17 One other factor that is not constant is that the classes were held at different times in the
school day: 4th period, 7th period and 8th period, but given that all classes were taught by the same
teacher in the same classroom at the same time in the school year, this was unavoidable.

 168
which the data themselves were used to identify emerging themes and codes. Due to this

emergent analytic approach, it is important to note the ontological inconsistencies that exist both

within and across conceptual groups. For example, the analysis of variables focuses on

conceptual metaphors used by the learners while the conditional logic analysis included codes

for characteristics of if/else statements as well as attention to features of conditional statements.

This diversity of types of codes is an artifact of the emergent analytic approach taken.

Variables

 The first question students responded to from this group was: What do variables do? And

how are they used in programs? In analyzing the responses given, a variety of answers were

given, more specifically, students talked about variables and their uses in a number of different

ways employing different metaphors in their descriptions. The first type of response identified

was to use the metaphor of a variable being like a container that stores things. For example,

students gave response like “Variables are used to store a value18” and “Variables are values

that store information, they are used to store information in.” The idea of a variable being a

container that holds things is commonly used in computer science classrooms. The second

metaphor found in student responses is similar to the container idea, but instead of holding the

value, variables serve as placeholders for that value. In other words, the value is stored

somewhere else and the variable serves as a representation used to get access to that value. This

view can be seen in responses such as “Variables are placeholders for something such as a

string, boolean, or integer.” and “[Variables] are something that stands in or represents

something else”. A third metaphor that is similar to the first two is that of a variable as a pointer.

18 Note: italicized text in this section denote direct quotes from the students’ typed-in responses.

 169
While the idea of a variable as a pointer to a value could arguably be collapsed with the prior

group because it shared the feel of a placeholder, it is left separate here because the notion of a

pointer carries specific meaning in computer science and is explicit about the idea that the value

itself is stored elsewhere, which is only implicit in the placeholder responses. Fewer students

described variables in this way relative to the first two categories (four in total), one of these

responses reads: “Variables are values that programs use to reference pieces of information in

the code.” The last type of response given by students was to not describe the variables in terms

of the values they represent, but instead, to define the variable as an object in its own right,

independent of what its value is. Sample responses from this category include: “Variables are

things that change inside a function and are not things set in stone”, “Variables are changeable

values. They are used to make stuff happen pretty much. Without them, pretty much nothing can

occur in a program”, and “Variables are anything you want them to be. They're used to tell the

computer that another thing equals something else and so on”. All student responses were coded

as one of these four categories, with a few responses being coded as more than one when

students drew on more than one metaphor within their response, as in the case where a student

responded “Variables are symbols that can represent or hold information to be used, or a place

holder for unknown values”, which was coded for both container and placeholder metaphors.

Only five of the 82 responses did not fit into any of these four categories, an example of one of

these outliers is “Variables are used to keep a clean and concise code in your program”, which

does not attend to what a variable is, but instead describes how they are used. Figure 6.1 shows

the distribution of student responses grouped by condition.

 170

Figure 6.1. How students described variables, grouped by the form of Pencil.cc they used.

 After coding all student responses, the data show that learners in the Text condition

preferred the variables-as-containers metaphor, followed closely by the place holders metaphor,

and were least likely to describe variables as pointers or as their own thing. Conversely, students

in the block condition were most likely to use the placeholder metaphor or see variables as their

own thing, and were much less likely to invoke the containers metaphor relative to their text-

based peers. Throughout the various analyses of outcomes from this study, when grouping

responses by condition, the Hybrid condition usually falls between the Blocks and Text

conditions, sometimes falling more closely to one than the other. When looking at student

responses to this conceptual question about the nature of variables, the Hybrid group aligns more

closely with the Blocks condition, showing a higher frequency of treating variables as their own

entity compared to text, and less likely to utilize the container metaphor favored by students in

the Text condition.

6	

10	

0	

10	

7	
8	

2	

9	

14	

12	

2	
3	

0	

2	

4	

6	

8	

10	

12	

14	

16	

Containers	 Placeholders	 Pointers	 Their	Own	
Thing	

Co
un

t	o
f	S

tu
de

nt
	R
es
po

ns
es
	

What	are	Variables?	

Blocks	

Hybrid	

Text	

 171
 One possible explanation for the higher frequency of the Blocks and Hybrid condition

treating variables as their own distinct entity is in how they are presented to the user in the blocks

palette. In blocks-based programming environments, variables are blocks in the same way loops

are things, conditionals are things, and, in the case of Pencil.cc, visual and movement commands

are things. This presentation seems to lend itself to treating variables as objects in their own

right. Alternatively, the container metaphor is less intuitive from the graphical layout of the

commands given the fact that variables are not visually depicted as encapsulating, holding, or in

any other way containing the value. Instead, in Pencil.cc’s blocks interface, the variable

identified lives on one side of an = with the value on the other. A possible explanation for the

Text condition’s more frequent use of this explanation is that the variable-as-container metaphor

is used explicitly in other courses taught by the teacher in these classrooms so, when students ask

for help with variables, it seems plausible that her response would utilize this metaphor. The

placeholder metaphor appears frequently across all three groups and is a perspective that aligns

with how the Quick Reference page on variables describes their use. Students who sought help

from the Quick Reference may have developed this intuition from the environment itself. It is

important to note that none of these responses are necessarily incorrect, or more correct than the

other, but instead, the differences are highlighted here to show how modality both directly (in the

case of Blocks and Hybrid describing variables as their own thing) and indirectly (in the case of

Text students using the container metaphor) inform emerging understandings of programming

concepts.

Conditional Logic

The second question on this portion of the survey asked students about conditional logic

statements, specifically asking about if and if/else statements in case students were not

 172
familiar with the term “conditional logic”. In open coding student responses, a number of

categories emerged, including students attending to how conditional statements are used to make

decisions and how if/else blocks can introduce branching logic to a program. Codes were also

added for students mentioning the need for a condition to be met, the mention of the words true

or false being a component of a conditional statement, and cases where students discussed if

and if/else separately or in relation to each other. There was also a code for misconceptions.

All of the codes are discussed in greater detail below. Figure 6.2 shows the result of coding

student responses grouped by condition.

Figure 6.2. Coded student responses to the conditional logic question grouped by condition.

 The first two codes in Figure 6.2 capture high level behavior of if and if/else

statements. Sixty-three of the 81 responses stated that conditional logic was used to decide what

code to run, and there was little difference by condition on the frequency of this response. An

example of this code is the student response: “If/else statements are used for telling a program to

do something if something else is happening”. The Branching Logic code relates to the first code,

but includes responses that attend to the fact that a conditional statements can result in one thing

22	

15	
13	

4	
6	 6	

19	

13	

6	
7	

4	
5	

22	

7	

2	

9	

0	

5	

0	

5	

10	

15	

20	

25	

30	

Decides	What	
Gets	Run	

Branching	
Logic	

Condi?on	to	
Meet	

Boolean	
Statements	

If	and	If/Else	
Discussed	

Misconcep?ons	

Co
un

t	o
f	S

tu
de

nt
	R
es
po

ns
es
	

Condi/onal	Logic	Responses	

Blocks	

Hybrid	

Text	

 173
or another being run, i.e. that the a program’s execution can branch. An example of a typical

response that was coded for both of the first two codes is “If statements are basically conditions

where if a condition is met, a certain task will be done. If/else statements is almost the same

thing, but if the condition is not met, then a different task will be done”. The distribution of

responses across the Branching Logic question sees fewer Text condition students attend to this

feature of conditional statements, a possible explanation for this will be given in the discussion

of the If and If/else findings later in this section.

 The next two codes, Condition to Meet and Boolean Statements, are a mutually exclusive

pair that attend to how the student defines how the decision making process happens. The first

code captures learners’ responses that use general language suggesting that a condition needs to

be met, like the response: “If/else statements run code depending on whether a condition is met

or not”. Explicitly stating that expressions are evaluated that are either true or false is the

defining feature of the section code, like in the response: “if and else statements are conditional

statements. If something is true then it will do something, if something is false it will do

something else”. While these two codes are conceptually similar, they are split out, as Condition

to be Met is a more colloquial explanation whereas Boolean explanation is closer to textbook

descriptions of conditional logic. In terms of the distribution of responses, Blocks students were

much more likely to use the broader Conditions to be Met explanation, while Text students more

frequently spoke about Boolean values. This distribution suggests that Text students seem to

carry a more formal view of conditional logic, whereas students in the Blocks condition were

more likely to use a broader, less formal description. This potentially speaks to the comfort,

familiarity, and intuitiveness the modality provides to the learner. Where the Blocks conditions

understand what the construct does and can thus speak about it in their own works, whereas

 174
students from the text condition are more reliant on formal, textbook definitions to describe

the behavior of the construct. For both codes, the Hybrid condition count fell between the other

two.

 The next code captures when learner responses discussed the role of if statements and

if/else statements separately. A sample response of this variety reads “If/else statements

execute one action if a condition is true. This would be under the 'if' statement. If not, then under

the 'else' statement, there would be a different set of actions”. What is interesting about the

pattern of these codes is that no students in the Text condition treated if and if/else

statements as distinct things. This treatment of the two as separate may stem from the fact that, in

the Blocks palette used by both the Blocks and Hybrid conditions, there are separate if and

if/else blocks, whereas the Text condition never saw these two forms presented separately.

While this analysis does not have the power to claim that treating if and if/else statements

separately means students hold different conceptions of the construct, it does show how the

environment can inform students categorization of ideas. It is important to note that across all

three classes, the two forms of conditional logic were taught at the same time (i.e. they were not

taught separately).

 The final column captures responses that were incorrect or contained statements about if

and if/else statements that were not entirely correct. These responses were equally

distributed across the three conditions. A few student responses gave the impression that

if/else statements are event-based, meaning they are always running and wait for something

to happen, for example, one response reads “If / if/else statements are used to create instances

where they are to trigger once something happens. They are used to trigger when a specific time

or code arrives, like if a number instance is defined, and it applies to the statement, the if/else

 175
statement triggers, either doing it or doing something else depending.” A second example of

a response of this type reads: “If/else statements are used for telling a program to do something

if something else is happening.” Both of these responses suggest a reactive aspect of conditional

logic that implies they wait for something to happen. It is worth noting some introductory

programming environments such as Scratch, have an event-based blocks that demonstrates this

behavior called wait until, which has been identified as the source of unproductive

programming habits in students (Meerbaum-Salant et al., 2011). A number of students gave

similar responses suggesting that if/else statement execute when something happens (as

opposed to when a condition is true), this seemingly slight difference in language suggests a

larger conceptual difference with respect to how conditional logic actually behaves.

 A final aspect of the conditional logic responses that is worth highlighting is the diversity

of ways students described if/else statements. Across the 84 responses, there are a number of

different metaphors used by the students to describe conditional logic. Two students described

conditional logic as a “cause and effect” mechanism. Other students called if/else statements

“Plan A and Plan B.” A number of students described conditional logic using a navigation

metaphor, “In programs they are used to create two paths that the code can take.” One student

described conditional logic as a set of “guidelines” for the program, while another called them

“constraints” for the program. This richness of metaphors highlights the diversity of resources

learners have and do draw on to make sense of computational ideas as all of these metaphors can

productively be leveraged to effectively reason through a conditional statement in the context of

a program. A final interesting characteristic to mention from this dataset is that introduction of

anthropomorphism in responses. Three students used language of this kind, saying things like

“...It's like the way a computer can be prepared” and “They are like a computers logical

 176
thinking.” There is literature showing this type of language being used by younger learners in

talking about computers and robots (Sharona T. Levy & Mioduser, 2007; Rücker & Pinkwart,

2015), but little prior evidence of it being used at the high school level.

Iterative Logic

 Student responses to the question of what for loops and while loops do and what they

are used for, were generally clear and accurate. For example, a typical response was: “For loops

makes things happen for a certain number of times. A while loop makes things happen while a

condition is true. They can repeat things”. This response attends to the repeating nature of loops

and identifies for loops as being definite (i.e. run a fixed number of times) and while loops

being indefinite (i.e. repeat until a condition is met). In open coding the responses, a few types of

codes emerged. The first two capture whether or not a given response correctly specifies how

for loops behave and how while loops behave. The next code that emerged was students

mentioning that loops saved the user from having to type commands over and over again. For

example, one student wrote: “Loops repeat code so you do not have to write it multiple times.”

The last three codes capture errors or misconceptions students held, which are discussed in more

detail below. Figure 6.3 shows the distribution of these codes grouped by condition.

 177

Figure 6.3. Coding of student responses to the purpose of iterative logic question.

 The first two groups of columns show correct student responses describing for loops

and while loops. The distribution of these columns matches the larger trend found in this study

of students in the Blocks condition performing the best, while the Text condition performed the

worst, with the Hybrid group being between the two. The third cluster of columns shows the

number of students from each group that mentioned how looping is useful as it saves the user

from having to type commands over and over again. There are two interesting things to note

about this. First, is that, surprisingly, this issue came up roughly the same number of times for

each condition. Given that typing is generally considered to be more cumbersome than dragging-

and-dropping commands, one would expect this feature to be cited more often by the Text group.

The second interesting thing to note is that only in some cases does a loop actually save typing.

For example, a for loop that is defined to repeat five times can be replaced by copy and pasting

the commands inside the loop five times, producing the same result. However, if the loop is

indefinite and should repeat until a given condition is met, then it is not possible to implement

14	 14	

7	

3	

1	 1	

12	

10	

7	
8	

2	

4	

7	 7	
6	

5	

1	

4	

0	

2	

4	

6	

8	

10	

12	

14	

16	

Define	For	
Loops	

Define	While	
Loops	

Save	typing	&	
Convenience	

Temporal	
ExplanaFon	

No	RepeFFon	 Incorrect	or	
MisconcepFon	

Co
un

t	o
f	S

tu
de

nt
	R
es
po

ns
es
	

Itera1ve	Logic	Responses	

Blocks	

Hybrid	

Text	

 178
that logic without a looping construct. In this case, the loop is not saving typing but

accomplishing a behavior that otherwise would not be possible.

 The three remaining codes capture incorrect responses that contain some misconception.

The first group, coded as “Temporal Explanations” capture responses where the students say a

loop causes commands to run for a set amount of time (as opposed to a fixed number of times).

For example, one student’s response starts: “Loops make something repeat for a given amount of

time…” This misconception about repetitions being tied to time passing is interesting and not a

misconception we have encountered previously in the literature. It’s possible that this is an

artifact of having students learn in a turtle graphics environment where loops execute at a slow

enough pace that the user can see the result of each step. In other words, when drawing a line 10

units long by asking the turtle to for [1…10] forward 1, the student could interpret this as

run for 10 seconds, as opposed to run the forward 1 command 10 times. It is also possible

that this type of response is a result of imprecise language usage by the students. I suspect that if

you were to further question the students who gave this type of response to further explain their

thinking, they would not hold fast to the temporal explanation, but it is mentioned it here as it is

an interesting pattern that may warrant future investigation.

 There were also responses that revealed other misconceptions around looping but did not

show up often enough to rise to their own category. For example, one student responded “Loops

make a program run without having to separately make the code, ” while a second student’s

response was “For and while loops are exactly what they sound like they make everything loop

over and repeat. They are used in programs to restart a program for example you get a wrong

answer the program will pop up once again.” Both of these responses seem to view loops as part

of the engine that drives the program, i.e. the thing that makes the program go. This is interesting

 179
as this perception has been reported on studies of student understanding of concepts in

Scratch, where it is a common practice to wrap the main logic of a program in a forever loop

(Meerbaum-Salant et al., 2011). This is often done to make games or other programs that run

continuously until manually stopped. This perspective seems less coupled to a specific modality

and more to the interactive turtle graphics environment that was used, and speaks to the

challenge of separating modality from the larger programming environment in which it is

situated and the set of capabilities it provides. The final code is in this section captures students

that gave responses that did not mention repetition, meaning they did not know what for or

while loops were used for (or, more sympathetically, that they just failed to mention this

defining feature of the constructs). A sample from this group reads: “Loops are ways to simplify

a programs function and can be used in several different ways”. Only four students from the

group of 81 responses fell into this category, meaning that 95% of students who went through the

introductory activity were able to give correct responses to the role of looping logic in writing

programs.

Functions

 The final conceptual category students were asked to define on the Mid survey was

functions. Two sets of codes were devised to organize the responses given by the students, but in

neither case did a pattern emerge across the three conditions. The first analysis is similar to the

approach presented for the responses about variables, looking at the metaphors students use to

describe functions. The second analysis looks at features or characteristics that students

highlighted about functions.

 Across the full set of responses, a number of different metaphors were used by students to

describe functions, including: functions as storage, functions as actions, functions as collections

 180
of commands, and functions as equations. Table 6.1 includes an example response for each

metaphor identified.

Table 6.1. Sample responses for different function metaphors identified.

Functions are… Sample Response
Instruction Sets Functions are set of instructions that create things. You can change

them to meet certain criteria
Equations A function is an equation using two or more variables to solve another

variable.
Variables Functions are similar to variables where they store something, but

they store a command that uses parameters, or inputs, to determine
the output of the function.

A Way to Do
Things

Functions are a way to make it easier to write large amounts of code.

Storage A function is like a storage for things that need to be referenced back.

 Only metaphors that were used by more than 2 students are included in this analysis, so

metaphors used by only a single student, such as functions are like systems and functions are like

shortcuts, are not shown. Also, it is important to note that not all responses included metaphors,

for example, a response like “Functions are things with parameters that execute lines of code

and reference the parameters” are not included in this coding. Figure 6.4 shows the results for

coding all student responses, grouped by condition.

 181

Figure 6.4. Student metaphors used to describe functions, grouped by condition.

 As previously mentioned, no clear pattern emerges from this coding. There are some

small patterns, but the counts are so low, that little can be gleaned from them. Instead, this

analysis is presented to highlight the diversity of metaphors used and as a possible direction for

future work.

 The second analysis that used this data coded student responses for other aspects of

functions that were attended to, such as why functions are used, characteristics of functions, and

concepts related to functions. Figure 6.5 shows the results of this analysis.

11	

4	

1	

2	

8	

3	

2	

3	
2	

12	

1	

3	

1	
2	

0	

3	

6	

9	

12	

15	

Instruc2on	
Sets	

Equa2ons	 Variables	 A	Way	to	
Do	Things	

Storage	

Co
un

t	o
f	S

tu
de

nt
	R
es
po

ns
es
	

What	are	Func4ons?	

Blocks	

Hybrid	

Text	

 182

Figure 6.5. Responses to the short answer function questions coded for features of responses,
grouped by condition.

 Like the previous analysis on the functions responses, a clear pattern based on the version

of Pencil.cc used by the student does not emerge from the data. Instead, this analysis gives

insight into students’ conceptions of functions more broadly. The first code, Modularization &

Convenience captures responses that attend to functions being able to be called multiple times

with different inputs to create different results, like the response “[Functions are] used when you

want to have many different outputs so you create a function and enter in different inputs to

come up with different outputs.” This ode also captures responses that attended to how functions

save the user from having to re-type a set of instructions every time they want to use it, as said

by one student: “[Functions are] used to reuse a set of instructions without retyping it”. The

second category that emerged from the open coding process was students mentioning the fact

that functions are things that can be called, as one student succinctly defined a function as “a set

action that can be called upon.” Students also attended to the fact that functions take inputs and

sometimes have outputs. The previous quote used as a demonstration of functions being called

multiple times was also coded for both the Inputs and Outputs categories. Many students cited

8	
9	 9	

1	

8	

4	

10	

4	

11	

3	 3	 3	

6	

3	

8	

3	

9	

2	

0	

2	

4	

6	

8	

10	

12	

14	

Modulariza3on	
	&	Convenience	

Can	be	called	 Take	Inputs	 Have	Outputs	 Use	Variables	 Like	Equa3ons	

Co
un

t	o
f	S

tu
de

nt
	R
es
po

ns
es
	

Func0on	Responses	

Blocks	

Hybrid	

Text	

 183
parameters as being a key feature of functions, like the student who said “A function is a set

of commands that requires parameters to perform a certain task”. These responses were also

coded in the Take Inputs category.

 Interestingly, the concept of the variable was closely tied to the function concept. For

example, one student wrote “[A function] is essentially a variable but in the form of a larger

equation” while another responded “Functions are a variable or variables you can make and call

at a later time.” and a third said “A function is a special kind of variable, as it stores a list of

actions to be done when the code is incorporated within the program”. While at a certain level of

abstraction the equating of variables and functions is both accurate and productive (such as when

using functional languages), but functions were not used in this capacity during the five-week

curriculum students followed. Instead, we suspect this relationship emerged out of the syntax for

function definition used by CoffeeScript, where the function name is on the left side of an equals

sign, with the parameters and definition on the right, which is quite similar to how variables are

defined. Figure 6.6 shows function and variable definitions in Pencil.cc in both the blocks

interface (Figure 6.6a) and text interface (Figure 6.6b).

(a) (b)

Figure 6.6. The syntax for defining functions in Pencil.cc in the blocks modality (a) and text
modality (b).

 184
 While there is not a clear pattern that emerged in terms of how the three conditions

informed students emerging conceptualization of functions, this association of functions with

variables is a compelling piece of evidence showing how representational infrastructure and

interface design can inform and shape students’ emerging conceptualizations of content.

 The final category that emerged from this open coding is the prevalence of students

equating functions with mathematical equations. For example, the entirety of one student’s

response to the question was “A function is an equation”. The linking of functions to equations

seems sensible given the overlapping terminology with math classrooms. Whereas the overlap

with variables emerged for representational reasons, the overlap with mathematics seems to

come from terminological sources. These two differing factors, that both influence students’

emerging understandings of core computer science concepts (representational and

terminological), speaks to the challenge for the learner in making sense of the concepts as well as

the challenge faced by educators and researchers in trying to education and interpret learning that

happens in the complex world of the learner.

 Having concluded our analysis of students’ open-responses to prompts on the concepts

covered in the five-week introductory portion of the course, the analysis now shifts to a

quantitative analysis of the content assessments. This analysis begins with a brief review of the

Commutative Assessment before diving into various analyses looking at differences across

concept, condition, and modality. The chapter concludes with a larger discussion linking the

analysis just presented with the analysis below, painting a larger picture of students’ emerging

conceptual understanding and the role that modality plays in this learning process.

The Commutative Assessment

 185
 The Commutative assessment is discussed in detail in the Methods chapter of this

dissertation (Chapter 3), but the design of the assessment, as well as the strategy for

administration during the study, are briefly reviewed here. The Commutative Assessment

consists of 30 questions spread over 6 conceptual categories: conditional logic, iterative logic,

variables, functions, comprehension, and algorithms. Each question on the assessment is

multiple-choice and includes a short piece of code followed by a question asking students to

identify the behavior of the script. The unique aspect of the Commutative Assessment is the fact

that the code snippet in the question can be presented in one of three modalities: Snap! blocks

(Figure 6.7a), Pencil Code blocks (Figure 6.7b), or Pencil Code text (Figure 6.7c). These three

modalities are isomorphic and have the same behavior if run in their respective environments.

The final important feature of the Commutative Assessment worth mentioning in this brief

review is the design choice to use the existing literature on misconceptions to create the incorrect

multiple-choice options. Figure 6.7 from Chapter 3 shows a sample question.

Snap! Pencil Code Blocks Pencil Code Text
(a) (b) (c)

Figure 6.7. The three forms programs may take in the Commutative Assessment.

 Three versions of the Commutative Assessment were created for this study. All three

versions ask the same questions in the same order; the only difference is the modality of each

question. Over the three administrations of the assessment (Pre, Mid and Post) students see all

three modalities for every question. So if a question is asked in the Snap! modality on the first

 186
version of the assessment, it will be in the Pencil Code blocks on the second, and the Pencil

Code text on the third. Care was taken to ensure that within each conceptual category, questions

in all three modality are included. So students answer questions for every concept in all three

modalities on every test. Over the course of the study, students take each of the three versions of

the assessment once. This means that ever student answers every question in every modality. All

three versions of the survey were given at each administration, with roughly one third of the

students taking each version of the assessment at each administration. Collectively, this design is

meant to ensure that the results of the assessments are not skewed by having students from

different conditions or at different points in time disproportionately answer a given question in a

given modality.

 Basic validity measures were run on the responses collected in the second year of the

study and showed the assessment to have an acceptable reliability score across all items

(Cronbach’s α = .80). In this section, the scores presented are calculated by averaging together

every student’s score for every question that fell into the grouping being presented. Grouping

this way helps control for features of specific questions, and gives a more accurate within-

participant score for conceptual understanding. These scores are then aggregated across the full

set of participants.

Year One Concept by Modality Findings

The first analysis presented investigates if performance on conceptual questions differed by the

modality the question was asked in. For this analysis, data from the first year of the study was

used because the three conditions in year one were more similar, allowing the analysis to group

all responses together giving more statistical power and a larger set of responses from which to

investigate outcomes. Figure 6.8 shows the results of grouping student response by concept and

 187
modality from the first year of the study. It is important to note the while the questions on the

first year of the Commutative Assessment were largely the same19, the text questions were

presented in JavaScript, as opposed to CoffeeScript, so there is a slight difference between the

administrations across the years. Also, in this section, the blocks-based questions were rendered

with the Snap! notation, as the learning environment students used in the first year (Snappier!)

was based on Snap!

Figure 6.8. Student performance on the Commutative Assessment grouped by modality and
concept.

 Looking across the five conceptual categories covered in the Commutative Assessment

using paired-samples t-tests, the results show that students perform significantly better with the

blocks-based modality on questions related to iterative logic t(178) = 10.40, p < .001, d = 1.57,

conditional logic t(178) = 2.82, p < .01, d = .41 and functions t(178) = 2.89, p < .01, d = .41.

Students also performed better in the graphical condition on variable questions, but not

significantly so, t(178) = 1.66, p = .10, d = .25. Interestingly, there was almost no difference in

19 A few minor revisions were made between the two years, often in the form of new incorrect
responses being added to try and tease out further misconceptions, although a few code snippets
were modified and a small number of questions were added.

	

 188
how students performed on the comprehension questions between the two modalities t(178)

= .094, p = .92, d = .01. These data provide evidence showing that yes, modality does affect

novice programmers’ understanding of basic programming concepts. Further, these data show

that the effect is not uniform across concepts and does not seem to influence comprehension of

programs in the same way it effects basic understanding of what a construct does within a

program. Seeing that a difference does exist, the analysis continues by investigating each

category more carefully, looking at how specific concepts are differentially influenced by

modality and if they can be explained by misconceptions from the literature.

Iterative Logic

 While iterative logic showed the largest difference in scores between blocks-based and

text-based questions, a closer analysis of the questions shows that a majority of this difference

can be attributed to the difficulty students have with the structure of for loops (du Boulay,

1986). Two of our five iterative logic questions compared a graphical repeat block to a text-

based for loop (Figure 6.9).

Figure 6.9. A sample iterative logic question from the Year 1 version of the assessment.

 On these two questions, students performed significantly better in the graphical condition

(83% correct) versus the text-based for loop version of the question (16.1% correct). This

 189
provides compelling evidence for the finding that students find the repeat command

common to blocks-based languages easier to understand than text-based for loops, a finding

already documented in the literature (Stefik & Gellenbeck, 2011; Stefik & Siebert, 2013). By

examining the incorrect responses given by students, we can glean additional information about

how students understand the concepts with respect to the way they are presented. For example,

on the text-based for loop questions, almost half of the students (49.3%) chose an answer that

had each command inside the for loop run once and only once – suggesting it was not clear that

any looping was going to occur. When answering the same questions with the graphical repeat

blocks, only 1.5% of students chose those options. Second, in the text-based conditions, 20.7%

of students chose the answer that suggested the number of times a given for loop would run

was variable, and would be different each time it was executed. In the graphical repeat

versions of the questions, only one student chose this option. The Commutative Assessment

includes one looping question that compared a blocks-based version of a for loop to a text-

based version (Figure 6.10).

Figure 6.10. Comparing blocks-based and text-based for loops.

 On this question, students performed comparably, answering the question correctly

19.6% percent of the time in the graphical condition and 18.0% of the time in the text-based

condition. Two reasons may explain the lack of a difference on this question compared to what

we saw on the two questions that use repeat: the confusion around the use of the term “for” to

 190
capture the concept of looping and the lack of transparency in how for loops behave based on

this conventional representation (du Boulay, 1986; Stefik & Gellenbeck, 2011). This outcome,

along with the other for loop questions adds to the evidence that students find the word “for”

unintuitive, and that “repeat” better describes the looping behavior. As there are languages that

utilize the keyword “repeat” (Logo in particular comes to mind), this finding speaks more to

language design than features of the modality.

 The two indefinite loop questions use the while construct. There was little difference in

performance between the blocks-based and text-based versions of these questions. For both

questions, students’ performance was very similar (a difference of .6% and 2.3% for the two

questions). A closer investigation of the answers given (including incorrect answers) does not

show a systematic difference between the types of representations used. This suggests that, on

indefinite loops, the blocks-based representation does not seem to provide any distinct advantage

over a comparable text-based implementation. The lack of a difference between the two

modalities when using comparable syntax/keywords, both with while loops and for loops,

matches the finding from Lewis (2010), who found no significant difference in accuracy between

questions asked using the repeat block in Scratch and the repeat command in Logo. This suggests

that for iterative logic, the blocks-based representation does not provide additional conceptual

support; meaning the nested scoping and visual syntactic information did not better support

student comprehension. A closer analysis of the five iterative logic questions only reinforces

what we already know about the difficulty learners have with for loop syntax.

Conditional Logic questions

 Students performed significantly better in the blocks-based modality on three of the five

conditional logic questions. On one question the students performed comparably (.34% better on

 191
the blocks-based form), and on the last question students performed slightly better on text,

scoring only 2.72% higher. On this final question, students were asked about the overall behavior

of the script rather than just about the output. This brought it closer to our comprehension

questions than the others, which may in part explain the better performance for the text-based

representation - this issue is revisited later in the section. On the three questions where students

performed better in the graphical condition, two patterns emerged in analyzing the incorrect

responses, revealing a slight systematic bias. First, on the two questions where the test of an

if/else statement evaluated to true, students in the text condition were more likely to think

both the if and the else branches would execute (11.5% for text versus 7.1% in the graphical

case). This misconception has been identified in the literature (D. Sleeman, Putnam, Baxter, &

Kuspa, 1986) and is part of the work showing the if/else construct to be challenging for

learners. Second, we found that students in the text condition were more likely to think the last

statement is the one that is evaluated regardless of the outcome of the conditional logic

surrounding it. On all three questions where this was a possible incorrect answer, students were

more likely to choose it in the text-based condition (10.7% for text, versus 3.5% in blocks). This

could be explained a number of ways including: students thinking that the body of a conditional

statement gets executed regardless of the outcome of the conditional test, thinking the else

outcome is always evaluated (which matches the first misconception identified and could explain

two of the three questions we saw this error in), or not know how or when conditions evaluate to

true so defaulting to falling through to the last statement. Overall, the finding that students

performed better on blocks-based conditional logic questions matches Lewis’ pervious work

(2010).

Variables Questions

 192
 Like with the two previous conceptual categories, students performed better (although

not at a statistically significant level) on the variable questions when they were presented in the

blocks-based form. A more detailed look reveals that students only performed better on the

graphical case on three of the four questions in this category. On the one question where students

performed better in the textual modality (Figure 6.11), one difference stands out from the others:

variables are set then used, but never re-assigned, making it the simplest of the four questions.

Figure 6.11. The variable question that students performed better in the text condition than the
blocks-based condition.

 This suggests that the text-based representation is comparable to the blocks-based version

for simple variable assignment and usage, but that as statements and programs get more

sophisticated (i.e. variables are assigned to other variables or variable values are set then reset),

that the blocks-based modality is more intuitive for learners.

 Looking at the incorrect responses given by students across the four variable questions

reveals three findings that link modality to the existing misconceptions in literature on variables.

First, all four questions included an option that would be chosen by students who mistakenly

thought expressions do not get evaluated as part of assignment (option D in Figure 3.2 of

Chapter 3) and for all four questions, this incorrect option was chosen slightly more often in text

form (7.3% of text responses, 5.3% of graphical). A possible explanation is that the text form

does not provide visual hints about how to parse the statement. Second, we found that on text-

 193
based questions, students were more likely to incorrectly choose the answer that would result

if variables held their initial values, meaning the values do not get overwritten (30.6% in text,

14.5% in graphical). This misconception has not been previously discussed in the literature. The

hypothesis is that, in the case where students do not know what is supposed to happen when a

variable that already contains a value has a new value set to it, the assumed behavior is for

nothing to happen, i.e. the new value is ignored and the original value retained. Finally, students

were also slightly more likely to choose answers that fit with the linked variables misconception

(option A in Figure 3.2 of Chapter 3) in the text questions (23.4% of text responses, 17.4% of

graphical).

Function Questions

 The fourth category of questions asked students about the outcome of running programs

that contained function calls (Figure 6.12). On these questions, students performed better on the

blocks-based version on four of the five questions we asked. Looking at the errors students

made, there were a few cases where students showed signs of displaying documented

misconceptions and other patterns that seem systematic, but are new to this work and can, at least

partially, be explained by features of the modality.

 194
(a) (b)

Figure 6.12. Two sample function questions.

 First, one of the questions intentionally included a program that output the same word

twice in a row, meaning the correct answer include the duplicated word while other choices

included what students might assume was intended. Over half of the students (57%) in the text

version of the question incorrectly chose the non-duplicated responses, compared to 38.6% of

responses in the blocks-based version of the question. This suggests students found it easier to

trace the flow in the blocks-based modality and were less likely to fall victim to what Pea (1986)

calls an “intentionality bug”, where the learner assumes the computer knows the programmer’s

intention. A second systematic finding from analyzing these questions reinforces a trend,

observed in the variables questions, that students answering text-based questions were more

likely to think that expressions do not get evaluated but instead retain the expanded form (44%

for text versus 31% of graphical responses). A third trend we found is that students were twice as

likely (50% compared to 22%) to think that an unbounded recursive function stopped after a

fixed number of calls in the text-based form than the blocks-based modality. Finally, two of the

questions included functions that return values (report is the keyword used in the graphical

form). Figure 6.12b provides an example of this type of question. Across these two questions,

students were almost twice as likely to think the return command would cause an error in the

text-based form (24.5% of responses) than the blocks-based alternative (13.2% of responses). In

this case, one can point to a feature of the blocks-based modality that can account for this

difference. In the blocks-based language, functions that return values are depicted as ovals or

hexagons that need to be nested inside another block (like op2 in Figure 6.12b), whereas

functions that do not have return statements take the shape of the interlocking blocks (like the

 195
func1 block in Figure 6.12a). This visual difference at the place where the function is being

invoked and the ability for the blocks-based representation to enforce syntactic validity, provide

a pair of scaffolds for the learner that potentially explains this difference in student responses in

the two modalities.

Comprehension Questions

 The final type of question on the assessment is program comprehension. These questions,

unlike the others, focus more on the purpose of a script rather than on specific outcomes. In each

case, the question students must answer is: what does the following script do? These questions

require students to mentally run the program, often for different sets of potential inputs, and then

interpret that behavior into a natural language description of the behavior. Figure 6.13 shows two

examples of these questions, with the correct answer being that the program swaps two values

(left) and returns the largest of the three numbers (right).

a, b and tmp are variables. What
does this script do?

vs.

The function op4 takes in 3 numbers. What
does op4 function do?

vs.
(a) (b)

Figure 6.13. Two comprehension questions.

 Across the full set of questions, students performed comparably on the comprehension

questions by modality (a difference of less then 1%). Looking at the questions individually

reveals outcomes that correlate with the trends of how students did on questions from the

 196
conceptual category of the constructs used in the question. So, for example, question b in

Figure 6.13, involves conditional logic and we found students performed better on the graphical

versions of the question. Conversely, on a comprehension question that included a while loop,

students performed better in the text condition. Because these questions involve the additional

step of interpreting the behavior of scripts and the intention of the author, it becomes more

difficult to map incorrect responses to specific misconceptions from the literature. Additionally,

the small difference in performance between blocks-based and text-based questions is also

interesting as it is the only category for which this is true, which leads to some potentially

interesting conclusions. Notably, this suggests that while the graphical representation supports

students in understanding what a construct does (i.e. what the output from using it is), that

support does not better facilitate learners in understanding how to use that construct.

Concept By Modality Discussion

 On three of our four conceptual categories there were significant differences in

performance between modality, with the fourth category showing a similar, though less

pronounced, trend. Three features of the blocks-based modality in particular stand out as possible

explanations for this result. First, the graphical nesting of the blocks to denote scope appears to

be an effective way to depict this concept, as we saw fewer errors made on blocks-based versions

of questions where such misconceptions might be found. For example, it was more prevalent in

the text-based condition for students to incorrectly think both branches of an if/else

statement will be run. The difference between {}s and visually nested commands provides one

plausible explanation for this. This finding is consistent with the discussion in the previous

section on conceptual understanding and will be revisited at the end of the chapter. Second, the

fact that the blocks-based modality allows for statements that can be closer to natural language

 197
can, in part, explain some of the differences found. Notably, the command to assign values to

variables takes the form of set __ to __, which is a closer description to what the command

does than the comparable text-based language command of var __ = __. This difference is not a

feature of the blocks-based modality, but instead an example of the language designer taking

advantage of the more conversational format that the block-based modality enables. This

difference can explain at least part of the differences we saw in the variable questions. Finally,

the different shape of commands that return values from those that carry out actions in the

blocks-based modality provides a compelling explanation for some of the differences we found

in the function questions.

 One of the more interesting outcomes from this work is the uniformity among student

performance on the comprehension questions. There are a few possible ways to explain this. One

explanation is that the gains learners get from the graphical affordances of the blocks-based

modality, which support conceptual understanding of specific constructs, do not carry over to

slightly more challenging comprehension tasks. A second possible explanation is that it takes

longer than the time allotted in the study for the gains from the graphical layout to apply to these

types of questions. If this were the case, we would expect that if given more time, we would see

similar gaps in performance emerge. A third possible explanation is that the modality has little

effect on student comprehension, which seems at odds with other findings presented above

showing the difference to exist, but it is still possible. This section provides evidence showing

that modality matters with respect to reading programs. In the next section, the analysis looks at

how learning and performance differ across the three conditions of the study while trying to link

the learning environment with conceptual outcomes.

Learning Outcomes by Condition

 198
 Having looking at the conceptual differences using qualitative methods and showing

that modality does matter with respect to students interpreting programs, the section now turns to

if and how the modality used by the learner influences their ability to read and interpret programs

in different modalities and employing different concepts. The first objective of this section is to

show there is no difference across the three conditions in their performance on the pre-

assessment that might skew later findings. On the Pre content assessment, the mean scores by

condition are: 54.3% (SD = 12.2%) for Blocks, 53.4% (SD = 16.2%) for Hybrid, and 51.6% (SD

= 14.5%) for the Text condition. Running an analysis of variation calculation on these three

scores show them to not be statistically different from each other F(2, 84) = .27, p = .76. This

lack of difference means that the three classes are not different from each other with respect to

their incoming programming knowledge.

 With that established, we now move forward with our analysis of learning gains by

condition. Figure 6.14 shows cumulative scores for students across the three conditions on the

Pre, Mid, and Post Commutative Assessment administrations. Note the y-axis on the graph does

not go from 0% to 100%, but instead from 20% to 90%. This is done to make the differences in

conditions more clear.

 199

Figure 6.14. Student Commutative Assessment scores by condition over time.

 The positive slope for all three conditions between the Pre and Mid assessments means

that, in aggregate, students in all three classes performed better on the Mid survey than they did

on the Pre. Given that this was an introductory class it is not surprising, but still noteworthy and

an encouraging sign given that these three conditions cover almost the entirety of the modalities

used to introduce learners to programming. For all three conditions, the improvement on test

scores from the Pre to the Mid is significant (Blocks t(24) = 6.11, p < .001; Hybrid t(26) = 6.65,

p < .001; Text t(26) = 3.70, p = .001). While the improvements are all significant, the Blocks

condition saw the largest absolute gain, followed by the Hybrid condition, with the Text group

showing the most moderate gain.

 To answer the question as to whether or not students performed differently on the Mid

survey, an ANCOVA calculation was run showing a significant difference in student scores by

condition when controlling for Pre scores F(2, 75) = 4.53, p = .01. A Tukey HSD post hoc test

shows the difference between Text and Blocks to be significant at p = .01, while the Hybrid-

54.3%	

66.6%	 65.0%	

53.4%	

64.1%	 62.3%	

51.7%	
58.8%	

64.9%	

20.0%	

30.0%	

40.0%	

50.0%	

60.0%	

70.0%	

80.0%	

90.0%	

Pre	
Assessment	

Mid	
Assessment	

Post	
Assessment	

M
ea
n	
Ag

gr
eg
at
e	
As
se
ss
m
en

t	S
co
re
	

Score	by	Condi4on		

Blocks	

Hybrid	

Text	

 200
Block difference and Hybrid-Text distinctions are not (p = .39 and p = .20 respectively). This

means that the students in the Blocks condition did significantly better than students in the Text

condition on the Mid content assessment controlling for Pre scores. The Hybrid condition

students scored better than Text students, but not as well as Blocks, but neither difference was

significant.

 Turning the focus to the Post results, we see the gap between conditions that emerged at

the Mid point close, with all three conditions showing very similar final scores. An ANCOVA

calculation on the Post assessment controlling for Mid scores shows the three conditions to not

be statistically different from each other F(2, 74) = .85, p = .43. This mean that even after

controlling for the variance in prior scores, the three conditions’ Post scores are comparable.

Unlike the Pre to Mid change, only the Text condition had a positive slope on the Mid to Post

scores, meaning both Blocks and Hybrid students performed worse on the Post than they did on

the Mid administration of the Commutative Assessment. Comparing how the three conditions’

scores changed from Mid to Post, the data show a significant difference F(2, 75) = 5.16, p =

.008. A Tukey post hoc analysis shows there to be a significant difference between the Text and

Hybrid changes (p = .01) and the Text and Blocks differences (p = .03), while there was no

difference in the changes made by the Text condition relative to the Blocks condition (p = . 88).

To complete the analysis, looking at changes within each condition, none of the three conditions

showed a significant change between the Mid and Post assessments: Blocks t(26) = -.28, p = .78;

Hybrid t(23) = -.84, p = .41, and Text t(25) = 1.55, p = .13.

 These data show that students in the Blocks and Hybrid conditions saw the most gains

over the course of the five-week introductory period with respect to performance on the

Commutative Assessment. After the transition to Java, neither the Blocks nor Hybrid conditions

 201
improved, while the Text condition saw another incremental improvement, resulting in all

three conditions preforming comparably on the assessment given 15 weeks into the school year.

One possible explanation of these findings is that there is a ceiling effect for learners and that the

Blocks and Hybrid conditions reached that ceiling faster than the Text condition. In other words,

learners in the two conditions that enabled drag-and-drop composition were able to more quickly

understand the concepts at hand, while the Text condition took longer to make sense of the

activity of programming before reaching the ceiling associated with the curriculum students

worked through. This explanation partially fits with the attitudinal data presented in the previous

chapter as students in the Text condition saw increased levels of confidence, enjoyment, and

interest in computer science between the Mid and Post surveys. The finding that blocks-based

learning environments allows students to learn more quickly has been shown in some small

studies in informal environments (Price & Barnes, 2015), so this suggests this may be a larger,

more robust phenomenon.

 An interesting thing to consider is how and why student performance improved for

students in the Text condition after ten weeks of working in Java given the fact that there was

relatively little overlap in content between the ten weeks in Java and what was covered on the

Commutative Assessment. Additionally, students did not encounter any blocks-based programs

between the Mid and Post administrations. In other words, between the Mid and Post

administration, in the Text condition student performance improved despite not seeing the

content or the modality. This suggests that in their time working with Java on topics like basic

I/O and method calling, students’ general understanding of programming concepts, or at least

their ability to interpret programming across different modalities, improved. This finding is

unexpected and it will take effort to interpret. In the sections that follow we dig more deeply into

 202
these data to try and put together potential explanations and gain a more nuanced

understanding of these data and the role of modality and concept on learning and on learning by

condition.

Condition by Modality

 To better understanding the learning gains found in the previous section, we now take a

closer look at the data to try and understand the source of these learning gains, specifically

looking between the Pre and Mid surveys in hopes of attributing learning gains to the modalities

used in the introductory learning environments. First we look at differences in outcomes by

modality, before looking at conceptual outcomes. Figure 6.15 shows mean student scores on the

Mid administration of the Commutative Assessment grouped by Modality and Condition. As a

reminder, the three modalities used to present the questions can be seen in Figure 6.7.

Figure 6.15. Student scores on the Commutative Assessment grouped by modality and
condition.

65.0%	 62.2%	 64.4%	
62.1%	 59.7%	 58.8%	

53.6%	 52.3%	
58.3%	

0.0%	

10.0%	

20.0%	

30.0%	

40.0%	

50.0%	

60.0%	

70.0%	

80.0%	

90.0%	

Pencil	Code	
Text	

Pencil	Code	
Blocks	

Snap!	

M
ea
n	
St
ud

en
t	S

co
re
	

Scores	by	Modality	and	Condi3on	

Blocks	

Hybrid	

Text	

 203
 Across all three modalities, the ranking of student performance by condition is the

same: Blocks students performed the highest, Text students the lowest, with students from the

Hybrid condition performing between the two, sometimes closer to the high scores from the

Blocks condition (on Pencil Code Text and Pencil Code Blocks questions) and once closer to the

lower Text scores (the Snap! questions). Running an analysis of covariance calculation for each

group (again controlling for pre test scores) shows a difference between conditions on the Pencil

Code Blocks questions F(2, 75) = 4.77, p = .01, but no difference for the Pencil Code Text (F(2,

75) = 1.5, p = .23 or Snap! (F(2, 74) = 1.25, p = .29) questions. A Tukey HSD post hoc test for

the Pencil Code Blocks questions show there to be a significant difference between the Blocks

and Text conditions (p = .01), but not between Hybrid and either the Blocks (p = .60) or Text (p

= .10).

 While not much can be definitively said about the relationship between modality and

condition due to the relative lack of statistical power from this sample, there are suggestive

trends that are important to note. The first, mentioned in the previous paragraph, is the consistent

ordering of the three conditions in terms of performance. The fact that the Blocks condition

performed highest on all three modalities suggests that the understanding that forms in one

modality is not tightly coupled to that modality. An alternative interpretation of this finding is

that the ability to make sense of programs developed in the blocks-based modality is not tightly

coupled to that modality. This suggests a potential form of near-transfer from the blocks-to-text

modality, but the data presented are not robust enough to strongly support this claim. This lack of

statistical differences across modalities does, in part, fit with other work showing a lack of

conceptual transfer in novices when learning a second programming language (Scholtz &

Wiedenbeck, 1990; Wiedenbeck, 1993). However, it is important to note that unlike this prior

 204
work, the question being pursued here is focused on modality as opposed to the language

itself. This differing trend can be interpreted by saying that transfer across modality (i.e. from

Pencil.cc’s blocks interface to Pencil.cc’s text interface) is ‘nearer’ than moving across

programming language (like from Java to Python). A final thing to note is that once again the

Hybrid conditions performance lives between the Blocks and Text condition, a recurring position

for that condition across a number of analyses presented.

Condition by Concept

 The next analysis presented looks at difference in conceptual understanding by condition

and concept. This section answers the question of whether or not certain concepts are more easily

learned through working in one modality versus another. Figure 6.16 shows student performance

across the six concepts assessed on the Commutative Assessment. As a reminder, these scores

are only from the Mid administration of the assessment, meaning students had just completed

five weeks of working in their version of the Pencil.cc environment.

 205

Figure 6.16. Student performance on the Mid administration of the Commutative Assessment
grouped by condition and concept.

 Like with the previous analyses, the Hybrid condition often scores between the Hybrid

and Text, however, in this by-concept analysis, this is the case only half of the time. In these

three conceptual categories (Comprehension, Conditional Logic, and Functions), we find the

pattern of students in the Blocks condition scoring the highest, with Hybrid students in the

middle, and the Text condition scoring the lowest. For two types of questions (Algorithms and

Iterative Logic) the Hybrid condition scores the highest, while in Variables, students in the

Hybrid condition scored the lowest. In none of the six categories did students from the Text

condition score the highest.

 Running an ANOVA calculation on each concept category shows only a significant

difference across the three conditions for the comprehension questions F(2, 80) = 4.95, p = .009.

A Tukey HSD post hoc analysis shows that significant differences exist between the Text and

Blocks condition (p = .01) and the Text and Hybrid conditions (p = .10). This difference by

73.0%	

50.0%	

76.4%	

52.6%	 54.0%	

84.4%	

73.2%	

42.9%	

73.9%	

51.4%	
55.3%	

75.7%	

68.6%	

31.4%	

68.0%	

40.7%	

52.3%	

78.6%	

0.0%	

10.0%	

20.0%	

30.0%	

40.0%	

50.0%	

60.0%	

70.0%	

80.0%	

90.0%	

Algorithms	 Comprehension	 Condi=onal	
Logic	

Func=ons	 Itera=ve	
Logic	

Variables	

M
ea
n	
St
ud

en
t	S

co
re
	

Scores	by	Concept	and	Condi3on	

Blocks	

Hybrid	

Text	

 206
modality is largely driven by the extremely low score on the comprehension questions by

students from the Text-based condition. The finding that students scored particularly low on the

comprehension questions echoes the analysis from the year one assessment (Figure 6.8) and

matches prior work on students’ difficulties in drawing larger meaning and purpose when

reading programs (A. Robins, Rountree, & Rountree, 2003). That the scores on these questions

were the most stratified suggests that comprehension may be one place that learning with a

specific modality may be helpful. When composing programs with blocks-based tools, the user

has compositional units that match the larger cognitive building blocks (the command itself)

allowing less cognitive effort expended on the implementation of that idea, and thus, the learner

has more practice thinking at a conceptual level.

Perceived Ease-of-Use of Concepts by Condition

 The last analysis in this chapter looks not at emerging conceptual understanding or

performance on the assessment, but at the perceived ease of the concepts covered. On the

attitudinal assessment given at the midpoint of the study, there were a series of questions asking

about perceived ease-of-use of the various programming concepts covered on a 7-point Likert

scale. The mean responses to the Likert questions are shown below in Figure 6.17. The higher

the score, the easier a student thought it was to use the given concept.

 207

Figure 6.17. Student reported ease of using concepts in their respective version of Pencil.cc.

 Running an ANOVA calculation for each conceptual category finds two of the four

concepts to be statistically significant, Conditional Logic F(2, 78) = 2.92, p = .05 and Variables

F(2, 78) = 2.63, p = .08. A Tukey HSD post hoc analysis for the Conditional Logic scores shows

the Blocks condition to be moderately different from both the Text condition (p = .10) and the

Hybrid condition (p = .09). In other words, the students found conditional logic easier to use in

the Blocks condition than in either the Text or Hybrid condition. The difference between Blocks

and Text conditions can be explained by the modality itself; in other words, students found using

conditional logics in the drag-and-drop blocks modality to be easier than the all text condition.

That the Hybrid condition was the lowest of the three, and very close to Text, suggests that

learners in the hybrid condition viewed using conditional logic in their programs more like the

Text students than the Blocks students. This is possibly explained by the fact that the Hybrid

implementation used allowed learners to add new statements to their program via a drag-and-

drop mechanism, but once added, all future edits were made with the keyboard since the editor

presented code in a text format. As will be shown in the next chapter detailing how learners used

5.0	

4.0	
4.5	

5.0	

4.1	 3.9	 4.2	

5.0	

4.1	

3.2	

3.9	
4.2	

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

Condi1onal	
Logic	

Func1ons	 Itera1ve	
Logic	

Variables	

M
ea
n	
Li
ke
rt
	S
co
re
	

Ease-of-Use	of	Concepts	by	Condi8on	

Blocks	

Hybrid		

Text	

 208
the environments, in the Hybrid condition, students often did the supplemental editing (like

making minor edits to their code) with the keyboard. This may have contributed to the ease-of-

use being more comparable to the Text condition than the Blocks condition. Another explanation

that will be discussed in the next chapter has to do with how the students chose to use the drag-

and-drop feature of the Hybrid interface, specifically, the practice of using the blocks for

reference as opposed to for composition, especially for the conditional statements and iterative

logic.

 The second significant difference found is with the concept of Variables, where the Text

condition was the outlier, having a significantly lower reported ease-of-use score than the other

conditions. When comparing the Blocks condition to the Text condition, the Tukey HSD post

hoc analysis score was p = .10, and the Blocks to Hybrid condition also did not reach a level of

significant (p = .15). Whereas the use of a conditional statement in the Hybrid condition often

included non-trivial post addition edits (i.e. defining the test and the commands to be followed

after the test is evaluated), when adding variables to a program via drag-and-drop, only very

straightforward edits are necessary, like entering the name or changing the value, which in both

case are simple substitutions. This is in contrast to working with conditional statements or

iterative blocks that also require introducing new nodes into the program’s abstract syntax tree

(i.e. adding new blocks to the program in the Blocks condition). In this way, the addition of

variable blocks to a program in the Hybrid condition presented a template that required simple

replacements, a pattern of use frequently observed in the Hybrid condition. Looking at the

amount of modification after an addition also seems to explain the perceived ease-of-use for the

other two categories, in that Functions usually require only the renaming or updating of elements

present in the blocks. Iterative Logic in the Hybrid condition was reported between Blocks and

 209
Text, which can be explained, in part, by the fact that definite loops (for loops) are more

like variables and Functions requiring only direct replacement, whereas indefinite loops (while

loops) are closer to conditional logic in that they require more substantial edits to be made. So

one explanation for Hybrid iteration living roughly halfway between the Text and the Blocks

responses (unlike the other three conditions) is the blending of the easily substituted for loop

and the more complicated while loop. The fact that all iterative logic is grouped together means

this survey does not have the specificity to tease apart these two looping constructs. Looking

across the data, one explanation for ease-of-use in the hybrid condition is that the simpler a

required post-addition modification is, the easier the construct to be used is perceived.

 Comparing Figure 6.17, which shows the ease-of-use of concepts, and Figure 6.16, which

shows scores by concept and modality, for the four concepts that overlap, it appears there is a

relationship between how easy a concept is perceived to be and how well students did on that

question. Running a Spearman rank-ordered correlation returns a value of rs = .78, showing a

high correlation between students perceived ease of use of a concept and their performance on

the assessment of that concept. This suggests that students own perceptions of ease-of-use are

accurate predictors of their knowledge of that concept. That said, there are some seeming

outliers, like the Hybrid condition’s relatively low ease-of-use score for conditional logic while

performing well on those questions. Likewise, the Text condition’s reported ease-of-use for

variables does not align with how well they scored on the perception questions.

Discussion

 This chapter investigated the conceptual learning that took place during the first five

weeks of the two iterations of the dissertation study. A number of different data sources were

 210
used and analyses conducted to tease apart differences related to students’ understanding of

concepts and the modality they used to learn the concepts. This work is in an effort to answer the

research questions about the relationship between representation and conceptual learning.

Throughout the chapter and this discussion, differences in outcomes are attributed to the

modality students used. This is a reasonable causal leap to make given that all of the students in

the study worked through the same curriculum with the same programming environment using

the same language and had the same time-on-task, in the same classroom, with the same teacher.

The only thing that differed across the three conditions of the study was the programming

modality used by the programming environment and the participants themselves.

Modality Matters

 One of the major contributions of this work is showing that when it comes to novices

learning to program within introductory environments, modality matters. How and when this

statement is true, as well as when the impacts of modality start to erode, are discussed throughout

the four analysis chapters in this dissertation. This chapter shows how modality affects

conceptual learning. The first section of this chapter provided a qualitative analysis of students’

descriptions of various core programming concepts. This analysis showed differing metaphors

used to talk about concepts by students from different conditions, as well as students attending to

different aspects of a concept based on the modality used in the introductory environment. In

some cases, these different patterns of responses could be linked to features of the modality. For

instance, students in the Blocks condition were more likely to discuss if and if/else blocks

as two distinct things due to their being portrayed as two separate blocks in the palette. In other

cases, the differences did not seem tied to the modality itself, such as the case of students in the

Text condition more frequently describing variables as Containers, for which the best

 211
explanation we devised had to do with the teacher’s practices and the higher likelihood of

students asking for the teacher’s help in explaining how variables are used in the Text condition.

 This chapter shows the influence of modality on student learning after programming with

a given modality as well as students’ ability to comprehend programs with different modalities

when learning with the same programming tool. These differences are present at the conclusion

of the five-week introductory portion of the class in every analysis conducted, including: by

overall performance on the assessment, in conceptual understanding, in performance on

questions grouped by modality, and on perceived ease-of-use by concept. However, it is

important to note that these differences are not robust across the entire data set. There are places

where modality seems to have little or no effect, as was seen in the last chapter where, in

numerous areas, little difference was observed with respect to various attitudinal dimensions.

Also, in later chapters we will see these differences fade as students move away from the

introductory environments and begin working in Java. This trend was visible on post scores of

the Commutative Assessment presented in this chapter, but will explored in greater depth in

Chapter 8. There were also places in this chapter where there appear to be differences by

modality, but the nature of the data and the power provided by the sample size prevent us from

making stronger statistical claims about differences.

Blocks versus Text

 A second major contribution of this dissertation is isolating a programming

environment’s modality (graphical blocks, textual, and a hybrid blocks/text) providing the ability

to link conceptual and learning outcomes and performance on standardized assessments with a

modality, or even a specific feature of a modality. Using data from the second year, a number of

differences on test performance emerged. The first finding is that students using a blocks-based

 212
modality showed significantly higher learner gains after five weeks of class compared to

their text-based peers (after controlling for the prior knowledge). A second finding shows that

this difference in performance does not persist after moving onto a professional text-based

language and environment. After 10 weeks of working in Java, students in the two conditions

showed nearly identical scores. As discussed previously in the chapter, there are a number of

possible interpretations of this data, including: that blocks-based interfaces allow students to

learn faster, that learning gains from blocks-based interfaces do not transfer to text-based

languages when the environment and underlying language change, or that the text-based

modality better prepares learners to transition to other text-based environments.

 Digging into this finding revealed a consistent pattern of students in the Blocks condition

outperforming their Text-based peers. When looking at performance by the modality of the

question being answered, the Blocks condition scored the highest for all three modalities (Pencil

Code Blocks, Pencil Code Text, and Snap! Blocks). This was surprising as it meant the students

in the Blocks condition did better on the Pencil Code Text questions than the students who had

exclusively been using the Pencil Code text interface for the previous five weeks. Likewise, the

Blocks condition did better on the Snap! questions, which used an interface neither condition had

seen. There are a few possible ways to interpret these numbers. One interpretation is that there is

some form of near transfer occurring from the Pencil.cc blocks interface to both another blocks

interface (Snap!) and to a similar (or syntactically identical) text interface (Pencil Code Text). A

slightly different interpretation is that the learning that happened by students in the Blocks

condition is not so tightly coupled to the interface that it cannot be used across languages. The

distinction between these two interpretations is whether the learning that occurred was about the

modality or the underlying concept. Other data presented in this chapter suggests the latter

 213
explanation is the more likely of the two; that the blocks interface helps learners develop

understandings of the foundational concepts, as opposed to a type of meta-representational

competence (diSessa et al., 1991) that applies across programming modalities and interfaces.

 Just like with the questions-by-modality finding, students in the Blocks condition

outperformed their Text counterparts in all six content categories on the Mid assessment. This

means that the utility of learning to program in a blocks-based interface is not confined to one

specific concept or another. This finding is interesting to interpret alongside the analysis from the

first year of the study that showed that concepts are more easily parsed in the graphical modality

relative to the text-based alternative, although not always statistically significantly so (Figure

6.8). Taken together, this suggests that the blocks-based modality does provide learning supports

for novices while working in introductory contexts. That last clause ‘introductory contexts’ is

important, as these differences did not persist once students moved on to learning Java. This is

shown in Figure 6.14 and further explored in the next section. This means stronger claims about

the power of blocks-based tools beyond the context and programming environment in which they

are situated cannot be made. Also, as discussed in the last chapter, the blocks-based interface is

better with respect to other important aspects of learning, such as confidence and authenticity.

 The final analysis presented in this chapter, which directly compared the Blocks and Text

conditions, looked at perceived ease-of-use of different constructs in the different modalities.

This is the one place in this chapter that the data starts to incorporate dimensions of program

generation alongside program comprehension. Here again the Blocks condition outperformed the

Text condition across all four concepts, suggesting the benefits of blocks-based interfaces extend

beyond comprehension. This dimension of the comparison is further explored in the next

chapter.

 214
The Case of the Hybrid Condition

 One of the questions this dissertation is pursuing is the exploration of programming

environments that blend features of a blocks-based interface with characteristics of text-based

tools. In looking at conceptual learning by condition, the Hybrid design chosen for this study at

times was more closely aligned with the Blocks condition and other times was more similar to

the Text group, but more often than not, fell somewhere between the two. In the qualitative

analysis that opens this chapter, the Hybrid condition was between the Blocks and Text

conditions20 on two-thirds (18 out of 27) of categories identified. This position of falling between

the two can also be found in the quantitative learning outcomes analysis, where aggregated

scores from students in the Hybrid condition were between the Blocks and Text scores for

questions across all three modalities in four of the six concepts, and on three of the four concepts

on the ease-of-use Likert questions. This suggests that the Hybrid condition is indeed a

successful hybrid in that it produced results suggesting it shares characteristics of both of its

ancestors. This shows that it is possible to blend the two interfaces together, and produce a new

interface that shares characteristics of both ancestors and thus lives between the two of them.

 Another interesting piece of insight, which can be gleaned from analyzing the Hybrid

responses, is to compare them relative to the Blocks and Text conditions to see with which

condition the Hybrid group more closely aligns. For example, in looking at the ease-of-use

responses (Figure 6.17), the Hybrid condition is within a tenth of a point of the Blocks condition

for Functions and Variables, with the Text condition being the outlier, and within a tenth of a

point of the Text condition for Condition Logic. This tells us that for the Hybrid design used in

20 This number also includes categories where the Hybrid condition had the number of responses
as either the Blocks or Text group.

 215
this study, using Conditional Logic was more similar to working with the text version of

Pencil.cc, while the Functions and Variables were closer to the Blocks version of the

environment. As discussed earlier in the chapter, this tells us something about how students used

these constructs in their programs. Comparing Hybrid to the other two conditions is useful in

other places as well, such as the qualitative coding, which shows us again that for Variables, the

Hybrid condition was consistently closer to the Blocks condition’s responses than the Text

condition’s (Figure 6.1).

 There are still some questions about the Hybrid condition that can not yet be answered

using the data presented in this chapter, such as how programming practices in the Hybrid

condition compared to the other conditions or how programs authored in the Hybrid differ from

the others. These questions will be pursued in the next section and then revisited in the final

chapter of the dissertation where findings from the various analyses will be combined.

Conclusion

 Understanding the relationship between modality and learning is a central goal of this

dissertation and is consequential with respect to deciding what tools to use in classrooms and to

inform the design of future introductory programming environments. The above analyses are

important as they show us that there is a difference across the modalities and that the answer is

not as simple as one modality is universally better than the other. Instead, these different tacks

reveal different facets of the complex relationship between modality and understanding, which

themselves are a part of a larger and yet more complex relationship between modality and a

learner. The data in this chapter contribute to the emerging finding that modality is not a uniform

monolithic thing, and that it affects different aspects of programming differently and like-wise, it

 216
affects different learners in different ways, further complicating the challenge of trying to

understand this basic relationship.

 This chapter fills in another dimension of the larger questions being asked in this

dissertation about the relationship between modality and learning to program. The previous

chapter looked at attitudinal and perceptual outcomes from having novices use different

modalities, whereas this chapter focused on learning and conceptual gains associated with

working in the different modalities. What has yet to be discussed is the programming practices

each modality engenders, the characteristics of programs authored across the three environments,

and questions related to if and how these different modalities prepare learners for transitioning to

professional text-based languages. These topics are the focus of the next two analysis chapters

and continue to fill in the bigger picture of the relationship between modality and learning.

 217
7. Practices and Artifacts

 This chapter answers the third and final component of the first set of research questions

being pursued in this dissertation: How do modalities influence learners’ emerging programming

practices and the artifacts they construct. The chapter begins with three vignettes (Erickson,

1986), one each from the three modalities used by students in the study. In each vignette, the

student is trying to write the same program as part of a one-on-one interview with the lead

researcher. The goal of this section is provide a sense of what it looks like for students to author

programs in each modality. For each vignette, attention is paid to practices that were uniquely

afforded by that specific modality. A brief discussion after each vignette summarizes the

differences of the three. From there, the chapter shifts to look at programming practices across

the full set of participants. To accomplish this, the computational data collected (code snapshots

and programming events) are used to look at the characteristics of the programs written, patterns

in how and when students chose to run their programs, and characteristics of how the blocks

were used in the composition of programs. For each of these dimensions, comparisons are made

across the three modalities. The chapter concludes with a discussion summarizing the findings

from this chapter and setting the stage for the transition to the Java data that will happen in the

next chapter.

Three Vignettes

 As part of the Mid interviews, students from each of the three conditions were asked to

write a short program in Pencil.cc. As a reminder, these interviews were conducted in the sixth

week of the study, after students had completed the Pencil.cc portion of course and just started

working with Java. Each student used the same modality during the interview that they had been

 218
using for the previous five weeks. The analysis starts by focusing on the unique interaction

patterns and distinct practices supported by the three modalities. As such, not every moment of

the three programming sessions are present, but instead an effort was made to provide enough

detail to give a sense of how the sessions progressed, with an emphasis placed on key moments

and interesting interactions.

 A total of 12 interviews were conducted at the midpoint of the study, four from each of

the three conditions. The vignettes presented in this section were selected because the students in

each proved to be the best demonstration of the various affordances of the modality. None of the

vignettes presented were outliers from the other of the modality, but just serve as the best

example (sometimes because of the bugs they encountered while writing their program or the

number of different aspects of the modality they used while writing their program). We do not

have a way to determine if the patterns observed are representative of the entire study population

due to limitations in the data collection strategy used, thus cannot make claims about the

typicality of the vignettes. Instead, they serve as specific demonstrations of the possible ways the

different modalities are used by learners.

 The vignettes follow students as they try to write a program in response to the following

prompt:

Can you write me a program that picks a random number less than 15 and then prints out
every multiple of that number that is less than 100? So, for example, if your program
picked the number 11, it would print out 11, 22, 33, 44, 55, 66, 77, 88, and 99. If it picked
the number 2, it would print out 2, 4, 6, 8, 10, 12, 14 and so on, up until 100.

It was not always clear to students what they were being asked to do from this concise

description, so the prompt was often followed by questions from the student. Every student

ultimately understood the prompt and either wrote a correct program, a close to correct program,

 219
or was able to articulate an algorithm for producing a correct program. This specific

programming challenge was selected for a number of reasons. First, it is relatively concise, so it

can be quickly described and is small enough that most students were able to complete it in the

time allotted. Second, the solution requires students to use variables and iterative logic (there are

both definitive and indefinite looping solutions) while also potentially including conditional

logic, so a number of concepts are encountered. A third useful characteristic of this problem is

that there are a number of ways to solve it, including using while loop and adding the random

number each iteration, using a while loop and multiplication along with a variable starting at

one and increment each iteration, or calculating the number of iterations up front and using a

for loop to control the looping. A final feature of this problem is that it has a number of natural

pitfalls that students frequently encountered. Most solutions to this problem require two

variables, one to keep track of the growing number and a second to store the random variable,

trying to solve this problem with a single variable was a frequent approach taken and always

resulted in incorrect results that students had to debug. It is also worth noting the decision to use

a random number instead of asking the user for input was because we were less interested in

students remembering syntax and more about their ability to incorporate programming

constructs. Thus, we did not want learners to get stuck on getting student input, instead we

wanted them to be able to jump right into the central logic of the program, which could be more

quickly accomplished with the random number approach. While there are many ways to write

this program, the most common approach (and the one taken by all three of the students profiled

below) follows the logic shown in Figure 7.1.

 220

(a) (b)
Figure 7.1. A blocks-based (a) and text-based (b) correct implementation of the prompt being
worked on for these three vignettes.

 There are a few things to note in the prompt and the correct solutions the students

created. The first is that it asks students to use variables as well as iterative logic. All but one

student used a while loop (one student did complete the program using a for loop, adding

additional calculations to figure out how many times the loop would need to iterate up front).

The solution also requires the use of more than one variable, a feature most students did not pick

up initially, but instead had to figure it out as they worked through the program. Finally, the

inclusion of the + 1 command in the first line of the solution is due to the fact that if the

random 15 call returns 0, the program will get stuck in an infinite loop.

Blocks Condition Vignette

 The portion of the interview being used for the Blocks condition vignette lasted 10

minutes and 22 seconds. During this time, we see the student leveraging various affordances of

the blocks-based modality, including browsing, drag-and-drop composition, and hover-over tips.

We now carefully lead you through this episode, before concluding with a brief discussion at the

end of this vignette from the Blocks condition. After asking a clarifying question, the student

begins to work on his program by clicking through a number of categories in the blocks palette:

Operators, Control, Sprites, Sound, Text, Art, Move, Control (where he scrolls up and down),

 221
and finally Operators for a second time. Once returning to Operators he scrolls down and

finds the random block, which he drags onto the canvas. He then clicks on the number input of

the random block and changes the value from the default 6 to 15. Next, he takes a moment to

think, closing his eyes, then opens them and resumes clicking through the categories: Text,

Move, Control. As he scrolls up and down in the category, he says "there's just so many

possibilities, you know, different ways I could do it." Next he drags out the for block before

dragging it back to the palette (so not adding it to the program). He then clicks on the Operators

draw and adds the function block21 to his program. With the function block added, he

clicks on the Control category again, scrolls down to the while block and hovers over it,

appearing to read the hint text for the while block that reads "Repeat while a condition is true."

At this point, the interviewer intervenes, asking the student what his approach is. He responds:

"well, I want to set a variable and that variable equal to the random number. And then, put the

piece of code that says ‘increase by’ (long pause) and then have that be the random number." He

then drags out the variable block22, which contains the code x = 0, and drags the random

15 block from his program into the right side of the assignment block. Next, he changes the left

side from x to rand by typing it in, resulting in the first line of his program reading: rand =

(random 15).

 With this first statement complete, the student resumes verbalizing his algorithm. "Ok, so

like, have it increase by rand and then, at the end, say write, whatever the result of that is,

21 The function block does not actually say function, but instead is a template for defining a
function that has the characters f = (x) -> inside a c-shaped block, with f and x being slots
that can be replaced with the function name and parameter names respectively.
22 The variable block contains the text x = 0 by default, with the x and 0 being slots that can be
replaced by the variable name and the initialization value respectively.

 222
repeat it, but repeat it until (long pause) ok, ok, ok." He then quickly removes the

function block he had added and drags in the while block he had been looking at before,

populating the left side of the < comparator with x and the right with 100. After another long

pause, the interviewer asks him what he is thinking, to which he explains a few more steps in his

algorithm, culminating in his adding the statement write rand before his while loop. He

then clicks on Operators and drags out the += operator block, which he adds inside his while

loop and fills in the two empty slots with rand and 1, resulting in the statement rand+=1.

After a second in thought, he changes the left side of the += assignment to x, then quickly adds a

new variable block before the while loop, which he uses to initialize x. In a flurry of quick

changes, the student changes the x += 1 command to om += rand and adds a write block

inside the while loop to print out the variable’s value and a second assignment value at the end

of while loop. When asked what om meant, he said it was just a random name he came up with.

By this point, the student had been working on his program for 6 minutes at 26 seconds and

produced the program shown in Figure 7.2a.

(a) (b)

Figure 7.2. The program the student wrote in six-and-a-half minutes of work (a) and the error he
saw after running it (b).

 223
 Having written this seven-line program, the student clicks the run button, and is

shown the error message shown in Figure 7.2b. Upon seeing this error on the screen, the student

pauses, reads the error, then says "OK" and clicks his mouse inside the slot assignment in line 5

of his program where om is first used. A second later, he drags a variable blocks into his

program and puts it above the om += rand block, changing the two default values of the

variable block to read om = rand and then clicks run button again. The updated program is

shown in Figure 7.3a.

(a) (b)

Figure 7.3. The program the student wrote in seven minutes of work (a) and the error he saw
after running it (b).

 This addition to his program introduces an infinite loop23, causing the program to not

print out anything for a few seconds before printing the error shown in Figure 7.3b, giving the

interviewer an opportunity to interject and ask the student about the changes he just made. After

a little back and forth, the student starts to explain his strategy24. "The random number (he puts

23 By assigning om to be equal to rand inside the while loop, the value of om never increases,
thus the while loop never hits its stop condition.
24 In the following quotes, text inside parenthesis describes what is happening on screen, words
in italics are what the student says aloud. The line number reference the code showing in Figure
7.3a.

 224
the cursor on line 2) I want to set equal to om (he moves the cursor first to the word rand in

line 5, then to om in line 5), and then I want it to increase om by the random number (he moves

the cursor down to line 6 and moves it from left to right as he speaks, circling rand with his

cursor as he says random number aloud), and then write it (he moves his cursor to line 7 and

again moves it from left to right, circling om with his cursor as he said it), and then set x equal to

that increased value (he moves the cursor to the next line and moves it back and forth over the x

= om block), so that if this is true (he moves the cursor up to the x < 100 block in line 4), I want

it to repeat it again (he moves the cursor up and down from line 4 to 8 repeatedly). That's what I

want to happen." During this walk through, the program stops itself and prints out a 6 followed

by a string of 12s that ran off the bottom of the screen. Having explained his intentions, he then

tries to figure out what happened, saying: "well, I think it worked once (hovering his mouse over

the first 6 and twelve printed to the screen) because it increased it, right, because the random

number is 6 (moving his cursor from line 1 in his program back to the 6 on the screen) and that

increased it by six (moving his cursor over the line 6 of his program where the addition takes

place), so it's twelve but wrote it over and over, probably because of this (hovering his mouse

over the newly added om = rand block). Yeah, it's because of this (pointing again to om =

rand)." The conversation continues for another minute, before the student finally says: "I don't

know, but that's my train of thought." After a few more minutes, the interview ends without the

student resolving his infinite loop issue, so the interview helps him fix his infinite loop bug. To

get the correct behavior, the interviewer only has to move the om = rand block from inside the

while loop to just before it. Seeing that this small change was all that was needed to have a

functioning program, the student says "Oh, there we go" and starts laughing about how close he

was to the solution. Having completed the description of this programming session, we now

 225
discuss the various affordances and supports provided by the blocks-based editor that were

on demonstration in this vignette.

Blocks Condition Vignette Discussion

 At start of the interview the student begins by clicking through different categories in the

palette, sometimes scrolling through the blocks within the categories, other times quickly

continuing to the next category. These actions highlight the support features of the blocks-based

programming interfaces used by this student. The “browsability” of blocks-based interfaces and

the logical organization of blocks were discussed earlier in this dissertation and have been

documented in previous work (Weintrop & Wilensky, 2013a, 2015b, 2013b). The fact that the

student cycled through nine categories before dragging out his first block speaks to how easy and

fluid this aspect of blocks-based tools can become. Alternatively, this pattern of use can be

interpreted as the learner is forming a dependence on the browsable category in order to write a

program. If the goal of the introductory environment is to prepare learners for more professional

text-based languages, this pattern is potentially problematic. Whether or not the browsability of

the Blocks and Hybrid modalities produces a negative outcome when shifting to a modality that

does not have the feature will be explored in Chapter 8. After adding his first block to the

program, the student changes the default value in random from 6 to 15. This may seem trivial,

but the presence of a default value serving as a template for how the block is used, is a powerful

and often transparent feature of blocks-based tools. In other non-blocks-based interviews, we see

students typing commands like random [1..15]25 and other incorrect statements, which show

the potential errors the templates can alleviate. We next see the student drag out a for block,

25 It is worth mentioning that this command is valid in Pencil.cc, but produces a slightly different
behavior.

 226
pause, hover the block over the canvas, then put it back in the palette, thus not adding it to his

program. This is comparable to typing in a command and then deleting it in a text editor. The

speed and casualness with which this can be done in the blocks-based interface speaks to how

quickly the user can compose programs and how the modality provides the ability to focus on

what statements to include rather than on the act of typing, which is often non-trivial for novices.

 The next affordance of programming in blocks, which is seen in this vignette, is the

learner hovering his mouse over the while block to see a natural language description of how it

can be used. A number of students mentioned this as being useful in their interviews, saying

things like “[In Pencil.cc] you don't have to type or remember code. you can just put your mouse

over it and it will tell you what it does.” As the student said this, she moved her mouse over a

block to show the hint text as a demonstration. It is worth noting that there is no natural analog in

a textual modality, at least not before a command has been added to the program. Instead, text

modalities need supports outside of the editor itself (akin to the Quick Reference menu) to

achieve a similar behavior.

 After using the hint, the next noteworthy event comes when the student drags out the

variable block and then drags his random 15 command into the right hand slot, resulting in

the statement x = random 15. What is interesting about this is that the chronology of creating

this statement does not match the left-to-right order of its final form. In other words, the student

defines the right side of the command (random 15) before the left (x =), which is a useful

feature of the blocks-based modality that is less natural (although certainly possible) in text-

based interfaces. This ease-of-editing was on display as the student’s algorithm took shape. This

can be seen in his removing the entire function block in a single drag-and-drop action then

 227
adding the while block, again with a single drag-and-drop command. These edits are made

quickly and with fewer keystrokes/clicks than would be necessary in a text-based editor.

 Continuing the discussion of blocks-based features supporting the novice programmer

from this vignette, we want to highlight the ease with which the student explained his program

with the blocks. In explaining what he wanted to have happen after programming the infinite

loop, he used the cursor to point to specific commands or parts of commands as he built his

explanation. This is not unique to the blocks-based modality, as it is similarly possible to do this

with textual programs, but the added spacing provided by blocks, the different colors, and

visually depicted slots for text entry all contributed to the ease of communication. The final

aspect of this vignette that should be noted is what was missing from this 10 minutes of

programming: the student never struggled with syntax, keywords, or the mechanics of

implementing his ideas. He paused only when trying to figure out what he wanted to do. This

speaks to how the blocks-based modality can push the mechanistic and syntactic aspects of the

act of programming to the background and allow the user to focus on the structure and

algorithmic challenges inherent in composing programs. Having presented the blocks-based

vignette and a discussion of what features of the modality were employed by the student, we now

turn to the Hybrid condition.

Hybrid Condition Vignette

 The vignette selected to serve as an example of what it looked like for a learner to

program in the Hybrid modality lasted a total of 9 minutes and 8 seconds, so roughly the same

duration as the vignette chosen to represent the Blocks condition. In this vignette, we see the

student leverage some of the affordances highlighted in the previous section, but also see an

increased use of the keyboard, blending conventional blocks-based and text-based authoring

 228
patterns. The student starts by clicking through the various categories in the blocks palette,

even as the interviewer is still describing the details of the program. With the goal of the program

outlined, the student first drags the random block into the palette, then puts the cursor next to

the default value of 6 and replaces it with 15. After asking a clarifying question, he then hits the

return button, giving himself a blank line to work on, and types: increase=0. He then returns

to the blocks palette, clicks through a few categories (Sound and Move) before opening the

Control group and dragging a for block onto the canvas. The for block provides a template

that defines the looping structure and provides a space to define what will happen inside the

loop. With the for loop in his program, he deletes the empty command nested under the for

statement and then moves his cursor up to change the portion of the code that determines how

many times the loop will execute. After deleting the placeholder inside the for loop the editor

displays a red x next to the loop’s definition. This denotes there is an error in the code, in this

case, because there is nothing inside the for loop. The student hovers his mouse over the error,

sees the message 'UNEXPECTED TERMINATOR,' pauses for a second, then clicks on the Text

category of the palette and drags in a write block, which causes the red x to disappear.

The write block has the default argument of 'hello.'. After dragging the block in, the

student deletes these characters and replaces them with increase* and then highlights the first

line of the program (random 15), copies it and then pastes it after the *, giving him the line:

write increase*random 15. The student next adds a conditional statement to his program

by typing the line if random 15*increase < 100. These characters come from memory, as

he does not use the block palette or Quick Reference for help. He then makes a few more

modifications to his program using the keyboard, including changing the code that controls the

loop and adding a line to increment his program then stops typing and looks at his code. At this

 229
point, he has been programming for two minutes and 48 seconds, and has written the

program shown in Figure 7.4a.

(a) (b)

Figure 7.4. The Hybrid student’s first run program (a) and the error message displayed in the
editor (b).

 As the student reflects on his program, the interviewer asks him to explain it. He pauses a

second, then starts his explanation by saying "Alright, so, so this part of the code selects a

random number (he clicks and drags his cursor over the first line of his program, highlighting

line one). Increase represents when the number is multiplied, so it could be 0, 1, 2, 3, etcetera.

This is going to (points the cursor at the word for, then pauses), increase + 1 is going to be

one (highlights the increase+1 portion of line 4), so it repeats one time. Then we're going to

do the random number again (moving his cursor over random 15 in line 5, but not highlighting

it) and if that times whatever I set increase to is 0, then it should write the product of what

I'm multiplying it by and the random number (again pointing to the various parts of line 6 as he

mentions them, but not highlighting them)". With his program explained, the interviewer asks

him if he wants to run the program or if there is anything else he would like to add. He pauses

and says "I'm going to set this to a variable because I'm not sure if this random 15 (clicks and

drags to highlight the random 15 in line 5) is the same as this random 15 (hovers his mouse

of line 1). I'm just going to set it to x." He then adds the characters =x to the end of line one, so

the line reads: random 15=x, which causes the editor to display a red x next to the first line.

 230
The student sees this and says: "wait, what's this?" and hovers over the x, which reveals the

message Unexpected '='. Figure 7.4b shows the red x and the error message the learner sees at

this point. The student reads this message, pauses for a second, then adds a second = to the line

so the first line of the program reads random 15==x26. This addition to the program resolves the

compile-time syntax error and the red x disappears.

 Upon running the program, he gets an error saying ‘x is not defined'. He pauses, thinks

for a minute, then deletes the ==x at the end of line and then adds x= in front of the random 15

command. This fixes the error, and he hits run again. His program then prints out the character 0

and then stops. This leads to the student quietly reading through his program. The interviewer

then starts to ask questions about the program getting the student to verbalize his intentions and

how he thinks the program is running. The details of the discussion focus more on the specific

assignment than the modality, so are not included here. It is worth noting that, throughout this

discussion, the student frequently highlights words and lines as he thinks through the program, as

was shown above. As part of his trying to understand what is happening in his program, he

changes the +1 in line 4 to +2 and runs the program. It now prints out 0 on the first line and then

2 on the second line, which gives him some insight into the behavior. He next says "I'd also like

to see what x is" and then puts the cursor at the end of line one and types in write x. He then

asks "that is it right?" and drags a write block into the program, compares the syntax of the

newly added command with the command he just typed and says "yeah" before deleting the

write command he just drag-and-dropped into his program. This strategy of using blocks to

26 In CoffeeScript, like many other programming languages, the double equals sign (==) is used
to compare the equality of two objects whereas as a single equals sign (=) is used for assignment.
The double equals sign is not what the student wants in this scenario.

 231
check syntax ended up being an unexpected but common practice that will be discussed

below. When the student next runs the program with his debug statement in place the output is: 2

0 10, which causes the student to say "that's strange. Oh." and changes the random 15

command that is still in line 6 to use the variable x. He now re-runs the program which produces:

6 0 6, each printed on a separate line, which, based on the student’s facial expression, was what

he was expecting to see.

 A moment after running this program the student has a revelation. "Oh, I know, I know

what to do" and then smiles. The interviewer inquires and he continues: "I think a while loop

would be much better." He then highlights the for loop line, deletes it all at once, types in

while, and then copies and pastes the condition out of the if statement, producing the program

showing in Figure 7.5. "Yeah, this aught to work better." Upon running the program, the program

demonstrates the correct behavior. After a short concluding discussion, the student is thanked

and the interview ends.

Figure 7.5. The students final, correct program

Hybrid Vignette Discussion

 This student was chosen for the demonstration of what it looks like to program using a

hybrid blocks/text interface because he took advantage of various features of the dual modality

 232
during the interview. There are also episodes in this interview where his approach and pattern

of interaction are different than those taken by learners in the fully blocks condition. The first

interesting thing to note from this vignette is how the student moved back and forth between

dragging in commands from the palette and typing them directly into his program. This could be

seen right from the beginning in that the first command (random 6) in the program was added

via dragging the block onto the editor and the second command (increase=0) was typed. For

the third command (a for block) he goes back to the palette to again drag-and-drop a command

into his program, which he then modifies with the keyboard (deleting the placeholder for the

nested statement). This shows the hybrid interface is successful in supporting two modes of

composition, allowing students to type commands if they know the syntax and are more

comfortable on the keyboard, while also having the browsability and ease of composition that

come with the drag-and-drop-supported blocks-based modality. Another thing to note about dual

modality composition is the support it provides via scaffolds that can be developmentally

appropriate for learners at different levels and that allow the learner to be in control of their own

learning. For example, this student was able to type out an if statement from memory, but used

the drag-and-drop feature to add a for loop, suggesting he had better knowledge of the syntax

of one of these concepts compared to the other. In the vignette, we also see the learner clicking

through categories in search of commands, showing that the browsability of the Blocks modality

is still present.

 Another noteworthy feature in this vignette is the presence of in-editor feedback for

compile-time errors27 and how the student responds. Twice during this portion of the interview

27 Compile-time errors (as opposed to run-time errors) are syntactic errors in a program that the
environment is able to detect before the program is run. Common examples of compile-time

 233
the student introduced a compile time error; in both cases it was while he was manually

typing in commands. One of these errors happened when the student typed in the line: random

15=x, which caused an error. What was interesting about this is that the student’s next move

was to add a second =, producing the line random 15==x, which is still incorrect, but now is a

semantic bug as opposed to a syntactic error. This is noteworthy as this type of error would be

very difficult to make in the blocks interface where more constraints are placed on how

commands can be assembled. By this we mean blocks modalities can prevent the user from

adding a statement like random 15==x to the program based on the shape of the block. For

example, in Scratch, the equality comparison block has an oval shape, so it cannot be added to a

script, while in the Pencil.cc blocks interface, there is not standalone == block to be dragged into

a program. While it is possible to have compile time errors in the blocks interface, this never

happened in any of the interviews conducted with students working in that modality.

 The introduction of compile-time errors was frequently observed in both the Text and

Hybrid modalities, but in the Hybrid case, there are additional supports provided by the interface

that can help address this. One clear example occurred later in the interview. When the student

wanted to add a debugging statement to his program, he typed in the line write x and then

dragged out a write block and placed it below the line he just typed to check the syntax. Upon

seeing that what he had typed matched what appeared when he dropped the write block, he

deleted the second command and continued working. This pattern of using the blocks as a way to

check syntax ended up being frequently employed throughout the course. In this capacity, the

blocks were not serving as a means for remembering what is possible, or a way to author new

errors include incorrect keywords (like typing whiel instead of while or forgetting necessary
punctuation like semicolons, brackets, or curly braces.

 234
portions of a program, but instead serving as a supplemental verification for students to

double-check to make sure they were doing things correctly. In the Text condition, to verify

syntax, students have to go to the Quick Reference page, which is a slower, more cumbersome

process than dragging a block into the canvas in the Hybrid interface. This pattern was

unexpected and tells us something about types of supports novice programmers need and want:

in-editor scaffolds to quickly verify syntax.

 Another thing to note from this interview is that the student utilized a number of common

text-editing techniques: notably copy-and-pasting lines of code to move them around and

highlighting blocks of text either to denote something to the interviewer or to delete portions of

his program. When highlighting portions of the code during his explanations, he sometimes

highlighted whole lines and other times just portions of a larger command. Seeing the student

make these types of moves is not particularly surprising as high school students are usually

comfortable with text manipulation. This is noteworthy in that the Blocks condition does give the

student the ability to do this type of character-by-character highlighting, showing another small

difference between the Hybrid (and Text) modalities and the Blocks interface. It shows that the

text editing practices were present in the Hybrid condition, which also included capabilities not

present in conventional text editors.

Text Condition Vignette

 The text vignette lasts twelve minutes and six second and, like the others, begins with the

interviewer explaining the programming challenge. In the previous vignette we saw the learner

start to use the keyboard as a form of input, in this vignette we see how programming differs

when the learner only has the keyboard input and lacks other features of the blocks-based

modality (like the browsable categories and visual syntactic information). When the interviewer

 235
mentions the program picking a random number less than 15, the student immediately types

random[1-15] in the first line of the editor, saying: "I'm pretty sure that's how that works."

The interviewer then continues with the rest of the program details. After hearing the description,

the student then tries to store the random number into a variable, typing: , defer a after the]

on line one of his program28. The syntax he has typed in is not correct (a fact made clear by a red

x appearing on the left side of the editor like shown in Figure 7.4a). Seeing this error, the student

moves his mouse to the top right of the screen, opens the Quick Reference menu and says he is

going to look up defer. As he is doing this, he comments how he cannot remember exactly

how to use this command. In looking through the Quick Reference, he sees the menu item for the

random command and opens that up. He reads through its contents, then closes it and says

"Would I have to do await? I have to do await."29 He types in the command await at the

beginning of the line, which resolves the error, although it will not produce the behavior he is

expecting.

 With his variable command in place and no compile-time errors, he asks the interviewer

for clarification on the programming task, then types a*2 on the second line of the program,

saying “That's multiplication right?” He pauses for a second, then says: “I’m going to check

that” then adds write in front of a*2 and hits the run button. The program gives him a runtime

error that includes the message: “You might not need a comma here.” Seeing this message, he

removes the comma and hits run again, which confusingly gives him another runtime error with

the message “Is there a missing comma?” This causes him to make some more minor

28 The defer command is a custom commands to Pencil.cc and is used to pass control to a
paused process. It is often used with the await command to read in input from the user.
29 The await command pauses execution until an asynchronous process completes. It is often
used with the defer command to read in input from the user.

 236
modifications to the syntax in the first line of his program and then open up the Quick

Reference again to look at the entry on random. As he is doing this he says: "another thing I

could say I don't like about [pencil.cc] is that sometimes it’s so vague on what the problem is."

After some more tinkering with syntax and getting more errors, the interviewer steers the student

towards the variables entry in the Quick Reference menu. This shows him the correct syntax

for setting a variable, which he types in. With his variable in place, he is ready to move on with

the logic in his program. He quickly says "I can use an if statement" and then says aloud "if a is

less than 100 a plus a then write a" while typing out the statement: if a is < 100 a = a + a

write a. He then runs his program, getting another runtime error, this one saying “unexpected

<.” To fix this error, he deletes the is from his program, not using any help from the editor or

interviewer. Figure 7.6a shows the student’s program up to this point in the interview.

(a) (b)

Figure 7.6. The student’s text-based program at the middle of the interview (a) and the end (b).

 With all the syntax errors resolved, he runs the program and gets the output 8. He runs it

again and sees a 14. Upon seeing these two numbers output individually, he says, "I have to do

while loop" and deletes the if and types in while, leaving the rest of the program in tact.

Running the program again, he now sees: 14 28 56 112 each printed on their own line. The

interviewer then asks about the reason for the shift from if to while, which prompts an

explanation of the if and while statements, that ended with him saying: “while is like, while

 237
this is true, I will keep on doing this continuously and that's what it did here.” He runs the

program a few more times, and then sees the first line of output for one of his runs is 22, so he

quickly adds write a on a new line before the while loop saying “now we'll see the multiple

of the numbers we're doing.”

 He continues by running the program again for which the computer picks the number 2

and prints out 2 4 8 16 32 64 128. The student looks at it and says: “wait, that's not right, why is

it like that?” Looking at his program he continues, “a plus a, no I can't do that, I have to make

this a different variable.” He then replaces a = a + a with b = a + a and changes write a to

write b and runs the program again. This causes an infinite loop.30 After a minute, the program

prints out a 9 followed by a string of 18s that run off the bottom of the screen. The student then

reads through his program saying "if a is less than 100 then do b equals a plus a" at this point,

he puts his cursor after that line, hits the return and types a = b while saying "a equals b" aloud.

After a pause, he says "I don't want to do that" and deletes the commands he just typed in one

character at a time. He then quietly says: "after it writes b, a equals b" typing a = b on a new

line at the end of his program. He runs the program again. This time the program completes, but

gives the same behavior he had before adding the variable b. The interviewer asks the student

what is happening, which prompts him to go on a lengthy explanation of how the number is

doubling every time instead of incrementing by the random number. After a minute of talking

through his program he says "Oh, I see what I can do here b equals zero" and types b=0 on a

new line at the top of his program "and then b equals b + a" changing the first line inside his

30 The infinite loop occurs because he has changed his program so that b is the variable that
increases each iteration but the while condition is checking to see if a < 100, thus, a never
changes and the loop never ends.

 238
while loop to be b = b + a, explaining "what this will do here is b is zero and then I keep

adding a, so I keep adding that number and I'll get, there we go!" finishing this statement as he

watches his program run and produce the desired output. The final version of his program can be

seen in Figure 7.6b. After a short discussion on what he expects in the coming weeks learning

Java, the interview ends.

Text Vignette Discussion

 Having presented short vignettes from a Blocks interview and Hybrid interview, this

vignette shows a typical interaction of a student working in the Text condition. There are a few

things of interest in this vignette, especially when compared with the previous two. The first

thing that stands out is the number of errors the student encountered. This includes both compile-

time errors due to incorrect syntax as well as runtime errors stemming from improper use of

commands. Early in the interview, the student spends almost a minute trying various

combinations of commas and keywords in an attempt to set a variable using the await and

defer primitives. Things like this rarely happened in either the Blocks or Hybrid condition. In

the case of the Blocks interface, the lack of typing in commands alleviates the syntax burden,

while the ability to hover over a block to see what it does helps navigate students towards the

correct commands. The Hybrid interface also has the hover-over blocks feature that can help

with syntax by allowing students to drag blocks onto the canvas to check syntax, as was

demonstrated by the student in the Hybrid vignette. In the Text condition, the student has to rely

on the Quick Reference, which resides outside of the editor space itself. While using the Quick

Reference is often helpful for students, in this vignette, we see an issue with this approach. Early

in the vignette, when the student is trying to set a variable, he goes to the Quick Reference in

 239
hopes of finding information about the defer keyword, which is not what he actually wants.

Even with the logical organization of topics in the Quick Reference, the student still needs to

know what to look for.

 Another interesting difference in this vignette from the previous two that relates to the

aspects mentioned in the previous paragraph was the student’s reliance on the compiler as a form

of support. At various points during the interview, the student got an error from the compiler

(either runtime or compile time). In response to this, the student made a series of small changes

to the statement where the error resided, thus using the compiler error as a way to tell if he had

figured it out or not. This can sometimes work, but in the case of this student, resulted in a

syntactically valid statement that did not do what he had expected (like the statements await

random[1-15], defer a, which is valid but does not do what the student had intended).

Relying on the compiler for syntactic guidance is often employed by veteran programmers who

have not used a language or a keyword in a long time and are struggling to remember details of

the command, however, for a novice to engage in the practice is very different. An extreme

version of this practice was observed in another interview with a student in the Text condition.

After adding the random 15 command at the start of her program, this student then typed mult

100. When asked what that meant, she said: “I was trying to print the multiple all the way up to

one hundred, because it worked for random fifteen.” In other words, she was completely

guessing that there may exist a command for multiple and only realized it was not a command

when the interface told her. Most often this type of guess-and-check for novices is not

particularly fruitful and even when the student succeeds in accomplishing what he or she set out

to do, will have little understanding as to why the program worked.

 240
 A last comment to make about this vignette in comparison to the other two is to point

out how little the student used the mouse. The interface requires that everything be typed in

character-by-character, but it is still possible to highlight words or copy-and-paste commands

that have already been typed in. Throughout the interview, the student rarely used the mouse

cursor, choosing instead to delete words (and lines of words) one character at a time, and unlike

the Hybrid vignette, did not use the mouse cursor to reference code during the interview. Instead,

he relied on reading aloud without a visual cue to communicate where his attention was within

the program. While this is not a big deal in the context of the interview, it is possible to imagine

scenarios where this lack of the use of the mouse is detrimental. Having provided rich

descriptions of students working in each of the three modalities, this chapter now transitions to

looking across the full set of students, using these vignettes to guide the investigative approach

taken in the remained of this chapter.

Programming Practices Across Conditions

 Having provided a rich description of what it looks like for novices to program in the

three modalities, the remainder of this chapter will look at the full set of participants to reveal

larger, more systematic trends across the three conditions. The data for this section were

collecting by the logging system built into Pencil.cc. Information about the type of data collected

can be found in Chapter 3 and is summarized in Table 3.6. This section begins with high-level

descriptive data on programming practices and program characteristics grouped by condition and

by assignment. A total of 145,207 Pencil.cc events were collected from the students across the

three conditions. Table 7.1 summarized the average number of times each type of event occurred

 241
for each student, grouped by condition31. As a reminder, the three events that start with the

prefix ‘block’ capture blocks-based composition events, while the other five denote larger,

program-wide events (like running, loading, and saving a program).

Table 7.1. The average number of each event types per student that was collected during the
five-week introductory portion of the study, grouped by condition.

Event Type Blocks Hybrid Text Total F or t Statistic
run 733.34 1073.62 742.97 846.41 F(2, 89) = 8.71; p < .001
load 76.76 110.17 69.13 84.81 F(2, 89) = 7.18; p = .001
save 85.93 91.45 68.13 81.38 F(2, 89) = 1.59; p < .21
new 24.41 27.28 23.88 25.14 F(2, 89) = 1.44; p < .24
logout 9.24 16.69 9.69 11.80 F(2, 80) = 1.25; p = .29
block-drop-
addition 864.86 118.21 NA 491.53 t(33) = 11.67, p < .001

block-drop-
floating 114.38 NA NA 114.38 NA

block-drop-
deletion 288.21 NA NA 288.21 NA

 This table shows that there was a significant difference in how often students ran and

loaded their programs. A Tukey HSD post hoc analysis shows that students in the Hybrid

condition ran their programs much more often than the other conditions (compared to Blocks p <

.001, compared to Text p = .003), while there was no difference in number of runs between

Blocks and Text students (p = .86). Similarly, the students in the Hybrid condition also loaded

their programs more often than students in the Text condition (p = .002) and Blocks condition (p

= .005) with no significant difference existing between the Blocks and Text students (p = .97).

Students in the hybrid condition also saved, logged out, and created new programs more often

than their Blocks and Text peers, although not at a statistically significant level. Looking at

31 Throughout this section, numbers are reported per student to control for the fact that the three
conditions did not have the same number of students. Only students who ran their program at
least 10 times were included in these calculations to not skew the average by including students
who did not complete the assignment due to absences.

 242
block-drop-addition, the one block-level event type for which we have data from multiple

conditions, we see the Blocks condition adding commands to their programs using drag-and-drop

at a much higher rate relative to students in the Hybrid condition. These high-level trends will be

explored in much greater detail throughout the remainder of the chapter.

Running Programs

 The first detailed analysis looks at the rate at which students ran their programs, which

gives some insight into what it looked like to program in each of the three modalities. The five-

week curriculum used for the first phase of the study included 13 individual assignments. Table

7.2 shows the breakdown of the average number of run events recorded by assignment per

student. Given that each condition had the same amount of time to complete each assignment,

looking at the total number runs per assignment serves as a proxy for understanding how quickly

students were able to write and edit their programs32. An ANOVA calculation was run for each

row to see if the number of runs differed at a statistically significant level for each assignment.

The assignments are organized chronologically going from the top to the bottom.

Table 7.2. Run events collected for each assignment broken down by condition.

Assignment Blocks Hybrid Text Total F-Statistic
1 Quilt 90.50 85.86 94.97 90.64 F(2, 86) = .29; p = .75
2 Madlibs 55.43 104.89 52.19 70.51 F(2, 86) = 7.13; p = .001
3 Tip Calculator 25.46 28.20 31.75 28.87 F(2, 76) = 2.67; p = .08
4 Paint by Quadrant 52.41 100.45 69.55 74.14 F(2, 87) = 6.53; p = .002

5
Movie
Recommendation
Engine

45.77 72.81 52.07 57.27 F(2, 84) = 3.92; p = .02

6 Grade Ranger 25.53 41.88 52.76 40.28 F(2, 72) = 3.27; p = .04
7 Guessing Game 67.00 107.70 73.97 82.21 F(2, 85) = 2.33; p = .10
8 Radial Art 37.50 70.67 52.92 53.91 F(2, 81) = 4.69; p = .01

32 There are other, more nuanced ways to interpret the average number of runs per student
numbers that will be explored later in this section.

 243
9 Squiral 44.50 74.93 48.35 56.63 F(2, 85) = 8.79; p < .001
10 Polygoner 46.44 49.04 42.05 45.97 F(2, 78) = 1.62; p = .20
11 Connect 4 93.03 104.29 83.10 93.23 F(2, 87) = 1.63; p = .20
12 Brick Wall 56.04 86.19 56.50 66.63 F(2, 82) = 7.85; p < .001
13 Final Project 158.17 212.41 145.78 171.24 F(2, 87) = 1.66; p = .20

 Below, Figure 7.7 shows these same data as a line chart, giving a sense of how the

numbers fluctuated over the course of the five-week curriculum. The figure also shows the

concept that was the focus of each lesson and denotes the assignments where statistical

significance was found.

 That first thing that stands out in Figure 7.7 is that throughout the five-week curriculum

students in the Hybrid condition consistently ran their programs more often than either of the

Figure 7.7. The average number of runs by students for each project broken down by
condition.

 244
other conditions. This was true for ten of the thirteen assignments, including the last seven

assignments. This pattern is in contrast to much of what was found in the previous two chapters,

which looked at attitudes and learning outcomes where the Hybrid condition’s results usually fell

between the Blocks and Text conditions. A possible explanation for this is that the blocks

interface has the ease-of-composition of the drag-and-drop modality, which makes it easy to

quickly add commands to the program to see if they work. At the same time, it also allows for

syntax errors, due to the lack of constraints on how and where commands can be added.

Together, these characteristics (ease of adding commands and error-prone manual entry) can lead

to users running their programs. Runs motivated by either of these two practices are in addition

to running programs to see what happens (which is the main reason why students in the Blocks

condition would run their program). In this case, the blended Hybrid interface results in a

summative behavior (i.e. students do both) as opposed to reductive outcome (i.e. the Hybrid

interface relieves the user from having to do certain things). This is just one possible explanation.

Unfortunately, the data collection strategy for this dissertation did not include compiler error

messages or keystroke level changes so it is difficult to validate this hypothesis in the current

study.

 Looking at the ANOVA values from Table 7.2 and the stratification of the three

conditions on different assignments, we start to see how concepts influence the frequency of

students running their programs. For example, all three of the assignments that focused on

conditional logic were found to have statistically significant differences in average number of

runs by condition. Likewise, two of the three iterative logic assignments were significant, with

the third approaching statistical significance. Only one of the three functions assignments and

one of the two variables assignments show significant differences in how often students ran their

 245
programs. Put concretely, these data show that, based on modality, students in the different

conditions ran their programs with significantly different frequencies for assignments focusing

on conditional logic and most assignments looking at iterative logic. For all six of these

assignments, the Blocks condition ran their programs least often. Our explanation for this finding

is that the Blocks modality’s prevention of syntax errors removes the need for students to run

their program to see if the syntax is correct. Similarly, students are less likely to find themselves

making small changes to their program and re-running it in quick succession to see if the change

fixes an issue. Both of these outcomes contribute to fewer overall runs. To support this

hypothesis, we now turn to the timestamps to look at patterns in the time between consecutive

runs to see if it tells the same story.

Elapsed Time Between Consecutive Runs of Programs

 A second way to compare programming practices by condition is to look at the amount of

time that elapses between consecutive runs by condition. The goal of this analysis is to

understand how quickly students re-run their programs, which gives insight into another

dimension of their forming programming practice. Namely, do students develop incrementally

and systematically or are there big bursts of runs followed by extended stretches of no runs.

Figure 7.8 shows the average amount of time that passes between consecutive runs for each

assignment grouped by condition. This data only considers runs that happened on the same

assignment and within 15 minutes of each other33.

33 Fifteen minutes was selected as an arbitrary cutoff for the longest amount of time that might
elapse between consecutive runs. The cutoff was added to control for instances where the data
show hours passing between consecutive runs.

 246

Figure 7.8. The average amount of time that elapsed between consecutive runs.

 This graph shows that at the start of the year, the Blocks condition took the longest

amount of time between runs. As the five-week curriculum progressed, the Blocks time grew

closer to the other two conditions, while the overall time between runs mostly declined. This

decreasing pattern continued until the last few assignments, when the time between runs grew,

which also correlates with the complexity and difficulty of the assignments34. The fact that the

Blocks condition was slower on average at the outset is interesting and unexpected given a

feature of blocks is their ease of composition, especially for novices early in their programming

careers. A possible explanation for this is that, since there are no syntax errors, students do not

develop the practice of using the compiler as a mechanism to check if a given command will

work. Thus, there are fewer episodes of quick, consecutive runs where the learner is trying to

find the right syntax. This explanation fits with the analysis presented in the previous section and

34 The Connect 4, Brick Wall, and Final Project were more difficult than the assignments that
preceded them as they included more of the concepts taught over the course of the five weeks
relative to the previous assignments.

0:00:24.0	

0:00:32.0	

0:00:40.0	

0:00:48.0	

0:00:56.0	

0:01:04.0	

0:01:12.0	

Qu
ilt
	

M
ad
lib
s	

Tip
	Ca
lc.
	

Pa
int
	x	
Qu
ad
.	

M
ov
ie	
Re
c.	

Gr
ad
e	R
ng
.	

Gu
es
s.	
Ga
m
e	

Ra
dia
l	A
rt	

Sq
uir
al	

Po
lyg
on
er
	

Co
nn
ec
t	4
	

Br
ick
	W
all
	

Fin
al	
Pr
oje
ct	

Se
co
nd

s	

Assignment	

Time	Elapsed	Between	Consecu7ve	Runs	

block	

hybrid	

text	

 247
is backed up by the data, which shows there to be fewer runs in quick succession in the

Blocks case than either the Text or Hybrid. Table 7.3 shows the average number of runs that

happened less than five seconds after the previous run for each condition by assignment per

student.

Table 7.3. The average number of runs per student that happened within five seconds of the
previous run, grouped by condition and assignment.

Q
ui

lt

M
ad

lib
s

Ti
p

C
al

c.

Pa
in

t b
y

Q
ua

dr
an

t
M

ov
ie

R

ec
s

G
ra

de

R
a n

ge
r

G
ue

ss
in

g
G

am
e

R
ad

ia
l

A
rt

Sq
ui

ra
l

Po
ly

go
ne

r

C
on

ne
ct

 4

B
ric

k
W

al
l

Fi
na

l
Pr

oj
ec

t

Blocks 6.4 5.5 3.5 5.4 8.1 5.8 18.5 2.1 3.3 4.0 5.4 5.0 15.3
Hybrid 7.9 29.2 6.7 15.2 15.7 6.7 31.6 8.4 7.7 12.1 11.1 11.5 19.7
Text 10.8 12.7 5.9 19.7 11.2 9.9 19.7 6.6 8.3 5.7 11.5 7.8 28.8

 What stands out in Table 7.3 is that, while the condition that had highest number of quick

succession runs rotates between Hybrid and Text, for every assignment, the Blocks condition had

fewer runs that happened within 5 seconds of the previous run. This data confirms the trend

shown above, that the Blocks condition took longer between runs, in part due to having fewer

quick-succession runs. The primary explanation is that the Blocks modality, and it’s prevention

of syntax errors saves students from having to make quick, minor tweaks to fix syntax errors in

their programs. Another explanation for the trend of Blocks being slower is due to a critique of

the blocks-based approach to programming brought up by learners early in the study, namely that

programming with blocks is slower than authoring in a text-based modality. The slowness of

dragging-and-dropping commands and often having to assemble a number of blocks to define a

single instruction could also explain the on-average longer delays between runs (this idea will be

revisited with new data later in the chapter). This aspect of authorship, paired with the lower

frequency of quick-successions runs, can in part explain the slower authoring patterns shown in

 248
Figure 7.8. Having looked at the overall characteristics of the programs and patterns linked to

students running their programs, the analysis now shifts to look at composition patterns that

happened between runs.

Characteristics of Programs

 Another dimension to investigate differences across conditions is looking at

characteristics of the students’ final versions for each of their assignments. Figure 7.9 shows the

average size of each program completed by students in the first five weeks of the course35. The

length measurement used in chart is the number of characters in the final project. While there are

more sophisticated ways to calculate this measure, given that all students were given the same

assignment and had relatively constrained instructions, total number of characters serves as a

useful proxy for more complex measures of length36.

35 The Final project is left off because the size dwarfed the other assignments and also due to the
fact that the size of the program was greatly influenced by the type of final project students chose
to do. For example, students who authored text-driven story programs had projects that were
much larger than other more syntactically complex projects.
36 For the blocks condition, length is calculated based on the characters within the blocks. So a
blocks-based an text-based program made comprised of the same commands will have an
identical length.

 249

Figure 7.9. The average size of student authored programs by condition.

 Although students were completing the same assignment regardless of the condition,

differences in the length of the assignments do emerge. On ten of the twelve assignments, the

Text condition produced the shortest solutions (on average), with Blocks students writing the

longest average programs on eight of the assignments and Hybrid being the longest for four

assignments. Running an ANOVA calculation for each of the assignments, four were found to

have statistically significant differences at the p < .05 level: Tip Calculator (F(2, 82) = 4.78, p =

.01) , Grade Ranger (F(2, 71) = 5.26, p = .01), Radial Art (F = (2, 83) = 3.51, p = .03) and

Connect 4 (F(2, 87) = 2.90, p = .05). The assignments with the greatest stratification focused on

conditional logic (Paint by Quad, Movie Recommendation Engine, and Grand Ranger) and the

last two assignments from the functions portion of the course (Connect 4 and Brick Wall). The

variance in the conditional logic assignments is similar to what was seen in the runs-by-

assignment analysis (Figure 7.7), but that pattern does not continue with the iterative logic

assignments or the functions assignments. This variation in the Connect 4 and Brick Wall

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

Qu
ilt	

Ma
dli
bs
	

Tip
	Ca
lc.
	

Pa
int
	x	Q

ua
d.	

Mo
vie
	Re
c.	

Gr
ad
e	R
ng
.	

Gu
ess
.	G
am
e	

Ra
dia
l	A
rt	

Sq
uir
al	

Po
lyg
on
er	

Co
nn
ec
t	4
	

Bri
ck	
Wa
ll	

Av
er
ag
e	
Le
ng
th
	o
f	F
in
al
	V
er
si
on

	

Assignment	

Average	Length	of	Final	Versions	of	Assignments	

Blocks	

Hybrid	

Text	

 250
assignments may come from the fact that those two assignments were by far the most

difficult in that they asked students to incorporate logic from previous parts of the course and

required the most amount of code to accomplish relative to the other assignments37. The fact that

we see a difference in conditional logic is another piece of evidence towards the larger trend of

modality affecting students’ learning and using those constructs, which was identified in the

previous chapter as well as in work by others outside of this study (C. M. Lewis, 2010).

Blocks-based Usage in the Hybrid Condition

 Since, in both the Hybrid and the Blocks conditions, students had the ability to add new

commands to their programs through the use of dragging-and-dropping blocks from the palette,

comparing patterns of adding blocks provides insight into how modality affected programming

practices. It also provides some insights into how the two modalities differed. Figure 7.10 shows

the average number of blocks added to a program per run for students in the Blocks and Hybrid

conditions, broken down by assignment.

37 The Grade Ranger and Movie Recommendation Engine assignments’ numbers are inflated due
to the amount of text included in the assignment.

 251

Figure 7.10. The Average number of blocks added to a program for each assignment.

 There are a few things that stand out from this chart. The first is the gap between the

Blocks condition and the Hybrid condition. For every assignment, students in the Blocks

interface added more than twice as many blocks for each run of their program, meaning they

added blocks to the program at more than twice the rate of students who worked in the Hybrid

interface. There are a number of possible explanations for this. First, as was shown above, the

students in the Hybrid condition ran their programs more often than those in the Blocks

condition, which would result in a smaller number of block additions per run. This explanation

only tells part of the story as the absolute number of blocks additions was also much higher in

the Blocks condition. A second, more compelling explanation comes from the fact that the

Hybrid condition allows both the drag-and-drop addition of commands as well as direct

keyboard input of the textual modality, as was seen in the Hybrid vignette presented earlier in

this chapter. This explanation says that students in the Hybrid condition added fewer blocks in

writing their programs because they supplemented adding blocks by directly typing in

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

Qu
ilt	

Ma
dli
bs
	

Tip
	Ca
lc.
	

Pa
int
	x	Q

ua
d.	

Mo
vie
	Re
c.	

Gr
ad
e	R
ng
.	

Gu
ess
.	G
am
e	

Ra
dia
l	A
rt	

Sq
uir
al	

Po
lyg
on
er	

Co
nn
ec
t	4
	

Bri
ck	
Wa
ll	

Fin
al	
Pro
jec
t	

Av
er
ag
e	
N
um

be
r	o

f	B
lo
ck
	A
dd

i4
on

s	p
er
	R
un

	 Average	Number	of	Blocks	Added	per	Run	by	Assignment	

Blocks	

Hybrid	

 252
commands. This explanation also explains the decreasing slope of the Hybrid condition’s

plot over the course of the five weeks. As student’s familiarity and experience grew, students in

the Hybrid condition were more likely to directly edit the program than to use the drag-and-drop

mechanism. This explanation is supported by data collected during the interview, as a number of

students in the Hybrid condition commented on their preference towards typing over the drag-

and-drop composition strategy. For example, one student said: “for the most part, I just type the

code myself. I don't think the blocks are useful other than showing what you can do.” This

finding replicates other similar work which looked at how, when given a choice to use either a

text-based or blocks-based modality, students shift from blocks to text as their experience grows

(Matsuzawa et al., 2015).

 In contrast to the declining use of blocks for composition in the Hybrid condition, the

students in the Blocks condition show a relatively consistent block-addition-to-run ratio. The

outlier for this trend in the Blocks condition was the Grand Ranger assignment, which saw a

spike in the number of blocks added between runs. This happened because this assignment asked

students to work with multiple conditional statements and, since each conditional statement

required a number of blocks to be added (the conditional itself, the comparator, and blocks for

one or both of the argument slots), in total, more blocks were added to make basic changes to the

program. Whether or not the requirement for using the blocks-based form of authorship affects

students’ approach to programming in Java is the topic of the next chapter.

Quick Reference Usage

 The last dimension of programming practices this chapter investigates is if and how

students used the Quick Reference feature of the Pencil.cc environment. As a reminder, the

Quick Reference menu is an in-editor resource that provides instructions on various aspects of

 253
the Pencil.cc language and environment. Like the blocks palette, the Quick Reference guide

is conceptually organized and provides definitions and examples of all of the central topics

covered in the five-week introductory curriculum. Logging was put in place to track when and

how the Quick Reference feature was used. This information gives us insight into when students

need assistance beyond what is provided by the modality itself. Thus, looking at Quick

Reference is not about understanding that feature itself, but to understand shortcomings of the

modalities in providing sought after support.

 Overall, students working in the different modalities visited the Quick Reference manual

at very different rates. The Quick Reference was used a total of 2,591. By condition, that number

breaks down as follows: Blocks loaded 229 pages, Hybrid loaded 553, and the students in the

Text condition loaded 1,809 Quick Reference pages. Running an ANOVA calculation on the

total number of look-ups by condition shows the usage of this resource differed significantly by

condition F(2, 82) = 10.7, p < .001. A Tukey HSD post hoc analysis shows the Text condition to

be significantly different from both the Hybrid and the Blocks conditions at the p < .001 level,

while the Blocks and Hybrid conditions are not statistically different from each other (p = .34).

Looking at the pages for the specific concepts that were the focus of the curriculum, we see a

similar pattern in use of the Quick Reference feature. Figure 7.11 shows these numbers.

 254

Figure 7.11. The number of times the Quick Reference pages were loaded for the four concepts
covered in the introductory curriculum, grouped by Condition.

 This figure shows a consistent pattern in Quick Reference usage. For every category, the

Text condition used this reference the most, followed by the Hybrid condition, with the Blocks

condition using it least often. Running an ANOVA on each of these categories shows the

difference between usage to be significantly different for all four concepts (Variables: F(2, 82) =

3.29, p = .04; Conditional Logic: F(2, 82) = 5.89, p = .004; Iterative Logic: F(2, 82) = 10.39; p <

.001; Functions: F(2, 82) = 10.7, p < .001). What this chart shows is a systematic difference in

reliance on programming assistance that resides outside of the editor. Our explanation for this is

that because the text modality does not provide the same scaffolds that the Blocks and Hybrid

modalities do, namely a list of available commands via the blocks palette and hover-over tips for

each command, that students in the Text condition had to look else where for guidance. This

explanation is corroborated by the vignettes presented earlier in the chapter, where we saw the

student in the Text condition refer to the Quick Reference menu, but not the Hybrid or Blocks

students. In the final section of this chapter, we summarize the findings presented.

14	
5	

13	 17	
27	

71	

39	

26	

60	

133	

120	

104	

0	

20	

40	

60	

80	

100	

120	

140	

Variables	 Condi8onal	Logic	 Itera8ve	Logic	 Func8ons	

N
um

be
r	o

f	T
im

es
	P
ag
e	
w
as
	L
oa

de
d	

Quick	Reference	Page	

Quick	Reference	Page	Loads	by	Condi:on	

Blocks	

Hybrid		

Text	

 255
Discussion

 This chapter sought to understand the programming practices engendered by the blocks-

based, text-based, and Hybrid modalities of the Pencil.cc environment. Using a variety of

methods and data sources, the chapter depicts a number of facets of the learning to program

process. Collectively, they paint a vivid picture of the practices and patterns that develop as

novices learn to program across three different modalities. This final section provides a

discussion that looks across these various data sources to summarize what was learned in this

chapter.

Using the Vignettes

 The first half of this chapter presented vignettes of students working in the three

modalities used in this study. The goal of this section was to provide a thick description of what

it looked like for beginners to author programs in different modalities after having worked in

them for five weeks. In using the Mid interviews, we see students demonstrating how they had

come to rely on various scaffolds and affordances of the different modalities and environments.

This discussion section is broken down into four subsection, each of which covers a different

step in writing a program: deciding what to do, doing it, making sure it is right, explaining it. For

each phase, the three modalities are addressed.

Deciding What to Do

 All three students were able to come up with a strategy for accomplishing the task set

before them, however, the role of the environment in supporting this process differed. The

student in the Blocks modality relied heavily on the blocks palette, browsing through the various

categories a number of times both at the beginning of the programming process, as well as

 256
throughout the activity. We also saw this student use the hover-over tip feature of the editor

to gain additional information about the set of commands available to him. The student from the

Hybrid condition was also observed browsing through the blocks palette early in the interview,

thus taking a similar approach to the idea generation portion of the programming activity. The

vignette of the student from the Text condition on the other hand, did not have the blocks palette

available to him, so could not use it as a resource. Instead, the student drew ideas from memory.

This is especially clear at the outset of the activity when he quickly begins typing and uses

incorrect commands that he says he remembered needing for previous programs. The Blocks and

Hybrid vignettes also used prior knowledge to construct their programs, for example, knowing to

store their random numbers in variables, but these three vignettes do show how modality

facilitates this initial phase of writing a program. In other interviews, we saw students in the Text

condition browse the Quick Reference menu as a source of ideas although this use occurred less

frequently and was often less useful than how the Blocks and Hybrid students used the blocks

palette. Looking across the full set of students, the use of the Quick Reference by student in the

Text condition proved to be a common practice and one that was distinct (or at least distinct in is

frequency) to the text modality.

Writing the Program

 The next phase of writing a program on display in these vignettes was the students

actually composing the program. It is in this phase that the three modalities differed the most. In

the Blocks condition, we see the student using the cursor to drag-and-drop commands into the

palette, assembling the program block-by-block, command-by-command. We also see the

student incrementally building up commands, like when he dragged the random block into his

program, changed its argument from 6 to 15, then dragged out the variable block, and finally

 257
moved the modified random block inside the variable block. In this way, the command

was not constructed in a sequence that matched the left-to-right presentation of the final

statement, which is the natural way to compose in a textual modality38. Throughout the Blocks

vignette, the student always added and moved commands using the cursor, only using the

keyboard to changes arguments inside the blocks. In contrast, the student from the Text condition

was unable to add or edit the program using a drag-and-drop approach, instead typing in every

command in the program one character at a time. Using this approach, the student in the Text

condition encountered a number of compile-time syntax errors, something that did not happen in

the Blocks vignette. In both the Blocks and the Text use-cases, the form of authorship was

imposed by the modality, the Text condition was not able to drag-and-drop commands and the

Blocks condition was not able to author his program entirely with the keyboard.

 The Hybrid condition proved to be the most interesting of the three vignettes in terms of

how the program was authored given the modality supported both drag-and-drop blocks-based

additions and keyboard-driven textual authorship. In the vignette presented, we see the student

fluidly moving between these two forms of composing a program. He dragged the commands

random and for into his program, while typing in variable declarations and a while loop. We

also saw the student take advantage of convention text-editing strategies, including copying and

pasting chunks of text to duplicate logic in his program, a technique supported in the Blocks

38 It is worth noting that it is possible to author programs in a non-left-to-right sequence in a text-
based modality, although is more cumbersome as it requires the author to move from the
character keys to the arrow keys (or mouse/touchpad) and back. This authoring pattern was not
observed during the four text-based interviews.

 258
modality, but rarely (if ever) used39. This vignette also showed the student encountering

syntax errors like the student in the Text vignette. Collectively, this vignette shows how a student

from the Hybrid condition, after working in the modality for five weeks, had become

comfortable using both a blocks-driven and text-based approach to authoring programs.

Correcting Errors and Making Sure the Program Works

 After composing their programs, students must then check to see if what they just wrote

behaves as expected and if not, make the necessary modifications. All three of the vignettes

followed students writing the same program and then saw them encounter various errors on their

journey towards a working program. While all three students had bugs in their initial attempts to

write the program, the types of struggles the students encountered were not all the same. Most

notably, the Hybrid and Text vignettes showed the student encountering syntax errors, whereas

the Blocks vignette never encountered the red X that, in the editor, denotes a syntax error.

Between the Hybrid and Text condition we saw different strategies employed to verify syntax or

look for help. In the Text condition, the Quick Reference menu became the main source of

syntactic help. While it proved useful, it was not without its difficulty, as the learner must know

what he or she is looking for as the Quick Reference menu is conceptually organized, as opposed

to having an entry for every single command40. While the Quick Reference menu is a feature

specific to Pencil.cc, it is a common way to organize help resources. The Hybrid student on the

other hand, was able to use the blocks palette and the drag-and-drop feature to check syntax by

39 During the five weeks of data collection and observation, no student was seen using the
copy/paste technique in the Blocks modality even though it is possible using the conventional
ctrl+c and ctrl+v key bindings.
40 For example, the Quick Reference menu has a single entry for Arithmetic that includes the
various mathematical operators available to the programmer.

 259
dragging out commands to see their syntax. This strategy was observed in every Hybrid

interview conducted and was widely used during the five-week curriculum.

 In all three vignettes, students made sure the program was working by running the

program and then evaluating the output relative to what was expected. This run-evaluate-edit

cycle was the catalyst for many of the edits across the vignettes. For example, in the Hybrid

vignette, the student, on seeing that only two values were being displayed, replaced his if

statement with a while loop. Similarly, when the students saw the output of their program

double, as opposed to increase by a fixed amount, they responded by revising their programs. It

is worth noting this pattern of run-evaluate-edit did not differ by modality and it did not appear

as if modality played a significant role in how students went about this component of the

programming process.

Explaining the Program

 The last step in writing a program that we saw in all three vignettes was the students

explaining the programs they had written. In all three modalities, students used the cursor as a

pointer to direct the interviewer’s attention but with subtle differences. In the case of the Text

and Hybrid interviews, students would point to specific characters and words, move their cursor

back and forth over lines, or click-and-drag over the text, to highlight portions of the statement.

In the Blocks modality, the student similarly guided gaze using the mouse and had additional

visual indicators like color and shape to explain what was happening, but lacked the ability to

highlight portions of the code to make it clear what specifically he was referring to. While this is

a relatively small difference, it is these small things that collectively lead to different experiences

and lead students to develop different programming practices. In this way, modality facilitates

this portion of the authoring process in a slightly different way.

 260
Wrapping up the Vignettes

 Across the three modalities we saw different practices employed during all phases of the

programming activity. This analysis intentionally did not project any normative evaluation of the

different moves made by the learners because there is no one “right” or “best” way to write a

program. Instead, this section documents how the different modalities support novices in forming

different programming practices and affords different compositional strategies. The big question

that remains from this analysis is the one that is tackled in the next chapter: If and how these

programming practices transfer to more conventional, professional programming languages and

environments?

Differences in Programming Practices and Artifacts

 The second half of this chapter used the computational data collected to look across the

full set of participants to understand how the differences identified in the vignette analysis

manifested themselves in aggregate outcomes across all of the students that participated in this

study. This analysis included looking at programming patterns in the form of number of

programming runs, types and frequencies of errors, and finer-grained patterns of composition

observed across the three modalities. In this section we summarize this work, drawing across the

various measures used to identify aggregate trends in programming practices and constructed

artifacts by modality.

Programming Practices by Condition

 Looking at the data logs collected during the first five weeks of the study for differences

by condition, characteristics of the modality start to emerge. Students from the Blocks condition

ran their programs the least frequently, spent the most time between runs, and also produced the

 261
longest programs on average. Characteristics of the modality provide potential explanations

for these findings. First, the lack of syntax errors due to the shape and construction constraints

provided by the blocks kept students from engaging in a cycle of making small syntactic changes

and re-running the program to see if the change works. By backgrounding syntax, this modality

allows students to focus on the semantic and algorithmic aspects of writing the program, which

require more concentration and could in part explain the fewer number of runs and the more time

taken between consecutive runs. Second, the ease of dragging-and-dropping commands relative

to typing them in character-by-character could explain the longer programs produced by students

in this condition. Since it is easier to add more commands, students are more likely to do so.

There are also practices we do not see the students from the Blocks condition engage in, notably,

the Quick Reference menu is relatively rarely used compared to the Hybrid and Text conditions.

As discussed above, our explanation looks to the other various supports the modality provides

for partially alleviating the need for learners turning to this resource.

 Whereas students in the Blocks condition ran their programs the fewest number of times

and at the slowest pace, the students in the Hybrid condition ended up at the other end of the

spectrum. Students working in the Hybrid modality ran their program the most often, having the

shortest average delay between consecutive runs, and also were found to have re-run their

programs in under five seconds the most number times of the three modalities. These outcomes

were a little surprising given that the Hybrid condition has largely resided between the Blocks

and Text conditions for many of the dimensions of programming explored in this dissertation. A

possible explanation for the frequency of runs was briefly proffered earlier in this chapter. Since

students in the Hybrid condition can add commands to their programs by dragging-and-dropping

them, an action that is quicker and easier than typing out the command character by character,

 262
students could quickly build out their programs. At the same time, the text-based canvas does

not provide the syntactic scaffolds of the blocks modality, so it was possible for students to

introduce syntax errors into their programs. This allows students to quickly write programs that

contain errors, which then need to be debugged, which is often done through tinkering and

making small changes. This iterative development produces quick turn-arounds and a rapid

succession runs of their program. This is one potential explanation, but the data suggests this is

only part of the story, since Figure 7.10 shows the use of the blocks feature declining over the

course of the curriculum, while the speed and number of runs relative to the other conditions did

not. Unfortunately, this dissertation did not gather keystroke level data in the logs, so we do not

have a complete view into the programming practices in aggregate for students in the Hybrid or

Text conditions, so the explanation for these patterns remains incomplete and is left as an avenue

of future research.

 Students working in the Text condition ended up writing the shortest programs and often

landed between the Hybrid and Blocks students on the measures used to evaluate the programs

and practices in aggregate. Students in the Text condition also used the Quick Reference feature

of the environment far more often than either of the other two. We think these two features are

related. Students working in the Text modality had to contend with syntax errors while having

the fewest number of in-editor scaffolds available to help. Authoring shorter programs is a

logical outcome when encountering more syntax errors that impede progress and when having to

add content to a program faster than character-by-character. Further, relying on the Quick

Reference menu would also slow down the authorship process as it resides outside of the

components of the editor directly involved in the act of authoring the program. The Text vignette

provided a glimpse into some of the challenges associated with the Text modality when he

 263
encountered syntax errors and was unable to fix it on his own using only the Quick Reference

menu. The Text condition of the introductory portion of the study was the closest to what

students will be doing in the next phase of the class, so the discussion of programming practices

and artifacts will continue in the next chapter of this dissertation.

Collectively, looking at different aspects of programming practices and features of programs

authored in the three modalities, we can see differences emerge. In some ways these differences

mirror trends that were documented in the previous two analysis chapters, while in other

instances, some of the trends and outcomes were new and unexpected. For example, throughout

the last two chapters, the Hybrid condition has largely lived between the Blocks and Text

conditions, a natural home for a modality that is a mix of the other two. In this chapter, however,

we see places where the Hybrid condition lives as an outlier, showing how blending blocks-

based and textual programming modality can produce a new modality that engenders practices

and uses distinct from its two parents.

Programming Practices by Concept

 One of the features of the study design of this dissertation is the ability to look at how

different factors affect learning to program and if and when those factors interact with each

other. The guiding question for this dissertation looks at the relationship between modality and

learning to program. In this chapter, we can see how and when modality interacts with the

various concepts that are foundational to programming. The last chapter showed how modality

and concepts interact with respect to learners’ comprehension of programs (Figure 6.8). This

chapter compliments those findings by providing insight into the interaction of modality and

concept for students during the composition of programs.

 264
 Figure 7.7shows how often students ran their programs by assignment while also

overlaying the concept being taught for each assignment. That figure and the analysis that it

summarizes shows how students ran their programs at different rates for all three assignments

focused on conditional logic and two of the three iterative logic assignments. Conditional logic

emerged again as an outlier in Figure 7.10, which showed the average number of blocks being

added to a program between consecutive runs. This was especially true for the Grade Ranger

assignment, which asked students to take a number between 0 and 100 in as input, then report

what the letter grade for that score would be (91-100 returns an A, 81-90 returns a B, and so on).

In this assignment, students added more than twice as many blocks per run than any of the other

assignments, with the other two conditional logic assignments also falling among the four

assignments that had the most number of blocks added per run. Similarly, there is also a spike

showing that the time between runs increases for this assignment. These data provide evidence

for the claim student have often made (and was reported in Chapter 4) of blocks-based

programming being perceived as slower than the text-based alternative. Triangulating this data

provides a way to show that while it may not be universally true that Blocks authorship is slower

than text-based programming, in the case of conditional logic, more blocks are required to

construct a statement and thus blocks-based construction is slower than comparable statements in

the text modality.

Conclusion

 This chapter presented a third and final analysis of the data collected in the first five

weeks of the school year. Collectively Chapters 5, 6, and 7 paint a detailed picture of high school

students learning to program in three different modalities. With this chapter, we showed what it

looked like to author programs in the different modality through three detailed vignettes and

 265
looked across the full set of students to tease out systematic practices and trends within the

programs and log data collected over the course of the five weeks. Taken together, this chapter,

along with the preceding two, provides a complete picture of how modality influences novice

programmers. The major outstanding question this dissertation has yet to answer is if and how

students’ experiences in these three introductory programming environments impact their early

Java learning. This question will be answered in the next and final analysis chapter in this

dissertation.

 266
8. Transitioning to Java

 One of the over-arching goals of this dissertation is to understand the role of modality in

introductory environments in terms of if and how it prepares learners for later computer science

learning opportunities. Put more concretely, do blocks-based programming environments

effectively prepare learners for later text-based programming? And how does the blocks-based

modality compare to isomorphic text and hybrid blocks/text interfaces with respect to

preparation for future computer science learning? This chapter presents data and analysis

towards answering these questions. Understanding this is consequential as many uses of blocks-

based tools in formal educational contexts presuppose that such tools will help prepare students

for later instruction in text based languages. However, little empirical work supports this

position, and as one of the students in this study said during an interview: “I can guarantee that

the transition between languages will be hard to do.”

This chapter begins with an analysis of student responses to questions from the Mid and

Post attitudinal surveys which investigate learners’ experiences working in either a blocks-based,

text-based, or hybrid blocks/text interface, specifically focusing on if students found that

experience to be useful preparation for Java. As part of this analysis details about what was

learned in the introductory portion of the class that transferred to Java are investigated by

condition, trying to identify the strengths of each. Throughout this section, the results are

supplemented with data from interviews conducted with students from all three conditions. The

next portion of this chapter looks at how attitudes towards and perceptions of programming

shifted between the end of the introductory five-week curriculum and the end of the study ten

weeks later. This work sheds light on how perceptions shifted after working in Java. The final

section of this chapter looks at programming practices developed and the successes of students

 267
from the three conditions in their early Java programming assignments. This final section

uses the programs written by students in the first ten weeks of the Java portion of the class to

understand the lasting impact the various modalities had on students programming ability. The

chapter concludes with a discussion of these various analyses, tying them together to paint a

larger picture of students’ transitions from the three modalities used in the introductory portion

of the study to Java.

Perceptions of Introductory Programming Environments as a Preparation for Java

 In this section, interviews and survey responses are analyzed to try and understand how

students viewed their experiences using the different modalities with respect to the transition to

Java. The section starts with data from the Mid and Post interviews, supplementing these data

with excerpts from interviews conducted with students at the midpoint and conclusion of the

study. The first analysis of this section investigates whether or not students themselves found the

experience of working with Pencil.cc useful for preparing them from later Java learning. This

analysis begins with students’ responses to the 10-point Likert question asking them on the Mid

survey “What I learned with Pencil.cc will help me learn Java” and then on the Post survey:

“What I learned in Pencil.cc has helped me in Java.” In both cases, a higher value means stronger

agreement with the statement. It is important to remember, when asked about Pencil.cc, students

from each condition envision a programming environment with a different modality, so when

students in the Blocks condition think about Pencil.cc, they are thinking about a blocks-based

programming environment41. Student responses to this question by condition are shown in Figure

41 This question asks about Pencil.cc as opposed to a specific modality because students do not
necessarily know that there are multiple versions of Pencil.cc. There is possible conflation
between modality and non-modality-related features of Pencil.cc, but as all non-modality

 268
8.1. Please note the y-axis in the chart does not start at zero, this was done to make the trends

clearer.

Figure 8.1. Student responses to whether or not they thought their time spent working in
Pencil.cc was helpful for learning Java.

 On this question, the average Mid survey response was 7.5(SD = 1.7) and the average

post survey response was 6.8 (SD = 2.2), showing that students collectively agreed with the

prompt that the introductory tools were helpful, but did not do so in a particularly strong manner.

Between the Mid and Post administration, all three conditions show a negative slope, meaning

that after working in Java for 10 weeks, students viewed what they had done during the first five

weeks of school as less useful than they had before the Java portion of the study. Overall, the

average score on the Mid survey was higher than the post survey (Z = 1217.5, p = .00 running a

Wilcoxon signed ranks test on normalized z-scores). The changes between the Mid and Post

features of Pencil.cc are shared by all three conditions, these differences would not account for
the emerging differences observed.

7.63	

6.62	

7.23	
7.00	

7.54	

6.45	

6.00	

6.50	

7.00	

7.50	

8.00	

8.50	

9.00	

Mid	Survey	 Post	Survey	

M
ea
n	
Li
ke
rt
	S
co
re
s	

What	I	Learned	with	Pencil.cc	will	Help/	
has	Helped	me	Learn	Java	

Blocks	

Hybrid	

Text	

 269
surveys were also significant for the Text condition (Z = 147, p = .00) and the Block

condition (Z = 149, p = .01). Only the Hybrid condition failed to reach statistical significance (Z

= 100, p = .86). For both the Mid and Post surveys, the responses are relatively tightly clumped

together, thus we see no differences by condition on the Mid survey (F(2, 78) = .40, p = .67) or

the Post survey (F(2, 80) = .43, p = .65). This means that at neither the Mid nor Post

administration did students in the Blocks, Text, and Hybrid conditions report a significantly

different opinion on the utility of their introductory experience relative to the other conditions.

Due to the Hybrid condition deviating slightly from the other two condition on the Mid survey

(slightly less helpful) and the Post survey (slightly more useful), the data show a statistically

significant difference when looking at the change in perceptions by condition F(2, 74) = 3.38, p

= .04. A post hoc Tukey HSD test shows a significant difference in the change in perceived

helpfulness between the Hybrid and Text conditions (p = .04) but not between Hybrid and

Blocks (p = .12) or Blocks and Text (.86).

 This analysis shows that students’ perceptions of the helpfulness of the introductory

modalities decreased over time. When comparing across the three interfaces used in the

introductory portion, the learners in the Hybrid condition initially saw the tools as the least

helpful, but by the Post survey, this position shifted to the point where the Hybrid modality was

viewed as the most helpful. This is possibly explained by some of the findings given in Chapter

4, where the Hybrid condition, being both similar enough to and sufficiently different from Java,

was initially seen as having little in common with Java but for the links to become more clear

after working in Java. An alternative explanation given earlier cited the potential value for

exposing multiple modalities to the learner up front. The similarity of response values and trends

between this question and the question of whether or not students thought Pencil.cc improved

 270
their programming abilities (Figure 5.4 in Chapter 5) shows these two questions are linked in

terms of student perceptions. This can be seen by running a validity test showing the two

questions are getting at the same underlying belief (Cronbach’s α = .83). This is evidence

showing that the more students’ felt they learned using a specific modality, the better prepared

for Java they felt. This is not surprising but is another piece of data showing that students see

similarities in what it means to program across the modalities and environments.

 Understanding if and how Pencil.cc does or does not prepare students for transitioning to

Java is one of the central research questions being pursued in this dissertation. As such,

additional questions were asked on the Mid and Post surveys trying to understand exactly how

and where students saw the utility of the introductory environments they used. These questions

were asked using an open-ended format, giving students more freedom to express their own

perceptions. Having laid out a high level trend on student reactions to the introductory portion of

the course broken down by modality, the analysis next digs into specific concepts and aspects of

the introductory portion of the course that they identified as being helpful once they transitioned

to Java.

Helpful Aspects of Introductory Programming Environment for Transitioning to Java

 The idea of “helpful’ can mean many different things, so to further understand exactly

how students found the introductory modalities to be helpful and to investigate if the type of

perceived help it offered differed by condition, students were asked to respond to the following

free-response prompt: “The thing I learned in Pencil.cc that will be most useful in Java is:”42.

42 These charts are similar to those presented in Chapter 5 but are not the same. In chapter 5, the
question was about student perceived differences between the introductory environments and
Java. Here, the question looks at if/how the introductory tool was helpful for the transition to
java.

 271
Again, it is important to remember that when asking about Pencil.cc in general, the question

will call to mind either a blocks-based, text-based, or hybrid blocks/text interface depending on

what condition the student was in. Student responses to this question were conceptually grouped

and are summarized in Figure 8.2. Each code is discussed in the paragraphs following the

summative figure. Cohen’s κ was run to determine agreement and consistency of the application

of these codes, and found there to be moderate agreement between the coders, κ = .73, all

differences were resolved through discussion. The coding manual used to code these responses

can be found in Appendix E.

Figure 8.2. Student responses to perceived useful aspects of Pencil.cc with respect to the
upcoming transition to the Java language.

The first and most frequent feature of introductory environments cited for being useful in

Java was the Specific Concepts code. A response was given this code anytime a student

mentioned a specific concept from the set of topics that had been covered in the first five weeks

of class (variables, conditional logic, iterative logic, and functions). For example, one student

responded: “I learned how to use for loops, variable referencing, functions and parameters,

16	

6	

3	

0	 0	
1	

3	

14	

6	

4	 4	
3	

1	 1	

20	

5	

2	 2	
1	

2	
1	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

22	

Specific	
Concepts	

Programming	
Basics	

Syntax	&	
Format	

Process	of	
WriAng	
Programs	

Order	&	
Sequence	

Concepts	
Beyond	

Programming		

Not	Sure	

Co
un

t	o
f	S

tu
de

nt
	R
es
po

ns
es
	

The	Thing	I	Learned	in	Pencil.cc	that	
will	be	Most	Useful	in	Java	is:	

Blocks	

Hybrid	

Text	

 272
while loops, and if statements.” Not all students mentioned all concepts, a number of students

gave responses like “The concepts of variables and if statements” or more succinctly “functions.”

A more detailed breakdown of the Specific Concepts category is presented later in this section.

After Specific Concepts, the next category identified was Programming Basics, which

includes responses that speak to general programming knowledge, as can be seen in the response

“I learned the basic components of programming, which was a mystery to me before this class.

Now, I will be able to apply all of this information to Java.” The Syntax and Format category

was the next most common code and captures responses that speak directly to those two aspects

of programming, like in the response: “That spacing, commas, and syntax matters”. The next two

codes are related, the Process code captures students attending to the steps taken to write a

program including decomposing the problem, designing an algorithm, and then the steps required

to execute the stated plan, which can be seen in responses like: “The process of planning the

right steps in order to make your program run the way you want it to.” The Order and Sequence

code was applied to responses that talked about how programs run or attended to the relationship

between consecutive commands, like the response: “Coding runs from the top to the bottom”.

The Concepts Beyond Programming code captures students attending to important knowledge

that is relevant for programming but that is not specifically about programming, including things

like problem solving and being organized. The final code is for students who responded that they

did not know how the introductory tool would be useful for their upcoming Java work.

The first thing to note about these responses is the overwhelming frequency of students

attending to specific concepts as being helpful. This suggests that the most direct relationship

students expected between the introductory tools and Java was conceptual; that concepts

encountered, like variables and functions, would be useful for their work in Java. This sentiment

 273
was also captured during the interviews; for example, one student from the Blocks condition

described the introductory environment as being “like a stepping stone. It reminds you about

assigning variables and…different methods and assigning each class and functions. Because

every code, well, every program has functions, has code, has variables…so it kind of helps us

wrap us around that idea of being organized and the concepts”. In other words, the introductory

environment covers the same concepts, but in a way that is easier to understand. The fact that

this category was the most frequently cited for all three conditions suggests that modality was

not a deterrent for seeing the conceptual similarities between introductory and professional

programming environments.

A second interesting trend is the general similarity in responses of the Text and Hybrid

conditions compared to the Blocks condition. This can be seen in the Programming Basics,

Process, Order & sequence, Meta Programming Concepts, and Not Sure categories. This pattern

matches the findings in the perceived differences analysis in Chapter 5 and Chapter 6’s findings

on conceptual learning showing that in certain contexts the Hybrid condition was found to be

more similar to the Text condition than the Blocks. The two categories where the Hybrid and

Text conditions outnumber the Blocks responses, Process and Order and Sequence, reveal

something about the difference in utility across the modalities. The fact that no Blocks students

attended to Process while six students across the other two conditions did, suggests that the text

manipulation aspects of the Text and Hybrid forms of Pencil.cc helped students see procedural

similarities between writing programs in different environments. For example, one student in the

Hybrid condition responded: “The understanding of what you want your program to do. By

knowing the step by step process of what you want, you will be actually able to know how the

program works.” Nothing in this response, at the surface level, seems coupled with modality, but

 274
nonetheless, no Blocks students seemed to attend to these procedural dimensions of

programming on the mid survey. One potential explanation draws on the authenticity finding

identified in Chapter 4 as contributing to the potential transfer of procedural strategies as the

Hybrid and Text environments were viewed as more similar to “real programming.”

After working in Java for 10 weeks, students were again asked this same question on the

Post survey, with the tense changed from future to past. Figure 8.3 shows student responses at

this point in time. Cohen’s κ was run to determine agreement and consistency of the application

of these codes, and found there to be moderate agreement between the coders, κ = .63, all

differences were resolved through discussion.

Figure 8.3. Student responses to a question on the useful aspects of Pencil.cc and the modality it
used after working in the Java language for 10 weeks.

 The first that stands out in this Figure compared to the analysis of the Mid responses is

the frequency of Blocks students citing Order & Sequence on the post survey relative to the Text

& Hybrid conditions. This is especially interesting given the fact that no students in the Blocks

condition predicted this would be the case on the Mid survey. This suggests that a strength of the

13	

7	

2	 2	

10	

1	
0	

10	

6	

2	
3	

4	

2	

0	

17	

1	

4	

0	

2	 2	
1	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

Specific	
Concepts	

Programming	
Basics	

Syntax	&	
Format	

Process	of	
WriAng	
Programs	

Order	&	
Sequence	

Concepts	
Beyond	

Programming		

Not	Sure	

Co
un

t	o
f	S

tu
de

nt
	R
es
po

ns
es
	

The	Thing	I	Learned	in	Pencil.cc	that	
was	the	Most	Useful	in	Java	was:	

Blocks	

Hybrid	

Text	

 275
Blocks modality is that it makes clear to the learner the order in which commands execute

and that this feature only becomes salient after the transition to the textual modality. A similar

pattern can be seen in the change in the Process category, where Text and Hybrid decreased and

Blocks increased, suggesting that features less tightly coupled to the modality grew in perceived

helpfulness in the Blocks condition.

 This Mid to Post comparison is interesting in that it sheds light on the differences

between what students thought would be useful and what they claimed to be useful across

conditions. The growth in the frequency of Order & Sequence being cited by Blocks students

combined with a decrease in Syntax & Formatting is evidence towards what features of the

blocks-based modality are useful in the transition to Java. Namely, that making explicit order is

clear and helpful, while syntactic features of the blocks-based interface are not so useful.

Likewise, the high counts of responses in the Specific Concepts category in both the Mid and

Post show that students can recognize the conceptual similarities across the transition of

modalities and environments.

Given the high frequency of responses in the Specific Concepts category and the fact that

it is comprised of many constituent concepts, we next tease apart that category to better

understand what concepts were actually cited by name in the responses. Table 8.1 shows the

frequency that students cited the four concepts covered in the opening five-week curriculum.

Table 8.1. Student responses to the concepts perceived to be most useful for Java that were
learned in Pencil.cc.

 Functions &
Parameters

Variables Iterative Logic Conditional
Logic

Mod. Time Mid Post Mid Post Mid Post Mid Post
Blocks 10 2 4 8 3 0 6 1
Hybrid 8 0 5 9 7 0 3 1
Text 11 1 6 16 8 1 6 2

 276
Total 29 3 15 33 18 1 15 4

 There are a few things to note in this table. First, looking only at the Mid responses,

students mentioned Functions & Parameters in their concept responses significantly more

frequently than other concepts (29 times, compared to 15, 18, and 15 for the other three concept

areas). Doing this same comparison for Post responses, we see an overwhelming focus on

Variables (33) compared to the other three concepts (3, 1, and 4). This is most likely explained

by the fact that the first concept covered in the Java portion of the class was variables and

Input/Output, so this increased attention on variables is not especially surprising. Functions was

the last topic covered in the introductory curriculum, which suggests there may be a recency bias

in the responses. The last thing to note in this table is the relative lack of variance across the

three conditions. For each concept, looking down the columns, the numbers are relatively

consistent, suggesting that the modality did not significantly influence student responses with

respect to what concepts were cited. The one exception is Iterative Logic, where only 3 Blocks

students cited it compared to 7 and 8 in Hybrid and Text students respectively. This is slightly

surprising as the ease of loops is often cited as a strength of blocks-based programming

languages, although other research shows that it does not support deeper conceptual

understanding, a finding discussed in the Chapter 6. A possible explanation for the greater

frequency of iterative logic for the textual conditions could be that the need to remember

particularities of syntax made the concept more salient to the learner.

Perceptual Outcomes Discussion

Two interesting findings stand out from the analysis of students’ perceptions of the three

introductory modalities with respect to their utility for learning Java. First was how the Hybrid

condition faired relative to the other two. Students in the Hybrid condition initially viewed the

 277
Hybrid condition to be the least helpful relative to how students in the Blocks and Text

conditions responded. However, after working in Java for 10 weeks, the students in the Hybrid

condition saw that experience as the most helpful relative to the other two modalities. This trend

stands out from most of the other trends in this dissertation, where the Hybrid condition is

aligned with either the Blocks or the Text students. Here however, the Blocks and Text

conditions are similar with the Hybrid environment serving as the outlier. This could be one

place that Hybrid is not acting as a best-of-both-worlds tool, but instead is a case where the

whole is greater than the sum of the parts. In other words, the Hybrid interface is contributing

more than either modality it is built on can individually. One potential explanation for this is the

fact that the Hybrid condition is the only one where students see code represented in more than

one way, which can help lead students to the perspective that not all programming interfaces or

languages are the same. This view, coupled with the scaffolds of the blocks-based features and

the authenticity of the textual canvas collectively could explain this positive outcome for the

Hybrid condition.

The second finding that stands out from this analysis is the emergence of students in the

Blocks condition citing order and sequence as being something learned in the introductory tool

that was helpful in Java. Before working in Java, no students in the Blocks condition cited this

reason. Afterward, a third of students cited this as being something they learned in the Blocks

modality that was helpful in Java. The novices’ ability to focus their attention on order and how

programs fit together instead of syntax or other mechanistic distractions is cited as one of the

conceptual strengths and learning benefits of the blocks-based approach to programming

(Maloney et al., 2010). These claims are often made without data from learners to support it.

 278
This finding suggests that indeed, the blocks-based modality is effective for helping learners

understand the role that order and sequencing play in the practice of programming.

Changes in Attitudes and Perception in Java

 Part of understanding and evaluating the lasting impact of working in different modalities

during the introductory portion of the course is investigating how the attitudes and perceptions of

programming that formed during their use persisted or changed as students moved on to Java.

This section is a continuation of the analysis presented in Chapter 5 that looked at students’

attitudes and perceptions of programming. Whereas that previous analysis looked at student

responses from the Pre and Mid surveys and the changes between them, this section looks at

shifts from the Mid to the Post survey. While each of the diagrams in this section show the

trajectory over the full 15 weeks of the study, the analysis starts by looking specifically at the

Java portion of the study, before incorporating findings from the earlier analysis to paint a larger

picture of students’ trajectories over the 15 weeks. The charts in this section are the same as

those shown in Chapter 5. Note, the charts do not start at zero on the y-axis and do not all cover

the same portion of the 10-point Likert scale, but are on the same scale. This means it is safe to

compare changes (slopes) across the charts, but not absolute values or vertical position.

Confidence in Programming Ability

The first attitudinal dimension discussed is students’ perceived confidence in their own

programming ability. As a reminder from the earlier discussion of this topic, the aggregate

confidence scores is the average of the two Likert statements: I will be good at programming (or

I am good at programming on the Post test) and I will do well in this course. The aggregated

confidence measure at the Pre, Mid and Post points in time are shown in Figure 8.4.

 279

Figure 8.4. Calculated levels of students’ confidence in programing at three points in the study.

 The mean confidence scores on the Pre (8.11, SD = 1.47), Mid (8.19, SD = 1.67), and

Post (8.00, SD = 1.86) surveys show a relatively minor downward trajectory between the Mid

and Post and Pre and Post surveys, meaning students’ confidence in their programming ability

decreased over the 15 weeks. The decrease from Mid to Post survey was not significant when

grouping the three conditions together (Z = 945, p = .14). As previously reported, there was no

difference between the three conditions at the Mid point (F(2, 74) = .10, p = .90), nor was there a

significant difference on the Post survey (F(2, 80) = 2.07, p = .13), although the numbers were

trending in that direction. An analysis of the changes between Mid and Post for each of the three

conditions also fails to return a significant result (F(2, 74) = 1.11, p = .33). Collectively, this

means there was not a significant difference across the three conditions, although the trends

suggest that with more statistical power, a difference may emerge.

 Looking at changes within groups, we see some moderate significance emerge in the

Blocks condition (Z =55.5, p = .10), but not in the Hybrid (Z = 58.5, p = .64) or Text (Z = 94, p =

.69) numbers. In the case of the Blocks condition, the results show students’ confidence in their

7.64	
8.11	

7.45	

8.48	 8.31	

8.28	8.18	 8.14	

8.33	

6.50	

7.00	

7.50	

8.00	

8.50	

9.00	

9.50	

Pre	Survey	 Mid	Survey	 Post	Survey	

M
ea
n	
Ag

gr
ea
te
	L
ik
er
t	S

co
re
	

Aggregate	Confidence	Score	

Blocks	

Hybrid	

Text	

 280
programming ability decrease, showing that after working in Java, their overall confidence in

their programming ability decreased relative to where it was after working in the blocks-based

interface of Pencil.cc. From the beginning to the end of the study, none of the three conditions

show a meaningful change in their programming confidence (Blocks: Z = 158.5, p = .82, Hybrid:

Z = 61, p = .48, Text: Z = 130, p = .82). Taken at this level, the data leads one to conclude that

the modality did not have an impact on students’ confidence, however this conclusion misses the

interesting trajectory followed by the Blocks condition.

 The Blocks condition saw a significant improvement in their confidence after five weeks

in Pencil.cc, followed by a decrease after ten weeks working in Java. At a surface level, this

suggests that students thought Blocks was improving their programming, then, revising this

impression after working in Java. There are a number of possible explanations for this. One is

that students thought they had become better programmers after working in Blocks, which could

explain the increase, however, data presented in Figure 5.4 in Chapter 5 on whether or not the

different modalities had made the students better programmers, does not support this

explanation, as Blocks students didn’t show a different outcome than the other two conditions. A

second possible explanation that is supported by the data draws from findings from the

conceptual outcomes chapter showing that students in the Blocks condition performed the best

on the Mid content assessments. This performance potentially explains this improvement, as

students answering questions correctly would lead to them feeling more confident in their ability.

However, this explanation does not fully hold up, as students in the Blocks condition also scored

highest on the Post survey, at the same time point as they are reporting a decreased confidence.

The increase in confidence for students working in a blocks-based interface could explain other

findings showing an increased retention for students using these types of graphical tools in their

 281
first computer science course (Cliburn, 2008; Johnsgard & McDonald, 2008), but does

potentially call into question the effectiveness of such an approach for preparing students for

future learning of computer science as the gains with respect to confidence do not persist.

Enjoyment of Programming

 The second attitudinal dimension included on the survey was to understand if students

enjoyed programming and if so, how it differed by condition both during their time using the

introductory tools and their time in Java. The aggregate enjoyment score is a composite of

responses to the following three questions: I like programming, Programming is Fun, and I am

excited about this course. Figure 8.5 shows the average aggregate enjoyment score by student

across the three surveys.

Figure 8.5. Calculated levels of students’ enjoyment of programming by condition at three
points in the study.

 Between the Mid and Post surveys, there are no statistically significant changes, this

includes looking across the Mid scores (F(2, 78) = .08, p = .93), across the Post scores (F(2, 80)

= .39, p = .66), and the changes between Mid and Post by condition (i.e. the slopes) (F(2, 74) =

8.29	

8.52	

8.18	8.28	
8.38	 8.40	8.38	

8.36	

8.56	

6.50	

7.00	

7.50	

8.00	

8.50	

9.00	

9.50	

Pre	Survey	 Mid	Survey	 Post	Survey	

M
ea
n	
Ag

gr
eg
at
e	
Li
ke
rt
	S
co
re
s	

Aggregate	Enjoyment	Scores	

Blocks	

Hybrid	

Text	

 282
.76, p = .47). Likewise, a within-group Wilcoxon signed rank test does not reveal any

significant changes between Mid and Post within condition (Blocks: Z = 38, p = .22; Hybrid: Z =

96.5, p = .97; Text: Z = 83, p = .93). Qualitatively, the graphs show trends that would match

expectations, namely that the Blocks condition sees a decrease in their enjoyment of

programming while the Text condition sees their enjoyment increase. However, the relatively

minor changes do not allow for stronger claims to be made. The main take away from these

numbers, like with the Pre to Mid analysis, is that modality seems to have little effect on student

enjoyment of programming, which is both true when using the modality as well as after leaving

the modality behind and transitioning to a more conventional text-based programming language.

 The choice to use aggregated enjoyment scores provides a more reliable measure of the

underlying attitudinal aspect being measured, but also potentially masks some more nuanced

perspectives the students may hold and mute some trends in the data. This can be seen by

looking at some of the underlying enjoyment measures. For example, looking at the responses to

the “Programming is Fun” Likert question (Figure 8.6a) and “I am Excited About this Course”

question (Figure 8.6b) side-by-side reveals additional insight into how the Hybrid condition is

viewed relative to the two others.

(a) (b)

Figure 8.6. Average student responses to the Likert prompt Programming is Fun (a) and I am
Excited about this Course (b) grouped by condition.

7.96	

8.48	

7.90	

8.10	 8.38	 8.16	

7.90	 7.89	

8.41	

6.50	

7.00	

7.50	

8.00	

8.50	

9.00	

9.50	

Pre	Survey	 Mid	Survey	 Post	Survey	

Programming	is	Fun	

Blocks	

Hybrid	

Text	

8.54	 8.41	
8.31	

8.79	

8.27	

8.84	8.93	
8.71	

8.79	

6.50	

7.00	

7.50	

8.00	

8.50	

9.00	

9.50	

Pre	Survey	 Mid	Survey	 Post	Survey	

I	am	Excited	about	this	Course	

Blocks	

Hybrid	

Text	

 283

 What is interesting about these two sets of responses is that, in the Programming is Fun

chart, the Hybrid condition’s path is similar to that of the Blocks condition, where it increases

from Pre to Mid, then decreases from Mid to Post, while the Text condition has the inverse

trends. However, on the second chart, I am Excited about this Course, the opposite is true; the

Hybrid condition is more similar to the Text condition, showing a negative slope from Pre to

Mid that is closer to the Text condition, then seeing that slope shift positive in the Mid to Post

time period. There are a few things that can be gleaned from this. First, this provides evidence

that the design of the Hybrid condition was successful in finding a space between the textual and

graphical interfaces. Second, this shows that modality affects different aspects of students’

impressions in different ways.

Programming is Hard

 The question asking if students found programming to be difficult is the third attitudinal

dimension being investigated. Figure 8.7 below shows the average student responses to this

question by condition.

 284

Figure 8.7. Average responses to the Likert statement: Programming is Hard.

 As discussed in Chapter 5, there was a significant difference in students’ perceptions of

the difficulty of programming on the Mid survey (F(2, 78)= 4.36, p = 0.02), with a Tukey HSD

post hoc analysis showing the Blocks to Hybrid and Blocks to Text differences being significant

(p = .04 and p = .03 respectively). Even after responses move closer together on the Post survey,

a moderate effect can be seen showing differences across the three groups (F(2, 80) = 2.52, p =

.08). A Tukey HSD post hoc test does not reveal any significant in the pairs, but does show that

the source of the difference stems from the Blocks condition being the outlier (Blocks/Hybrid p

= .15; Blocks/Text p = .12; Text/Hybrid p = 1.00). Despite the different signs of the slope

between the Blocks and Hybrid conditions, the difference is not large enough to reach a level of

statistical significance (F(2, 74) = .35, p = .71). Looking within condition changes, again we do

not find any significant changes within a condition for any of the three groups (Blocks: Z = 84, p

= .27; Hybrid: Z = 71.5, p = .55; Text: Z = 89.5, p = .55). Overall, students’ responses to the

Programming is Hard question reveals that working in the modality itself has a significant impact

on perceived difficulty, that transitioning to Java tempered this perceived gap slightly, but the

6.25	

7.37	

7.07	

5.66	
5.77	

5.92	

5.30	

5.93	

5.90	

5.00	

5.50	

6.00	

6.50	

7.00	

7.50	

8.00	

Pre	Survey	 Mid	Survey	 Post	Survey	

M
ea
n	
Li
ke
rt
	S
co
re
	

Programming	is	Hard	

Blocks	

Hybrid	

Text	

 285
difference remains. In other words, the shift to Java did not affect those difficulty perceptions

that formed in using the introductory environments.

Interest in Future CS

The final attitudinal survey question presented in this analysis inquires after students’

interest in pursuing future computer science learning opportunities. It asked students to give a

response on a 10-point Likert scale to the prompt: I Plan on Taking More Computer Science

Courses after this One. Student responses at all three points in time, grouped by condition are

shown in Figure 8.8.

Figure 8.8. Average responses to the Likert statement: I plan to take more computer science
courses after this one, grouped by condition.

Students at the Mid point of the study showed diverging interest in taking future

computer science courses. Students in the Blocks condition showed an increased interest while

students in the Hybrid and Text conditions showed a decreased interest. After students

transitioned to Java and the question was asked again, the trajectory of student responses

7.93	

8.59	

8.31	8.45	

7.65	 7.84	
8.03	

7.18	

7.90	

6.50	

7.00	

7.50	

8.00	

8.50	

9.00	

9.50	

Pre	Survey	 Mid	Survey	 Post	Survey	

M
ea
n	
Li
ke
rt
	S
co
re
s	

I	Plan	to	Take	More	Computer		
Science	Courses	A8er	This	One	

Blocks	

Hybrid	

Text	

 286
changed; Blocks students were less interested in future computer science courses, while Text

and Hybrid students’ interest increased. The difference in the three conditions at the Post survey

did not reach statistical significance (F(2, 80) = .32, p = .72), nor did the difference in the deltas

across the three conditions (F(2, 74) = 1.03, p = .36), despite the opposite signs of the slopes.

Looking within each condition by running a Wilcoxon signed rank test does not find significant

changes for any of the three conditions (Blocks: Z = 26, p = .32; Hybrid: Z = 99.5, p = .87; Text:

Z = 82.5, p = .21). These data suggest that the introductory language does influence students’

likelihood of wanting to take another computer science class after they have transitioned, but not

at a statistically significant level (with the power available in this study).

Attitudinal Changes Discussion

The analysis of students attitudes relied largely on the Pre, Mid, and Post surveys

administered, using statistical methodologies to identify how and where attitudes differed over

time and across conditions. Taken collectively, looking across all four of the attitudinal

dimensions pursued, we see little significant effect of the transition to Java in changing student

attitudes or perceptions. This lack of significance is in part due to the relatively weak statistical

power of the study design due to the number of students in each condition and the three-way

comparisons. With that being said, there are some noteworthy trends. Foremost among them is

the fact that students in the Blocks condition showed a negative trend in all four of the categories

they were asked about on the Post survey relative to their responses on the Mid survey. At the

same time, for both Text and Hybrid, on three of the four dimensions, attitudes improved over

the time spent working in Java, suggesting an opposite trend, that the move to Java improved

students overall attitudes and perceptions of programming. In other words, students in the Text

and Hybrid conditions saw their attitudes improve over the ten weeks of working in Java, while

 287
students in the Blocks condition saw the opposite effect. These trends suggest that there are

potential consequences to the decision of what language you choose to start with. For example, if

a computer science sequence is setup so that in the first class students only use an introductory

language and in the second class students use a professional text-based language, then these data

would recommend using a blocks-based language, as students likelihood of taking future courses

after using the introductory language was highest in that condition. However, if the course is

setup such that students start with an introductory language and then transition to a professional

language as part of the same course, then the decision of introductory modality is less important

as student opinions are not different after the transition has occurred.

A second interesting trend to notice across the four categories is the frequency of slopes

inverting between the two time periods. When the changes were positive between the Pre and

Mid surveys, they often became negative from Mid to Post, and vice versa. This potentially reads

as a sort of dampening effect, where the introductory environment pushes learners out towards

some (relative) extreme and then the shift to Java brings that dimension of the learners’ attitude

or perception back towards their initial position. The trend was followed on nine of the 12

individual trend lines mapped in the four aggregated figures. While this characteristic is shared

across the three conditions of the study, the order of the slopes (increase then decreases or vice-

versa) differs by modality. On all four charts, the Blocks condition peaks on the Mid survey, then

declines afterwards. The Text condition has the opposite trajectory (decrease then increase) on

three of the four categories. The Hybrid condition only changes slopes once across the three

categories, twice having a positive slope for both time segments and once having a negative

slope. The larger interpretation of this finding will be revisited as part of the overall discussion at

the conclusion of this chapter.

 288
Differences in Java Programs

Along with interviews and written surveys, all of the programs that students authored

throughout the fifteen-week study were collected. For the Java portion of the study, each student

computer was instrumented so that a call to compile a program would send a copy of that

program, along with the complier output to a remote server controlled by the researcher. In this

way, every student program authored and every run of the program was logged. This section digs

into this data to try and understand if there were different patterns in programming practices or

varying frequencies of errors and successes across the three conditions. This section begins by

looking at frequency of compilations and levels of successes and continues with an analysis

looking at the types of error encountered and if they differed by introductory modality.

Collectively, this analysis adds another dimension to the picture that is being filled in around

how introductory modality informs later programming experiences.

Frequency of Compilations Over Time

 The first programming practice investigated was to see if there were differences across

the three conditions with respect to how often students attempted to run their programs. As a

reminder, in this class, students run their programs by calling the javac command from the

terminal. This form of compiling and running of programs is different than many introductory

programming classes, which use development environments that provide built-in compilation

support (like clicking a button to compile). As discussed in Chapter 3, this approach was an

intentional pedagogically-driven decision made by the teacher. As was shown in the previous

chapter, there were differences across the three conditions using the introductory tools with

respect to how often students ran their programs (Figure 7.7), so here we look to see if those

differences persisted. Students in the Blocks condition ran the javac command an average of

 289
142.3 times (SD = 67.1), the same value for the Text conditions was 130.9 (SD = 61.1) and

150.9 (SD = 79.2) for the Hybrid Condition. These numbers are not statistically significant (F(2,

80) = .594, p = .55), meaning in aggregate, there was no difference in the number of calls to

javac based on the modality students used in the first five weeks of the school year. These

numbers are visually depicted in Figure 8.9, which shows the average number of compilations

for each student across the three conditions by week43,44. This chart includes both successful

compilations as well as calls the resulted in an error.

Figure 8.9. The average number of compilations of Java programs by student by week.

Although none of the differences between the three conditions reach statistical

significance, this chart does start to show some patterns. First, in six of the eight weeks, the

Hybrid condition had the most calls to compile, while the Text condition had the fewest number

43 Unless otherwise specified, all charts in this section show per-student averages to control for
the fact that not all classes had the same number of students.
44 The chart starts at week two of the Java unit as no calls to compile happened during the first
week of the Java unit, largely due to other non-Java related activities, like administering the
attitudinal and content assessments, getting Java development environments setup and presenting
final projects from the first portion of the course.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

2	 3	 4	 5	 6	 7	 8	 9	

Av
er
ag
e	
N
um

be
r	o

f	C
om

pi
la
2o

ns
	

Week	

Average	Number	of	Compila2ons	by	Week	

Blocks	

Hybrid	

Text	

 290
of calls in the same number of weeks (six out of the eight covered). Second, for the most

part, there was roughly the same number of compilations that happened per week. Running an

ANOVA calculation on each week of Figure 8.9 finds no week to have a significant difference in

the number of runs by previous modality (week 4 comes the closest with F(2, 77) = 1.79, p =

0.17). This chart suggests that the introductory modality had relatively little effect on how often

students attempted to run their programs.

The chart shows some unexpected trends comparing week to week, like the dip in week 6

followed by the spike in week 7. This is in part due to one of the challenges of doing research in

schools: the unpredictability of the school calendar and the number of days that students are not

in the classroom or are not working on what one might expect. Week 6 of the study was

Thanksgiving week, so those numbers are lower than they otherwise might be because students

were only in class 3 days that week. Students also missed two days of classes in week 4 and one

day in week 5. This explains some of the fluctuations. The same data from the figure above is

presented again in Figure 8.10, this time showing the average number of runs per student per day

in class. The relationship between conditions is the same across these two figures, but this

updated figure below gives a better sense of the activity by week.

 291

Figure 8.10. The average number of javac calls per student per day grouped by week.

 The above Figure still shows spikes (like weeks 4 and 7) and dips (like in weeks 5, 8, and

9), although now, these are explained by how the teacher chose to spend class time as opposed to

external factors (like school holidays). For example, in week 7, students were introduced to the

char variable type through an assignment where they were asked to write a short program, then

try and run it with different values to see what would happen. As a result, there was a spike in

week 7 as these types of assignments (that would have student call javac over and over again)

were not the norm. Other assignment related trends are discussed later in this section.

So far, the charts shown in this section have included all calls to javac, grouping

together both successful compilations as well as calls to the compiler that produced errors. We

now tease apart these two outcomes to see if students were differentially successful or error

prone based on the modality used in the introductory portion of the course. Figure 8.11 uses the

same data as the two previous charts, but now only includes successful compilations.

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

2	 3	 4	 5	 6	 7	 8	 9	

Av
g.
	N
um

be
r	o

f	C
om

pi
la
3o

ns
	p
er
	D
ay
	

Week	

Average	Number	of	Compila3ons	a	Day	per	Student	by	Week	

Blocks	

Hybrid	

Text	

 292

Figure 8.11. Average number of successful compilations by condition.

 The pattern in this chart largely matches the data from the previous charts. The Text

condition frequently had the lowest average number of successful compilations per student,

while students who had worked in the Hybrid version of Pencil.cc showed the highest number of

successful compilations. Since the students were all working on the same assignments in the

same programming environment, the slight differences in successful runs does suggest

something about programming practice. The higher frequency of the Block and Hybrid students

shows these students having higher levels of success in writing syntactically valid programs,

although the magnitude of this difference is relatively small, and seems to start to fade by the end

of the study. There are a number of possible explanations for this. One explanation could be that

students in these conditions were more likely to compile their program at intermediate steps

along the way. In other words, as they were writing their program, they would check to see if the

portion they had written was correct before continuing with the next portion. A second

explanation could be that students in the Blocks and Hybrid condition ran their programs more

frequently once they were completed (i.e. they finished their programs then ran it over-and-over

0	

5	

10	

15	

20	

25	

2	 3	 4	 5	 6	 7	 8	 9	

Av
g.
	N
um

be
r	o

f	S
uc
ce
ss
fu
l	C
om

pi
la
6o

ns
	

Week	

Average	Number	of	Successful	Compila6ons	by	Week	

Blocks	

Hybrid	

Text	

 293
again), thus inflating their successful compilation counts. A final explanation is as simple as

the fact that students in the Text condition did not call javac as often as students in the other two

classes. In the following paragraphs, we explore these different potential explanations.

 To identify the cause of these trends, we can look at consecutive successful javac calls

for the students participating in the study and focus on the size of the changes students made

between them. This analysis only looks at successful runs and does not consider how many failed

javac calls might have taken place between them. The intention with this investigation is to

understand the incremental nature of the programming approach taken by students from the three

conditions and to see if different development practices can be found. To measure the distance

between two programs, we use the Levenshtein distance between the texts of the two programs.

Levenshtein distance captures the minimum number of single-character edits (i.e. insertions,

deletions or substitutions) required to change one string into the other. Table 8.2 shows the

results of this analysis. The columns capture the size of the Levenshtein distance between two

consecutive successful programs, while the cells show the average number of compiles of that

distance per student. The lower the number, the less often a program with that distance from the

previous successful compilation was run by that student. For example, the left-most column of

numbers shows that, on average, students in the Blocks condition complied a program that was

identical to the last program they compiled 7.00 times over the course of the 10 weeks, while the

Hybrid condition recompiled programs an average of 7.40 times and the Text condition only did

this 6.16 times.

Table 8.2. The frequency of successful compilations with a given Levenshtein distance from the
last successful compilation of the same program.

Levenshtein Distance

0 1 2 3 4 5 - 10 11 - 25 26 - 100 > 100

 294
Blocks 7.00 3.37 5.70 1.33 2.37 4.30 3.52 6.56 3.33
Hybrid 7.40 3.68 5.88 1.84 2.60 4.64 4.72 6.48 3.76
Text 6.16 3.00 5.58 1.23 2.13 3.77 3.48 5.87 2.55

Table 8.2 shows that students in the Text condition made fewer small changes to their

programs, fewer large changes to their program, and also re-ran their programs without making

any changes less often than the two conditions. In other words, the Text condition had fewer

successful runs than the other two conditions. The data does not show that these fewer

compilations are a result of them making larger sets of changes between runs, thus ruling out that

explanation for the fewer number of successful runs. There is some evidence for the difference in

number of runs coming from the students in the Text condition rerunning their programs less

often and making fewer calls after modifying only a few characters in their program, but these

differences are not so large as to convincingly explain the larger trend. These numbers tell the

same story as Figures (Figure 8.9) and (Figure 8.10), both of which show the Text group to have

called javac least often. The most likely explanation for this is that students who used the text-

only modality in the first five weeks of the course are slower to author programs in Java, but this

study did not collect keystroke data, which is the data source needed to provide strong evidence

for this outcome.

 Figure 8.9, which shows all compilations, includes both successful compilations, as well

as compilations that resulted in errors. Figure 8.12 below shows the average number of javac

calls the produced an error broken down by week. All of the errors captured at this point were

compile time errors, meaning the program violated some syntactical requirement of the Java

language (e.g. a missing semicolon or misspelled keyword). This is in contrast to runtime errors,

which only emerge once the program is run. An analysis was done looking for runtime errors in

the programs collected, but no runtime errors were detected. This is largely due to the types of

 295
programs written, which did not include constructs that are the most frequent culprits of

runtime errors (e.g. array indexing and divide-by-zero calculations).

Figure 8.12. The average number of compilation calls that resulted in at least one error, grouped
by condition and week.

 The pattern in this figure roughly matches that of the previous two, with the Text

condition again having the lowest numbers, but we see three weeks where the conditions split,

(weeks 4, 5 and 7). Whereas with the successful compilations we can gain insight into the

programming practices by looking at the nature of the changes made between runs, with the

errors we have additional information in the form of the type of error that was detected. This

information can be used to further understand and explain this graph. The next section starts to

explore the patterns of errors observed in this data.

Before digging into the nature of the errors, the last chart we present in this section,

Figure 8.13, shows the ratio of successful to unsuccessful javac calls over the ten weeks of the

Java portion of this study. This chart controls for the overall number of compilations so rules out

that explanation for the less successful number of compilations in the Text condition.

0	

5	

10	

15	

20	

25	

30	

2	 3	 4	 5	 6	 7	 8	 9	

Av
g.
	N
um

be
r	o

f	F
ai
lin

g	
Co

m
pi
la
5o

ns
	

Week	

Average	Number	of	Failing	Compila5ons	by	Week		

Blocks	

Hybrid	

Text	

 296

Figure 8.13. The percentage of syntactically correct calls to javac by condition.

One might expect the lines in this figure to have a positive slope, denoting that students

are progressively improving (or at least writing more correct code) as their experience grows.

However, this positive trend is not always present due to the fact that the students are constantly

learning new material. While many weeks see the three conditions follow similar trajectories,

there are some weeks where the three conditions deviate from each other, notably, weeks 5 and

8, while other weeks see outliers (like weeks 3 and 4).

To explain the stratification that happened in weeks 5, and 8, we look to the weekly

curriculum to see if there is a plausible explanation based on the activities students are working

on. In week 5, students work on two projects that ask students to write short Java programs to

display images. In both cases, students find a URL online, then display the image residing at that

URL in a visual Java container (called a JOptionPane). This is the first time students are

doing anything with images since starting their work in Java. In fact, this assignment is similar to

0.0%	

10.0%	

20.0%	

30.0%	

40.0%	

50.0%	

60.0%	

70.0%	

80.0%	

2	 3	 4	 5	 6	 7	 8	 9	

Pe
rc
en

t	o
f	S

uc
ce
ss
fu
l	J
av
ac
	C
al
ls
	

Week	

Percentage	of	Successful	Javac	Calls	

Blocks	

Hybrid	

Text	

 297
a commonly used feature of Pencil.cc, namely, that students can have their turtles ‘wear’ an

image by passing a URL into the wear command. This assignment is the closest to any of the

turtle geometry or visual assignments given in Pencil.cc. Given this fact, it seems reasonable to

expect that students who fared better in Pencil.cc may perform better on this assignment, which

is indeed what happened.

Week 8 again sees students from the three conditions experiencing different levels of

success with respect to successful compilation rates. This time, however, the Blocks condition is

the least successful of the three conditions, with the Hybrid condition having the highest success

and the Text condition being in the middle. Week 8 saw the introduction of input into Java

programs using the Scanner class. Interestingly, whereas week 5 had the Blocks students excel

when working on a program related to displaying images, in week 8 they appear to struggle to

write syntactically correct programs when the assignment is based on taking input from the user.

All students had read in data from a user as it was part of the Pencil.cc curriculum but the syntax

they used was very different than what was required in this part of the course. A possible

explanation for the poorer performance of students in the Blocks condition is that students from

the Text and Hybrid had a more comfort writing text-based programs to handle user input, and

thus more quickly were able to author syntactically correct programs. An investigation into the

outliers previously mentioned in weeks 3 and 4 revealed no clear link between the assignment

and the frequency of errors. Having looked at aggregated and temporal error patterns for this

portion of the study, in the next section, attention turns away from whether an error occurred and

towards what type of error it was, in hopes of linking features of the modality to early Java error

and programming patterns.

Types and Frequencies of Java Errors

 298
 The last figure shown in the previous section charted the frequency of students’ errors

as they advanced in Java. This gives us some sense of how students were faring in Java, but does

not provide insight into the types of errors they were making. In this section, we dig further into

this information, trying to understand the nature of errors that were being made to see if any

patterns could be attributed back to the introductory modality students used. As a reminder,

every time a student makes a call to javac (the Java compilation command) the logging system

put in place makes a record for the call that includes who the student was, what he or she typed

in (usually the name of the program, but also any arguments provided), the contents of the

program, as well as all errors reported by the Java compiler. The first step in this process is to try

and normalize and categorize each error captured by the logging system. The plurality of

compilation errors produced by the Java compiler has been documented as both a source of

difficulty for novices (Nienaltowski et al., 2008; Traver, 2010) as well as an opportunity for

improving introductory programming environments (T. Flowers, Carver, & Jackson, 2004;

Hristova, Misra, Rutter, & Mercuri, 2003).

 Before looking at frequency of specific types of errors, we first look at some overall

frequency numbers, trying to understand if there are differences in total number of failing calls to

javac by student, the average number of errors per student (since there can be more than one

error per program), and the number of errors per compilation by student. Table 8.3 shows these

high-level descriptive patterns.

Table 8.3. High-level descriptive patterns of failing compilations and errors.

 Failing javac calls per
student

Compilation errors
per student

Compilation errors per
failing javac call

Blocks 75.11 165.78 2.23
Hybrid 80.04 212.04 2.5

Text 69.55 164.26 2.21

 299

Looking at this table, we see a pattern similar to that shown in the previous section. The Hybrid

condition had the highest average number of javac calls that retuned a compilation error per

student. Similarly, the Hybrid condition had the most number of errors per student over the

course of the ten weeks. The far right column shows the average number of errors per javac call.

Again, we see the students who spent the first five weeks of the course working in the Hybrid

version of Pencil.cc had the most number of compilation errors per program. This chart shows

relatively little difference between Blocks and Text, but shows students in the Hybrid condition

to be relative outliers. These numbers match the figures shown in the previous section where the

Hybrid condition was often plotted above the lines representing the Text and Blocks conditions.

We now shift from total number of errors to the frequency of different types of errors.

The collection and analysis of Java error messages is not without its challenges. Due to the

process by which javac compiles programs, the compiler often does not (and at times cannot)

provide meaningful error messages to the programmer. For instance, a missing ‘;’ could be

described by the error message “expected ‘;’ on line 11” or by the rather generic

error message “not a statement”. In addition, many error messages stated by the compiler

are class specific (e.g. “Class names, 'VarRefConcate', are only accepted

if annotation processing is explicitly requested”). In order to make the

analysis more meaningful, errors were grouped into broadly specified error types. For example,

the class name error above was classified as an “Incorrect javac Call” as that is the

most common cause of that particular error. The logic used to conduct this categorization can be

found in Appendix F. Figure 8.14 shows the 10 most frequently found errors collected by

 300
compilation, grouped by condition45. The values in this chart are reported on a per-

compilation basis to control for how often students chose to compile as well as the fact that the

three conditions did not have the same number of students.

Figure 8.14. The ten most frequently encountered Java errors, grouped by condition.

There are a few things to notice about this chart. Running an ANOVA calculation on

each error, looking for statistically significant differences between the groups finds that none of

the errors rise to the p < .05 level of significance. The two errors that come the closest are the

two categories where the Hybrid condition is the outlier: “not a statement” (F(2, 82) =

45 Note: this figure includes the top 10 errors, each of which occurred over 500 times. This cutoff
was chosen because there was natural break in the data between this error and the next most
common error, which occurred over 100 times less often.

0	 0.05	 0.1	 0.15	 0.2	 0.25	

missing	curly	
brace	

unclosed	string	
literal	

type	mismatch	

unmatched	parenthesis	
or	bracket	

illegal	start	of	
expression	

illegal	character:	'\'	

not	a	statement	

incorrect	javac	
call	

cannot	find	
symbol	

';'	expected	

Average	Number	of	Times	Error	Occurred	per	Compila8on	

Top	Ten	Java	Compila8on	Errors	

Blocks	

Hybrid	

Text	

 301
2.26, p = .11) and “illegal character: ‘\’” (F(2, 82) = 2.54, p = .08),. These two

categories will be discussed later in this section.

The first thing that stands out about this figure is how often the first two errors were

encountered relative to every other error. The most common error was: “’;’ expected”,

which is seen when students forget to end a statement with a semi-colon, a syntactic requirement

of Java. The second most common error: “cannot find symbol”, occurs when students try

and use a variable before it has been defined. Neither of these errors are possible in Pencil.cc, as

semi-colon terminators are not required and variables do not need to be defined before they are

used (at least in most cases). While this Pencil.cc explanation seems reasonable, it is important to

note that regardless of prior programming experience, novices frequently encounter these two

errors. The literature shows these two mistakes to be very common, in fact, both Jadud (2005)

and Jackson et al. (2004) identified these two mistakes as the most frequently encountered in

their data. In this way, the findings of this analysis replicate findings documented elsewhere in

the literature.

Looking across the ten errors, we see that half of the ten most frequently occurring errors

were seen least often by students in the Blocks condition. A possible explanation for this

outcome is that, because Java code is so unlike the blocks-based modality used by the students in

the first five weeks, they were more attentive to the specific syntax they were being forced to

learn. Text and Hybrid students on the other hand, were already accustomed to manipulating a

text-based language, but had used an entirely different syntax, so they may have assumed a

higher level of similarity across the text-based languages. Another explanation for the fewer

number of errors made by students from the Blocks condition relies on the data analyzed in

Chapter 6, which found the Blocks-based students performed the best on the Mid assessments.

 302
The explanation thus becomes, students in the Blocks condition learned the most about

programming in the first five weeks of the course, so had the least amount of conceptual

difficulty in the early weeks, and thus, had the fewest errors. This explanation does not

completely hold up, as the differences in the performance on the content assessment eroded over

the course of the ten weeks of working in Java, but that is not reflected in this data.

As previously mentioned, the two categories that showed the largest difference between

the introductory modalities both had the Hybrid condition as an outlier. These two errors are:

“not a statement” and “illegal character \”. The “illegal character \”

error was encountered frequently because early assignments asked students to include escape

characters in their output text (which includes tabs, quotes, and backslashes). In Java, the “\”

character is used to denote an escaped sequence. This error often occurred in cases where

students wanted to output text, but were missing the enclosing quotes or tried to escape a

character not inside a string to be output. In blocks-based modalities, this type of error rarely

occurs as the keywords themselves are prefabricated (i.e. a novice cannot escape a keyword) and

because strings are visually denoted inside slots and quotes are not needed. A possible

explanation for the students coming from a Hybrid modality encountering this error is that they

were used to seeing and working with commands that have the opening and closing quotes

provided. Also they did not have the higher level of attention to detail when working in Java that

seems to accompany the students from the Blocks condition. The other error frequently seen,

“not a statement”, is usually the result of typing only part of a statement, leaving it

incomplete and meaningless. One explanation for this is that, at the start of the year, Hybrid

students did not have the predefined commands and sequences that could be dragged into their

programs but instead gained experience in the text-based modality, so are more intrepid and less

 303
cautious. In this way students had the familiarity with the modality but previously had more

scaffolds in place to help them compose their programs. The combination of fewer scaffolds with

less caution may explain these outcomes. Other errors in this list could be encountered as a result

of students having this orientation of confidence without scaffolds, including “unclosed

string literal” and “illegal start of expression”, two other errors most

often encountered by students from the Hybrid condition. If these types of mistakes are indeed an

outcome from working in the hybrid interface for the reasons discussed above, this would be a

place where this specific interface is producing the worst-of-both-worlds, rather than the

opposite, which was the intended outcome.

A final important thing to point out about this figure is that all of the errors in the chart

are tied to the contents of the programs students’ wrote, with the exception of one. The

“Incorrect javac call” error is a category we created to capture the various errors

associated with issues related to calling javac. These errors include mistyping the program file

name, trying to compile a file that does not exist, or giving (or forgetting) arguments that do not

match what the program expected. There is no difference in the prevalence of this error by

introductory modality, which is not surprising given that no students were asked to do this type

of compilation and program calling in Pencil.cc. Collectively, this analysis by error reveals some

minor trends towards types of error by previous modality experience, but a clear link between

types of errors and introductory modality did not emerge. These findings will be further

discussed in the context of everything else presented in the next section of this chapter.

Java Programs Discussion

 304
 In previous chapter, programs written by students were used as a data source to try

and understand if and how the modality students had used during the first five weeks of the

school year influenced their early Java programming practices. The first investigation looked at

frequency of compiling programs and the success rate of those javac calls. Overall, no obvious

differences were observed. Students across the three groups showed similar programming

patterns with respect to frequency of failures and successes in their calls to compile their

programs, comparable patterns in the size of changes between successful calls to javac, and

encountered the same types of compilation errors with roughly the same frequency.

Even though clear differences did not emerge, there were some trends that suggest some

difference did exist. Of the three conditions, students who had spent their first five weeks

working in a text-based modality had the fewest number of calls to compile their programs,

despite the same amount of time on task. This suggests that students in the Text condition took

more time between compiles, resulting in fewer overall calls to javac relative to their peers.

Other alternatives were explored (like Text students made larger edits between runs, or that

students in the Text condition needed to compile their programs less frequently because they

were more efficient and finished their programs sooner), but the data did not support these

alternative explanations.

 In looking at the ratio of successful to unsuccessful calls to javac, there were a few points

where the three conditions started to vary. When assignments involved images, students with

prior experience working in a fully blocks-based modality excelled, while those same students

seemed to struggle on assignments related to reading in user input. The plausible explanations

given for these two findings drew on different characteristics of the programming activity. For

the image assignment, the visual nature of the assignment seemed the most plausible

 305
explanation, while the variance for the input assignment was part of an explanation that was

also used to explain some of the error patterns observed later. When looking at patterns in the

types of errors observed, there were a few places where the Hybrid condition was an outlier in

terms of seeing specific errors more frequently and, in the Blocks condition, a larger pattern of

fewer errors. The explanation given for these has to do with students in the Blocks condition

attending more closely to the syntactic details of Java due to how different the modality was. The

students in the Hybrid condition were the least well suited for Java due to their prior experience

working in a text-based modality with an introductory version of Java that had scaffolds. While

these explanations seem reasonable, there is only weak support for them in this data, so for now

they remain conjectures, with the hope of returning to explore them in more detail in future

work.

 The final discussion point from this section is less about the research questions and the

modalities being investigated and more about the challenges associated with doing this work in

classrooms. Trying to make sense of the data at the highest level gathered over the course of

weeks in the classroom cannot be interpreted without considering the complex milieu of the

classroom and the school infrastructure in which it resides. These issues can take the form of

school holidays, differences in the types of assignments being given, and the pedagogical choices

the teacher makes and the fact they can change from day-to-day and week-to-week. This, in

conjunction with other challenges related to studying modality previously discussed (like the

difficulty of separating modality from language and assignments) make it difficult to find clean

and clear findings, but at the same time, engaging in such work is essential for answering the

types of question being pursued in this dissertation in ecologically valid ways.

Discussion

 306
 This chapter began by looking at students’ perceptions of whether or not the

introductory environment was useful for the eventual transition to Java and if so, what features

were useful for that transition. The chapter then continued by looking at attitudinal shifts of

students that occurred during their first 10 weeks of learning to program in Java. Finally, the

chapter presented data looking at student successes in their early Java programming, using logs

of Java programs to gain insight into if and how the modality used in the introductory

environment helped students at the outset of their Java experience. Collectively, these analyses

illuminate different facets of the larger question of how the modality used in an introductory

programming environment does or does not prepare learners for the transition to a professional

text-based programming language. A brief discussion for each of the three analyses was provided

within each section, here, the three larger trends from these three analyses are presented and

connections are made across them trying to pull together these three avenues of inquiry to tell the

larger story on learners transitioning to Java. As the goal of this dissertation is to understand

differences by modality, that is where we choose to focus in this section.

 Across the three analyses there were as many facets of learning to program in Java that

seemed to be affected by the introductory modality students had used as were places where

modality seemed to make little difference. Asking students to reflect on what they found to be

useful from the introductory environment produced largely uniform results across the three

conditions. The exception being the emergence of students who used the blocks-only modality

highlighting how their time using the visual programming representation helped them see the

importance of Sequence and Order in learning to program. The investigation of programming

practices based on the computational logs collected yielded a similar lack of difference across the

three conditions. While some trends emerged, like the fact that students from the Text condition

 307
had fewer calls to javac and that there were a number of errors more frequently

encountered by students from the Hybrid condition, both of these findings are relatively minor

compared to the larger potential trends that could have emerged. This suggests that the

introductory modality used plays either no role or only a relatively minor role in shaping

programming practices after transitioning to a professional programming language, or at least,

modality does not differentially affect emerging practices.

 Where differences based on modality do appear, the largest differential impact is in how

attitudes change during the first ten weeks of working in Java. Interestingly, it appears that much

of the influence of modality on attitudes when working in Java was shaped by the attitudes

students held after the five weeks working in the introductory tool. As was shown in Chapter 5,

the Blocks condition largely had the most positive effect on various dimensions of students’

attitudes. What this chapter found, is that student attitudes showed a negative slope for every

dimension that was captured. At the same time, the students from the Blocks condition saw a

relative improvement in three of the four attitudinal dimensions (with the fourth showing a

decrease of only .03 points on a ten-point scale). One way to read these trends is that the

different modalities used in the introductory portion had the effect of fanning out the attitudes

(Blocks improved while Text decreased with Hybrid living in the middle) and then the shift to

Java moves students back to being closer to the attitudes held at the outset of the study. This

makes some sense as students coming into the course held various preconceived notions about

what it meant to program in Java and had incoming dispositions about the activity.

 While the framing of the discussion and analysis has focused on how the modality from

the introductory portion of the study informed students’ experience in Java, the shift between the

two phases of the study included more than just changing the programming language. In the

 308
curriculum designed for the first five weeks of the study, care was taken to give assignments

that would result in all of the students producing similar programs as well as opportunities for

students to be creative and expressive, creating unique and personally meaningful programs. In

the Java portion of the class, for a variety of reasons, the assignment become much more

formulaic and standardized across the class, leaving less room for creativity and expression.

Similarly, the pedagogy in the class shifted to a model that relied more heavily on direct

instruction (either through demonstration or following examples in the textbook). This was in

contrast to the exploratory, self-directed approach used during the introductory portion. These

shifts in the culture of the classroom were related to the shift in modality (more heavily

scaffolded environment can support different types of activities), but also had to do with the

teacher taking back the reins of curriculum design from the researcher. At the same time the

cultural shift happened, so to was there a drastic shift in the nature of the programming

environment being used. Whereas the Pencil.cc environment provided a number of built-in

scaffolds independent of modality, the text editor used for the Java portion of the class was

intentionally spartan, providing no coding support to the learner. While this shift was shared for

all students it, along with the cultural shift, provide two dimensions that confound the study

design, which was trying to isolate language as the major difference between the two phases of

the study. While this does not undermine any of the data, analysis, or findings presented in this

chapter, it does suggest that more studies of a similar design need to be conducted before the

findings in this chapter become robust enough to be responsibly applied to diverse classrooms

and learning contexts.

Conclusion

 309
This chapter is the fourth and final analysis chapter of this dissertation and fills in the

last remain big piece of the analytic approach taken in understanding the role of modality on

learning. The three analyses presented in this chapter took different approaches towards

understanding how the modality a learner uses in an introductory course impacts their experience

and approach to programming in a professional language. In taking these different approaches to

understand this question, this chapter shows how and where modality informs students’

experiences in learning to program with Java and places where little residue from the time spent

working with different introductory modalities was found. These findings have potentially large

implications with respect to the suitability of various introductory tools based on the larger goal

of the learner and the educator. These implications, along with a longer summative discussion to

capture the full breadth of the findings will be presented in the next and concluding chapter of

this dissertation.

 310
9. Discussion and Conclusion

 The final chapter of this dissertation summarizes the work undertaken and recapitulates

the findings presented throughout the document, providing a larger framing for the contributions

made and the implications of what was learned. Over the previous four analysis chapters,

different aspects of the relationship between modality and learning to program were investigated.

In this summative chapter, I link these analyses to provide clear answers to the stated research

questions pursued in this work. The chapter begins by restating the research questions and briefly

describing the course pursued to answer them. The summary of the findings follows. It starts

with a comparison of the findings from the textual and blocks-based conditions of the study and

then brings the hybrid blocks/text condition into the story. The implications of this work follow

and reflect on what these findings mean for pedagogy, classroom curricula, and learning

contexts. Next is a section that serves as a discussion for the major focus of this work: the

relationship between modality and learning to program. Finally, the limitations of the current

study are discussed with care taken to discuss potential future work to address each of the

limitations identified.

Review of the Program of Research

 This study sought to understand the relationship between modality and learning to

program. The concept of modality is intended to capture both the design of the representation

used as well as the types of interactions made possible by that design. In this way, modality is

not a characteristic of a representational system in isolation, but instead captures the larger

sphere of representation-with-actor. The domain of interest is computer science, specifically,

novices learning to program. This area is particularly well suited for pursuing questions of

 311
modality because of the diverse set of modalities used in introductory programming contexts

and the interactive nature of working with programming languages and environments. Stated

concretely, this dissertation pursued three sets of interrelated research questions seeking to

understand the impact of students’ learning in blocks-based, text-based, or hybrid blocks/text

modalities. The three sets of research questions pursued in this work are as follows:

1. (a) For text-based, blocks-based, and hybrid blocks/text programming tools, what is the

relationship between the programming modality used and learners’ perceptions of

programming with respect to confidence, authenticity, enjoyment, and to their broader

attitudes towards the field of computer science? (b) How does the representational

infrastructure used affect learners’ emerging understandings of programming concepts?

c) What programming practices do learners develop when working in each of these three

modalities? And, for each of these questions, how do the answers differ across blocks-

based, text-based, and hybrid blocks/text environments?

2. (a) How do understandings and practices developed while working in different

introductory programming modalities support or hinder the transition to conventional

text-based programming languages? (b) How does a learner’s understanding of and

attitudes towards programming change as learners shift from introductory environments

to more widely used, professional programming languages? How is this different among

text-based, blocks-based and hybrid blocks/text introductory modalities?

3. Can we design hybrid introductory programming environments that blend features of

blocks-based and text-based programming that effectively introduce novices to

programming and computer science more broadly? How does such an environment

 312
perform relative to blocks-based and text-based programming tools with respect to

conceptual understanding, development of productive programming practices, and

attitudinal, motivational, and engagement outcomes for learners?

 To answer these questions, a quasi-experimental, mixed-methods study design was

developed and executed. Three isomorphic programming environments were developed. The

environments used the same programming language and had the same set of capabilities, but

differed in the modality used: one environment was fully text-based, one was fully blocks-based,

and a third presented users with a text canvas but also provided a blocks-based palette, thus

supporting the addition of commands through a drag-and-drop mechanism as well as character-

by-character editing.

 The study was conducted in three high school programming classes, run in the same

room by the same teacher during three different class periods. Each class worked through the

same curriculum using just one of the three modalities. The study began on the first day of

school and lasted 15 weeks, the first five weeks were spent using the introductory programming

environments, followed by ten weeks of following the students as they transitioned to Java, a

professional text-based programming language. The strength of the study design is that it

controls for many (but not all) of the confounding factors that make comparative classroom

studies and studies of programming languages and modality so difficult. The study controls for

teacher effects and curricular effects because they were held constant across the three conditions.

Students were drawn from the same student body, which helps to control for larger school

culture effects. To try and isolate modality from other aspects of introductory programming

environments, the three introductory environments were built on the same platform, used the

 313
same underlying programming language (CoffeeScript), provided the same capabilities in the

same runtime, and differed only in how the commands were presented and edited. In other

words, the environments were isomorphic with modality being the only difference. The three

modalities are shown below in Figure 9.1. With these tools and this study design, we are able to

answer the stated research questions in a rigorous and compelling way.

(a) (b) (c)

Figure 9.1. The Blocks (a), Text (b), and Hybrid (c) environments used in the study.

Summary of Findings

 This section serves as a high-level review of the finding from the four analysis chapters

and, for the first time, draws conclusions across the full set of evidence presented. The first

portion of this section compares the Blocks and Text conditions to make claims about modality’s

influence on attitudes, conceptual outcomes, and programming practice, as well as if and how

those differences inform and affect the transition to Java. The second half of this section gives a

similar treatment to the Hybrid condition, situating it relative to the two modalities from which

its design was drawn.

Comparing Blocks and Text Modalities

Blocks versus Text: The First Five Weeks

 314
 In Chapter 4, students’ attitudes towards and perceptions of programming were

investigated. The data found that, while working in the introductory modality, students using the

blocks-based modality reported higher levels of enjoyment and a greater interest in taking future

computer science classes than students who worked in the Text condition. Additionally, these

students saw their confidence increase more than students in the Text modality, but this is

partially explained by students starting with a lower level of confidence in the Blocks condition,

resulting in students in the two classes ended with roughly the same levels of confidence after

five weeks. No difference in enjoyment of programming was found between the Blocks and Text

students. All of the numbers reported were in the positive half of the response range, meaning

even with the differences, all students had self-reported positive programming experiences.

Where the Text condition was found to be more successful than the Blocks condition at the end

of five weeks was in students’ perceptions of the authenticity of the introductory programming

experience. Students’ responses from the Text condition showed that those students found what

they were doing to be more similar to what real programmers do and viewed it as more useful in

preparing them for their upcoming transition to Java.

 Looking at the differences in student performance on the Commutative Assessment at the

completion of the introductory curriculum revealed a similar pattern. After controlling for prior

knowledge, students in the Blocks condition scored significantly higher on the content

assessment than students in the Text condition. The Blocks condition scored higher on questions

across all three modalities (Pencil.cc Text modality, Pencil.cc Blocks modality, and Snap!

Blocks). They also scored higher on all six of the content areas covered by the assessment

(variables, conditional logic, iterative logic, functions, comprehension, and algorithms). Students

were also asked to report how easy they found it to write programs that included the four

 315
concepts that were the focus of the curriculum (variables, conditional logic, iterative logic,

and functions). The Blocks condition reported that all four of the concepts were easier to use

than students in the Text condition. Along with these aggregate outcomes, a second analysis

looked at students’ responses to short answer questions asking for written explanations of the

meaning and use of the main concepts of the curriculum. This analysis revealed some differences

between the conditions, but, overall, responses were found to be more similar than different. A

difference that did emerge was that students in the Blocks condition were more likely to see

instances of similar concepts as distinct. For example, rather than speaking about concepts in

general, they viewed if and if/else statements as distinct and for and while loops as

independent. This perspective seems linked to the blocks palette and the choice of what to

display as a distinct block and how and where things are grouped.

 Despite these differences, the students in each condition seemed similar in their

conceptualization of computer science ideas, with no systematic difference emerging when they

talked about what conditional logic does or how and when functions are used. Similarly, we did

not find a difference in frequency or types of misconception identified in students’ written

descriptions of the concepts between the Blocks and Text conditions. This suggests that the

Blocks and Text modalities play a relatively small role in shaping conceptual understanding of

programming concepts.

 This dissertation also included an analysis of the practices students developed in writing

their programs and the types of programs they wrote. Vignettes were used to understand

programming practices, with clear differences emerging between the two modalities. The Blocks

modality requires students to drag-and-drop commands onto the canvas in order to assemble

their programs, while the Text interface makes students use the keyboard and type in commands

 316
character-by-character. This resulted in students using a different composition mechanism

and produced a number of side effects. For example, the Text condition encountered syntax

errors more frequently than the blocks condition due to the blocks modality enforcing syntax

correctness. Similarly, the Blocks condition used the Blocks palette as an external memory aid to

determine what was possible and used the hover-over tooltip for assistance in figuring out what

commands were used for. In contrast, since the Text modality did not provide this information,

students had to rely more on the Quick Reference menu to figure out what was possible in the

language and the correct syntax to use. A second difference observed was the ease with which

students in the Blocks condition could incrementally build up commands by dragging and

dropping components sequentially while ignoring the components’ position in the final

command. In other words, students could build up complex commands left-to-right, right-to-left,

or from the inside out, in a way that was possible, but unintuitive and not observed in the Text

modality. In this way, the Blocks modality provides a type of authoring pluralism that is less

well-supported in the Text modality (at least when used in a conventional text editor). Looking at

the full set of programs collected by the automated logging system used in the study showed the

students in the Text condition produced shorter programs, ran their programs more often, and

had more quick succession runs relative to the students in the Blocks condition. These patterns

can be explained by what was observed in the vignette, which showed how students in the Text

condition encountered syntax errors and had to run their programs more often, and in quick

succession, as part of their debugging process. This shows that modality does change how

students author programs and that these different authorship mechanisms have consequences

beyond the specific mechanics of writing the program.

 317
 Taken together, these data reveal important differences between the Blocks and Text

modalities. In most dimensions, attitudinal and perceptual outcomes were better for the Blocks

condition during the time spent using the introductory tools. Likewise, in terms of conceptual

learning, the data show the Blocks-based condition to be more effective for teaching high school

students programming basics within the constraints of the study. These constraints, such as the

relative short duration of the curriculum, its fast pace, and the use of the visual programming

execution environment, mean that we cannot make larger claims about how robust this finding is

for other modalities, curricula, age groups, etc. This point will be addressed later in the

limitations and future work section of this chapter. This dissertation also showed how the

different mechanism for constructing a program (typing versus dragging-and-dropping) affected

other aspects of the programming experience, including help seeking, frequency of compilations,

and the length of the programs. It is also likely that there is an interaction between the practices

that formed and students’ attitudes and conceptual outcomes. For example, one explanation that

fits the data is, since the Blocks students could ignore the details of syntax, they were better able

to focus on the conceptual aspects of programming, i.e. what is the concept and how can I use it?

Additionally, spending less time on errors and debugging allowed them to dig deeper into the use

and behaviors of constructs and also affected their attitudes with respect to confidence and

interest in the field, even if it came at the expense of perceived authenticity.

Blocks versus Text: Transitioning to Java

 The second set of research questions ask if and how attitudes, practices and concepts

learned in a given modality in an introductory environment carry over to learning a text-based

professional language. Looking at students’ attitudes during the second phase of the study, the

opposite trend from the changes in made in the first five weeks can be seen. Students coming

 318
from the Text condition see their confidence, enjoyment, and interest in computer science

rise, while the aggregate scores for the Blocks condition decrease. Even with the decreasing

trajectory, students in the Blocks condition still attained high aggregate scores for interest and

perceived difficulty of programming. Additionally, compared to perceptions at the midpoint of

the study, students in both the Blocks and Text conditions saw their time in the introductory

modalities as less useful for learning Java and less authentic relative to professional

programming practices after the ten weeks of working in Java.

 Looking at conceptual outcomes at the end of the 15-week study, we see the gap that

emerged in performance between the Blocks and Text conditions close. At the conclusion of the

study, the two conditions showed no difference on the content assessment. The Text condition’s

score between the Mid and Post administrations improved, while the scores for students in the

Blocks condition remained at roughly the same level. There were a few subtle differences

observed in the programming practices developed by learners from the two conditions, but

overall the programming practices were relatively indistinguishable from each other. Students

from the two conditions showed roughly similar success and failure rates for the compilation

calls, produced comparable programs, and encountered the same types of errors with roughly the

same frequency. This data suggests there is little lasting impacting on programming practices

between the introductory modality and working in a professional, text-based programming

language.

Blocks versus Text: Summary

 Taken together, these data show students having rather different experiences while using

the different modalities in the introductory portion of the course, but that those differences

eroded as the students transitioned to Java. Attitudinally, even though students ended up in

 319
roughly the same place, the data show students taking a rather different path to get there. The

Blocks students saw gains in the introductory portion, while the Text condition saw gains after

transitioning to Java, suggesting that part of the benefit of the text-based introductory

environment was not experienced until after it was left behind. A similar pattern was observed

for conceptual learning. Students in the Blocks and Text modalities showed similar scores on the

final test, but again, the path there was quite different with learners in the Blocks condition

seeing all of their learning gains coming during the first five weeks while the Text condition

students saw consistent incremental growth over the two phases. A number of possible

explanations for this were given in Chapter 5 (like ceiling effects or students not having enough

time on task). These and other aspects of the outcomes will be explored in greater detail in the

implications section later in this Chapter.

 Overall, the results of this dissertation show that modality makes a significant difference

in learners’ early programming experiences in a variety of ways. This dissertation also reveals

that these differences begin to fade as students leave the introductory modality and move on to

more conventional programming languages. With this work we were able to tease apart aspects

of this story to show how modalities fostered productive attitudes, supported effective

programming practices, and facilitated students in learning foundational programming and

computer science concepts. In the next section, a review of the Hybrid condition is given, before

a longer discussion on the implications of these findings is presented.

The Case of the Hybrid Modality

 The third set of research questions asked in this dissertation pertained to the design of

hybrid blocks/text programming environments, asking: Is it possible to design a “best-of-both

worlds” introductory programming modality? Overall, the Hybrid environment used in this study

 320
was found to produce outcomes similar to the Blocks condition in some dimensions while

being more closely linked to the Text condition in others. At the same time, there were also

instances where the students in the Hybrid conditions were outliers relative to their Blocks and

Text peers. Below, these findings are summarized.

The Hybrid Condition: The First Five Weeks

 Over the first five weeks of the study, students in the Hybrid condition showed attitudinal

changes that were similar to those observed in the Text condition: little change with respect to

confidence or enjoyment of programming and a decrease in interest in taking future computer

science courses. When asked about how the introductory environment compared to what real

programmers do and if the introductory environment made them a better programmer, the Hybrid

students gave responses similar to the Blocks students, which were lower than their Text-based

peers. Together, these findings show that the Hybrid environment was not particularly successful

with respect to cultivating positive attitudes and interest in computer relative to Blocks or Text

alternatives.

 On the mid-point administration of the commutative assessment, the Hybrid condition

scored between the Blocks and Text students overall. Grouping questions by modality, the

Hybrid condition’s aggregate scores were close to the high-mark set by the Blocks condition on

the Pencil.cc Text and Pencil.cc Blocks questions and close to the lower scores set by Text

condition on the Snap! Blocks questions. The Hybrid condition also netted out between Blocks

and Text students on three of the six conceptual categories (conditional logic, functions, and

comprehension). The Hybrid condition scored the highest on algorithms and iterative logic and

the worst on variables (only narrowly). When asked about the perceived ease-of-use of various

programming constructions, the Hybrid students gave responses closer to the “they were easy to

 321
use” responses given by the Blocks condition for variables and functions, but closer to the

lower scores of the Text condition for conditional logic. Again, this shows that the Hybrid

condition shares the features of the other two modalities. The analysis of students’ responses to

the open-ended conceptual questions showed that the Hybrid students once again have

characteristics similar to the Blocks condition in some respects and the Text condition in others.

Like the Blocks condition, students in the Hybrid condition showed a higher likelihood to treat

related concepts as their own entities (like treating if and if/else concepts separately and

viewing variables as their own distinct entities). This finding fits in with the explanation of the

presence and nature of the blocks palette in shaping this view. We also saw patterns akin to the

Text condition, such as students favoring technical definitions of more colloquial explanations of

ideas (as seen in the students discussion of conditional logic). There were also conceptual

outcomes unique to the Blocks condition, like the increased rate of defining looping constructs

temporally. Taken together, these results highlight how the Hybrid condition has successfully

blended the Blocks and Text modalities, with the Hybrid modality often resulting in students

showing attitudes and results that live in the space between the two other modalities. There were

also a few places where the Hybrid condition is distinct from the other two modalities,

suggesting that, in some ways, the Hybrid modality is not just is simply the sum of the other two

modalities.

 The dimension where the Hybrid condition was least like the other two modalities was in

the programming practices students developed. Over the course of the five-week introductory

curriculum, Hybrid students wrote the longest programs and also ran their programs more

frequently than either of the other two modalities. The vignettes reveal one potential explanation

for this. In the vignette, we saw the student fluidly move back and forth between using the drag-

 322
and-drop mechanism of the blocks modality and editing statements and adding new

commands with the keyboard. This means students could quickly add fully formed statements,

making it easy to author longer programs, but also quick make minor edits or introduce syntax

errors through keyboard input, both of which help explain the increased run frequency. The

analysis of programming practices also found unique affordances of the Hybrid modality, such as

students using the blocks as a way to check the syntax of typed-in commands. We also saw that

over time, the students in the Hybrid condition used the drag-and-drop mechanism for adding

commands less and less. Together, these two trends suggest that high school aged students prefer

the keyboard-based form of input and that the drag-and-drop mechanism is a helpful way to

bootstrap authorship early and an intuitive way to verify statement structure and syntax.

The Hybrid Condition: Transitioning to Java

 Whereas the Hybrid condition did not seem to produce the desired, positive outcomes

with respect to attitudes of and perceptions towards programming during the first five weeks,

things start to change after the transition to Java. When asked to reflect on their time in the

introductory modality, students in the Hybrid condition reported their time in the introductory

tool as being the most helpful and the most similar to real programming when compared with the

other two modalities. In the four other attitudinal categories evaluated, the Hybrid condition saw

relatively little change, having three categories showing slight increases (enjoyment, perceived

difficulty, and interest) and a minor decrease in one (confidence). Students’ scores on the

Commutative Assessment decreased a small amount after working in Java for ten weeks,

suggesting the modality was not an outlier with respect to preparation for future text-based

learning in a different language. Looking at various characteristics of programming practice for

students in the Hybrid condition showed them to adopt an approach more similar to the Blocks

 323
condition in terms of frequency of running their programs and in the size and nature of their

incremental programming edits. Where things differed for the Hybrid condition is an increased

frequency of certain types of Java errors made during the first ten weeks of learning the

language. Students in the Hybrid condition showed a higher propensity for having compilation

errors generated by incomplete quoted strings in their programs, which can result in a number of

different types of errors. This error is interesting in how it relates to specific features of the

Hybrid modality, which provided all of the necessary open/closing quotes when adding

statements to a program in the introductory environment. So here, we have a nice, albeit

relatively nuanced, example of a practice, fostered in the Hybrid modality, carrying over to the

professional text-based language with detrimental effects.

The Hybrid Condition: Summary

 The major take away from this analysis is a definitive answer to part of the third research

question, showing that it is possible to design Hybrid modalities. The specific Hybrid modality

used in this study shows that the design choices made in the creation of new modalities and

learning environments can produce outcomes similar to either of the source modalities used, as

well as unique outcomes distinct from the designs that served as its inspiration. In this study, we

found places where the Hybrid condition succeeded in drawing on the strengths of both

modalities. For example, in providing the scaffolding and ease of composition of the Blocks

modalities while also conveying the perceived authenticity students associated with the text-

based interface. At the same time, there were instances where the Hybrid condition produced

something closer to a “worst-of-both-worlds” outcome, as could be seen in places where the

programming practices that relied on the blocks palette resulted in students encountering certain

types of errors more often. In this case, they had developed comfort and familiarity with the

 324
textual representation, but did not have the supports that accompanied the practices they had

developed. Taken together, the Hybrid condition in this study shows the potential for this line of

work in developing effective programming environments. It also shows one of the many possible

ways to blend blocks-based and text-based programming environments and sheds light on the

potential set of outcomes from doing so. The next section discusses the implications of these

results before taking a few steps back from this specific study to situate the findings in the larger

context of modality, learning, and design.

Implications

 Having reviewed the findings from the two-year study, this section discusses some of the

concrete implications of these discoveries. First, the implications of modality choice as it relates

first to the learner are discussed. Similar discussions looking first at teachers and then at schools

follow. These focus on how modality choice potentially impacts the larger educational

infrastructure that surrounds the formal computing education learning opportunities provided to

learners today.

Implications of Modality on the Learner

 This dissertation is the first careful study into how modality impacts learners. It shows

how modality affected students’ attitudes, perceptions and conceptual learning. Thus, it supports

the claim that modality has a direct impact on learners’ experiences with programming and their

early computer science classroom learning experiences. Further, given that modality was

conceptualized in this work as characterizing the relationship between representation and user,

the impact of modality will necessarily be unique for each student based on their predispositions,

prior experiences, and incoming knowledge.

 325
 The choice of modality can facilitate engagement, help foster a positive classroom

culture, and shape how a learner feels about the domain. The choice of modality is especially

important early in learners’ interactions with the field, as negative early experiences may turn

them away. At the same time, the choice of modality will influence how learners experience

future computer science learning opportunities. As was shown in this dissertation, productive

dispositions fostered by blocks-based modalities early in the study did not carry over to more

professional programming languages, resulting in less positive experiences down the road. Here,

we refer to the limited extent of modality on impacting learners – it matters while students are

working with it, but modality choice for introductory environments seems to have relatively

small long-term attitudinal, perceptual, or conceptual impact. This is not to say it is not an

important decision. Negative early experiences may result in students’ choosing to withdraw

from the course or lose interest and not put forth the same effort they may have if the early

experiences were more positive.

 A complicating aspect of modality choice in formal education spaces is the fact that

students are entering their first computer science learning opportunities with an increasingly

diverse set of prior programming experience. In this study, some students had never programmed

before, while others had just spent the summer trying to learn trendy, professional development

frameworks. Given that all students in the same class usually learn with the same environment

and are asked to complete the same set of assignments, keeping advanced learners engaged while

also not leaving true novices behind is a challenge. Modality choices made to support one type of

learner may negatively affect the other. This came up a few times in this study, when advanced

students lamented having to use a blocks-based modality, instead wanting to go straight into

learning Java. In cases such as these, hybrid modalities, like the one used in this study, show

 326
promise for achieving both the low-threshold needed for true novices as well as the high

ceiling for students with more prior experience. As will be discussed in greater detail in the next

section, modality does not inherently make a language more or less powerful, instead it just

shifts how one interacts with it. Further, much of computer science is less concerned with syntax

and details of a programming language and instead focuses on issues related to problem solving

and critical thinking. Modality choice directly impacts learners, but through framing and

carefully selected activities, the drawback of beginner modalities on more advanced learners may

be mitigated without sacrificing the benefits they hold for the novices they were designed for.

 Finally, this dissertation shows that high school students are able to think critically about

the tools there are using and can articulate strengths and drawbacks of such tools. This finding

shows the sophistication that high school students have with respect to their own preferences and

perceptions as it related to programming and learning. Students’ ability to discuss the various

ways that a modality is useful for learning shows they see how and why these tools can be

instructive and useful for their own learning. This implies that when choosing a modality for

specific pedagogical or affective reasons, students should be encouraged to use the tools in the

ways they find meaningful. If a student finds the scaffolds or features of a modality to be a

distraction because they do not feel they need them, they should be allowed to use the tool as

they see fit. Likewise, this dissertation shows that high school-aged learners have pre-conceived

notions about what “real” programming is, and what it looks like. Given this preconception, it is

not necessarily beneficial to try and convince high school aged students that blocks-based

programming is the same thing as text-based programming. Alternatively, by taking advantage of

the sophistication of the learner and respecting their knowledge, framing introductory, highly

scaffolded modalities as being productive for learning can potentially alleviate issues of

 327
inauthenticity or a lack of perceived uselessness. Shifting utility towards usability and

learnability may help learners identify the value of different modalities, irrespective of their prior

experience.

Implications of Modality on the Teacher

 The choice of modality will have a large impact on the experience of the teacher and their

experiences in the classroom. Modality can influence classroom culture, pedagogical approaches,

and in part shapes the curriculum that is followed. In choosing a given modality, the teacher is

setting in motion various aspects of the course and their own position in it. Modalities designed

to support novices in programming independently will impose different challenges on the teacher

compared to a modality with fewer beginner-oriented features. A teacher’s preference for direct

instruction versus letting learners discover and explore on their own should be taken into account

when choosing a modality. When working in a modality designed for beginners, the learners’

reliance on the teacher for guidance is decreased, thus the teacher can spend more time in one-

on-one support. At the same time, if students are better able to make progress on their own, there

is less potential for teachable moments – instances when students ask questions that lead to

productive class discussion. One of the first year teachers brought up this point as he explained

his experience teaching in the blocks modality: “the point of the environment is that it shouldn't

generate a whole lot of questions, like ‘how do I do this?’ - it's more intuitive.” The teacher went

on to explain that while this is empowering for the learner, it gives him fewer opportunities to

engage in productive discussions on different aspects of programming.

 Just as modality choice shapes the role of the teacher in the classroom, it can also shape

the curriculum. Modalities designed to facilitate exploration and creativity allow for different

types of assignments compared to modalities designed for efficiency or clarity. If a teacher

 328
prefers every student to author a program that looks the same, choosing a modality that

makes discovery easy may prove counterproductive to the teachers desired form of assignment.

There are also class management and grading considerations in choosing a modality. If

assignments are open-ended or assigned in a modality that make it easy for students to go beyond

what has been covered in class, the teacher is more likely to encounter more diverse solutions or

solutions that include extra features beyond what was asked. This was a frequent occurrence over

the two years of this study, especially among more advanced students who sought to challenge

themselves on assignments they were able to complete quickly.

 Along with impacting students and the role of the teacher, modality can also shape

classroom culture. As one teacher who participated in this study pointed out: “[Blocks-based

programming] creates a different feel to the room...blocks take away the foreign feel, it looks

friendly, and it's something you can do right away, and because of that, the culture in the room is

different, kids are more prone to talk to their neighbors, more prone to feel OK about joking

around.” While modality is not the only contributor to a classroom culture, more inviting and

playful tools can help shape a certain set of classroom norms.

 A final, potential afterthought for a teacher in choosing a modality is considering the

larger technological infrastructure of the class. Are assignments going to be submitted in a

specific online format? Is the teacher planning on running all of the students programs to make

sure they work and meet the requirements of the assignment? The environments used in the

introductory portion of this class were all browser-based, which made it tricky for students to

submit their work as they did not have a local file to submit. The teacher in the second year of

the study would do her grading of student projects by walking around the room asking students

to show her their work. While this worked for the purposes of this teacher, it had its limitations

 329
as the teacher could only spend a few seconds on each and did not have a way to give

detailed or written feedback to students.

Implications of Modality Choice on Schools and Administrators

 A major implication of the findings in this dissertation affects, not the students or

teachers, but should inform the larger infrastructure in which these learning opportunities are

situated. The decision of if and when to transition from an introductory modality to a

professional programming environment is consequential and has many potential repercussions.

For example, if the transition from a blocks-based introductory tool to a text-based language

takes place the week before the drop/add deadline, what will be the implications of that transition

relative to if it happened a week after students could no longer drop the course? The findings in

this dissertation say you would likely see more students choose to leave the course if the

transition happened before that deadline. Likewise, what if students were asked to sign up for

next year’s classes in week four of the study? Would we expect to see the same number of

students from the Blocks class enroll in a future computer science class as from the Text

condition? The data presented in this study suggest that that timing of transitioning between

modalities should be carefully considered and external deadlines, like enrollment dates and

drop/add deadlines should be considered.

 This also opens up the larger conversation about whether or not the transition from

introductory tools to professional languages is necessary. In the United States, until recently, the

AP Computer Science exam, which is the closest thing the country has to a national computer

science curriculum, was essentially a Java programming exam. In order for students to receive

college credit in computer science, they had to learn to program in Java. This is now changing

with the introduction of the AP Computer Science Principles course, which focuses less on text-

 330
based programming languages and instead emphasizes broader computer science concepts,

such as algorithms, problem solving, and data and information. Deciding the importance of

programming and whether or not to prioritize professional text-based languages is a

consequential decision that has large effects on how computer science will be taught and the

experiences that learners will have. This dissertation sheds light on some of the implications of

this decision, showing both the promise of introductory programming tools as well as some of

the challenges associated with transitioning modality and language early in a learners computer

science career. As one teacher said when asked about how concepts carried over from the blocks-

based introduction to Java, the transition was “rough, I think [the students] lost what they were

doing [in the blocks-based tool] with what they were doing in Java.” Whether or not this

transition is necessary is an important question for administrators and department chairs to

decide given the shifting nature of computer science education where the decision is no longer

being made for them.

On Modality, Learning, and Design

 While this dissertation was focused on three specific modalities and the domain of

computer science, the implications for this work extended beyond the particularities of this

study. At the highest level, this dissertation is concerned with understanding the relationship

between modality and learning and then relating those findings to the design of new modalities.

In this work, the conceptualization of modality included not just the static representation, but

also its affordances and the various ways it was appropriated by learners. In this way, describing

modality is not purely an exercise in describing visual characteristics, but also includes how

various features are taken up by users and how they do and do not enable the learner. Over the

course of the fifteen weeks of the study and the three modalities used, new insights into the

 331
relationship between modality and learning emerged as well as implications for their study

and design. This section characterizes what we learned about modality through conducting this

work.

Modality Matters

 One contribution of this work shows how and when modality matters with respect to

learning to program and the design of introductory programming tools. By following novices

learning to program with three isomorphic modalities, we showed the various ways that modality

does and does not impact learners. Over the two years of the study, modality was found to

influence learners in many different ways, including program comprehension ability, program

composition strategies, emerging conceptual understanding, and various dimensions of affect and

attitudes towards the discipline. In the first year of the study, the data showed that students

performed better on questions asked using a blocks-based modality than a textual form. In the

second year of the study, students using blocks-based, text-based, and hybrid blocks-text tools

ended up performing differently on content assessments, reporting different levels of interest in

the field, and viewed the utility and authenticity of their learning experiences differently. Along

other dimensions, little difference was found across the modalities, including confidence,

enjoyment, especially in conceptual understanding after students stopped using the introductory

modalities. These findings show the importance of recognizing and considering the various ways

that modality affects learners and the context in which learning is taking place.

 The definition of modality used in this dissertation uses the term to characterize how one

interacts with a given representation and the role the design of the representation plays in

supporting various uses and interaction patterns. This dissertation thus provides insight into the

various ways a representation design can shape and support different types of uses. Across the

 332
three modalities used in the introductory portion of the study, various types of supports were

provided for different aspects of the practice of programming. For example, the drag-and-drop

capability of the Blocks modality provided a form of interaction not possible with the Text

modality, thus these two modalities produce distinctly different authorship patterns with different

challenges and supports provided. In this way, the modality shapes how things are done, but not

what can be done. A second example could be seen in the first year of the study, where the Snap!

Blocks modality was shown to be easier to comprehend for novices than a text-based modality.

A careful analysis of student responses was able to identify features of the modality that

supported novice comprehension, such as the shape of function calling blocks helping learners

know what their behavior will be. Other dimensions such as color, the choice of words used in

the language, and the presentation and arrangement of the representation also supported learners

in various ways including the construction of programs as well as helping them develop ideas

and communicate information about their programs.

 Throughout this dissertation, much care was taken to highlight the various ways that

learners used the modalities. Both within and across conditions, this dissertation reported on

different features of modalities being appropriated by learners in different ways. This provides a

concrete example of what Noss and Hoyles (1996) call webbing. The construct of webbing is

intended to capture the rich, diverse, and interrelated features of learning environments that

provide support to the leaner. Webbing describes “a structure that learners can draw upon and

reconstruct for support – in ways that they choose as appropriate for their struggle to construct

meaning” (Noss & Hoyles, 1996, p. 108). The term webbing was chosen to capture the full

network of supports provided to the learner, not just a single scaffold within the environment. To

understand the role of modality in supporting the learning process through this lens, one must

 333
view the various features of the environment being used in concert, as opposed to elements

used in isolation. In this work, this means recognizing how the shape of a block, the drag-and-

drop mechanism, and the arrangement of block in the palette all collectively contribute to

helping the learner make meaning. Further, through this lens, we can remain faithful to the

recognition that learning is not uniform, but is unique to the individual. This is to say, modality

matters not just in terms of what it makes possible, but also for the various ways it allows diverse

sets of learners to make meaning in their own, personally meaningful ways. Modality cannot and

should not be evaluated by looking at a single student, nor should it be designed to promote a

single specific practice, but instead, the design of modality should be seen as an opportunity to

support diverse practices and forms of expression.

Modality is Malleable

 In addition to showing that modality choice is consequential, this dissertation shows that

modality is not fixed. Instead, modality is malleable; it can be designed, changed, blended, and

extended. This perspective opens the door to the larger enterprise of creating new modalities

through the revision of existing forms as well as the creation of entirely new ways of expressing

ideas and interaction with representational systems. We see this dissertation contributing to a

new and growing discipline on the study and design of representations that has been argued as a

possible future direction for the Learning Sciences (Papert, 2006; Wilensky et al., 2005;

Wilensky & Papert, 2010). Further, this dissertation argues that in considering the design of

modality, it is important to look beyond the static represented form and consider the practices

and interaction patterns made possible by the modality. This shift is important as new

representations increasingly are coupled with, and rely on, the capabilities of computational

media. The interactivity and feedback enabled through computer-based representations adds a

 334
new dimension to the design of notations. By including practices and usage patterns as part

of a broader conceptualization of modality, new considerations and design opportunities emerge.

 Programming languages provide an especially rich context for the design of new

modalities due to what Papert (1980) called the Protean nature of computers. Computers provide

the ability to introduce layers of abstraction between the way a representational infrastructure is

presented to the user and the form those instructions must take so the can be executed by the

machine. From this relatively blank canvas a vast design space emerges for the creation of new

modalities. Looking at the three modalities used for this work we can start to see the various

dimensions along which computationally situated modalities can be defined. Visual rendering

(color, shape, location on the screen, etc.) is a first dimension that a modality design can explore.

Likewise, how and when other representational systems are incorporated can differ. By this we

mean, if natural language descriptions will be used, compared to symbolic representations or

programming language primitives can differ by modality. This can be seen in comparing Scratch

Jr. (Flannery et al., 2013) and its use of glyphs to Scratch (Resnick et al., 2009) where natural

language expressions are used, to Pencil Code (Bau et al., 2015) which provides visual supports

on top of programming keywords, and finally to Logo (Papert, 1980), which is a fully text

language. Figure 9.2 shows the turn right command as it is represented across these four tools.

right 90

(a) (b) (c) (d)

Figure 9.2. The same concept (turning right) conveyed in four modalities: Scratch Jr. (a),
Scratch (b), Pencil Code (c), and Logo (d).

 335
 The four representations shown in Figure 9.2 are all static for the user, once defined

they do not change. However, modality need not be static. Looking at the design potential of

modality across a temporal dimension, we can start to imagine new representations that change

over time. For example, we can have visual cues like moving arrows or blocks that change shape

or size based on uses or the point in the composition process. Likewise, the modalities presented

above and used in this dissertation are all virtual. A growing number of programming tools take

advantage of physical devices, like Tern (Horn & Jacob, 2007), Robo-blocks (A. Sipitakiat &

Nusen, 2012), and Cubelets (Schweikardt & Gross, 2006), which each allow the user to express

computational statements without using a screen.

 As modality is intended to describe interactions, designing modalities extends beyond

just the visual depiction of the representation. The design activity also includes various

interaction capabilities that influence the mechanics of interaction with and use of the modality.

The clearest distinction of this aspect of modality in this dissertation is the difference between

dragging-and-dropping blocks on the canvas versus typing commands in character-by-character

with the keyboard. While the textual modality supports in Pencil.cc were rather minimal, other

integrated development environments (IDEs) include a richer suite of functionality to support

different interaction patterns and authoring mechanism. For example, autocomplete allows users

to type only a few characters before a curated list of potential commands appears. Another

example comes in the form of templates, where the user can browse a set of pre-defined sets of

commands to choose larger blocks of code to accomplish set tasks. For more advanced

programmers, IDEs provide other programming authoring/editing mechanisms such as code

refactoring tools that allow the user to edit multiple lines of code at once or rearrange large

portions of code based on the needs and wants of the author.

 336
 A final important dimension to discuss in terms of the malleability of modalities is to

point out that a user need not be pinned to a specific modality. A growing number of

environments are supporting users in moving between multiple modalities. The learners in this

dissertation study were held to a specific modality for the purpose of the research study, not

because of design constraints. Pencil Code, the environment that was the basis for Pencil.cc,

allows learners to freely move back-and-forth between a text-based and blocks-based modality,

with changes in one modality being reflected in the other. A number of projects are looking at

supporting this same dual-modality representation for various programming languages include

Java (Matsuzawa et al., 2015), Python (Bart et al., 2015), and Grace (Homer & Noble, 2014).

The ability to provide multiple modalities within the same environment further opens of the set

of possibilities to modality designers. A strength of this approach is that it gives agency to the

learner to decide not just how to use the various features of a single modality, but also to choose

the modality they want to use.

Modality and Structurations

 The findings presented in this dissertation with respect to the role of modality on learners

complement existing work on representational infrastructure and its impacts. Prior work, both

theoretical and empirical, has shown that representational infrastructure has implications along a

number of dimensions including expressive power, learnability, communicability, and shaping

the nature of emerging understanding (diSessa, 2000; Kaput et al., 2002; Sherin, 2001; Wilensky

& Papert, 2006, 2010). Much of this work has looked at the nature of notational systems, the

prototypical example of which is the comparison between roman numerals and Hindu-Arabic

numerals, and the widespread impact of the shift between these two ways of representing the

same concepts (Swetz, 1989). Wilensky and Papert (2006, 2010) use the term structuration to

 337
capture the relationship between a representational infrastructure and its ability to encode

knowledge of a given domain. This dissertation is primarily concerned with modality, which

differs from structurations in that modality is concerned with a person’s interactions with a given

structuration and how the design of that representational system supports various uses, whereas

structuration is more foundational, characterizing a representation’s ability to encode and express

ideas of a given domain. While modality differs from structuration, Structuration theory provides

a productive lens for thinking about modality and the findings from this study. Wilensky &

Papert (2006, 2010) describe five properties for evaluating a given structuration: power,

cognitive, affective, social and diversity, many of which are on full display in this dissertation.

Below we discuss each of these structuration properties as they pertain to modality broadly and

then link them to the specific modalities explored in this dissertation.

The Power Property

 The power property of a structuration describes the set of things that it is possible to

express with a given representational system. We view the power of a structuration and its

modality as orthogonal; modality does not change what can be expressed with a given

representation but instead, characterizes how one goes about saying it. That is not to say the two

are unrelated. We see two ways that modality influences the power properties of a structuration.

The first has to do with perception. The first year of the study showed some students to hold the

perception that blocks-based modality as less powerful than the text-based alternative, saying

things like ““blocks are limiting, like you can't do everything you can with Java”. While

technically not true, it is revealing that the students held this view. This means, that while

modality does not change the power of a structuration, it can change the perceived power of it,

which potentially results in the same outcome. In this case, it might mean students taking the

 338
structuration less seriously or seeing it as less valuable. The second interaction between

power and modality we see is in how a modality can make things easier than they might

otherwise be. If the same idea can be expressed in two modalities, but one requires less cognitive

load, less time, or fewer steps, that may lead to other benefits related to the power principle. For

example, a new modality might make discovery more likely as exploration of ideas with that

structuration may be better supported. This was observed in this study in how students relied on

the blocks palette as a way to support their program construction; this helped novices do more in

the blocks-based modality than the isomorphic text modality.

The Cognitive Property

 The cognitive property of a structuration captures its learnability; does a specific form of

representation make ideas more intuitive or accessible? This dissertation shows that modality

plays a potentially strong role in shaping the learnability of a given structuration. While working

in the blocks-based modality of Pencil.cc, students showed greater learning gains relative to

students working in the text-based modality. These two modalities were isomorphic, shared

language semantics, and most other environmental factors were held constant. In other words,

the structuration was the same, the modality differed, and after five weeks, learning outcomes

also differed. This finding has potentially large implications for thinking about the role of

modality with respect to the evaluation and design of new structurations.

The Affective Property

 The third property for evaluating structurations is the Affective Property which describes

how one feels about a given representational infrastructure with respect to things like enjoyment,

engagement, and other emotions. Like with the Cognitive Property, this dissertation showed that,

 339
along some dimensions, modality played a role in shaping a learner’s affect for a given

structuration. This dissertation found subtle differences in terms of affective dimensions like

enjoyment and confidence, and stronger differences in terms of students’ relationship to the

discipline of computer science and whether or not they would continue in the field. There is also

the notion of perceived authenticity and utility, which falls under the Affective Property and was

also found to be affected by modality. This provides evidence that there is an interaction between

structuration and modality with respect to affect, although in this dissertation, that interaction

was less pronounced than the cognitive property.

The Social Property

 The next property for evaluating structurations captures how well an idea can be

communicated in a given structuration. Does the form make it easy to describe ideas, share

insights, and convey information? While the construct of modality is meant to capture the

relation between an individual and the structuration, features that support that interaction may

also facilitate person-to-person communication. We saw some examples of this in the vignettes

presented in Chapter 7, where students had slightly different ways of using the modality to assist

in their explaining their programs to the interviewer. This data does not fully capture the breadth

of everything included in social aspects of a structuration, but suggests there is some interaction

between the two. This dissertation provided glimpses of the social properties of modalities but

was not the focus of the work, thus exploring this dimension remains an open question and a

possible avenue for future work.

 A second relevant aspect of social dimensions of modalities considers the larger, online

communities that can form around tools that leverage specific modalities. The most notable

example of this is the online Scratch community that includes over 15 million projects. On the

 340
Scratch website, visitors can run programs written by others, inspect the code behind the

project, and “remix” the program, starting with a project and making their own additions and

modifications (Fields et al., 2014; Roque, Kafai, & Fields, 2012). While such online

communities are not tightly coupled to modality, the most vibrant online learner communities for

sharing programs are associated with blocks-based languages. Further, they are some aspects of

the blocks-based modality that might facilitate the remixing culture that tools like Scratch seek to

promote, specifically, the “readability” of the programming representation makes it easier for

novices to parse and understand a program written by another. Again, the existence and ongoing

success of an online community built around a programming environment is not specific to

modality, but modality plays a role and it impacts the social properties of a structuration.

The Diversity Property

 The final structuration property is the Diversity Property. This property describes how

well a structuration is at supporting different ways of thinking or solving problems, what Turkle

and Papert (1990) call epistemological pluralism. Along with the Cognitive and Affective

Properties, this seems like the place where modality and structuration intersect heavily, as all

three are characteristics of the relationship between the structuration and the individual. In

Chapter 4, when reviewing the findings from the first year of the study, we saw a nice example

of the Blocks modality supporting a form of construction that, while possible in a textual

modality, is less well supported. The episode we are referring to saw a student author a condition

statement by first dragging out an = block, then defining the two signs of the comparison, then

dragging out the if block and finally defining the behavior to be carried out if it evaluated to

true. These steps show the student authoring this conditional statement from the inside out, as

opposed to from the left to right, the sequence suggested by the text modality. Throughout the

 341
two years of the study, we saw examples of students building complex statements diverse

ways, rather than the relatively uniform approach students in the text condition followed. This

shows that modality has the ability to influence and support a diversity of ways of constructing

with blocks-based tools.

Modality and Milieu

 In this final section of our extended discussion on modality, we look at how modality

interacts with the larger context in which it is encountered. Modality is inherently situated into a

larger network of designed entities and established practices that collectively shape the

experience of the learner. For example, the last section explored the relationship between

modality and structuration, showing the two to be interconnected but distinct. Likewise, there are

a number of other situational aspects in which a modality lives and interacts. One major

influence on modality is the environment in which it is situated, which can inform and shape

how a modality is used. In this study the three modalities were presented inside the larger

Pencil.cc context. Pencil.cc included the visual execution space, defined and constrained the

types of things that are possible with the modality (like Turtle Geometry and text input/output),

and included additional scaffolds outside of the modality that influenced learners’ actions. To

that last point, Pencil.cc’s Quick Reference menu provided guidance to learners on the usage and

capabilities of the language in a way distinct from the supports available through the modality.

The data collected in Pencil.cc showed how usage of the Quick Reference menu was different

based on the modality of the student.

 The idea of environment influencing modality extends beyond the specific technological

setting or medium being used to include the larger socio-cultural context in which it is being

used. Bronfenbrenner (1979) argues for a concentric nesting of contexts in which the individual

 342
resides, starting with the microsystem (peers, family, classroom) and growing outward

through a mesosystem (school, friends-of-friends), exosystem (media, neighborhood, extended

family) and finally macrosystem (cultural factors). Each of these sequential contexts informs and

influences how an individual interacts with a given modality. For this study, the microsystem

played a large role in shaping usage patterns. The presence of teachers, peers, and the one-

laptop-per-student arrangement of the classroom all influenced how learners interacted with the

modality. The ability to ask a neighbor or listen to the teacher carefully introduced different

concepts changed how and when the learner engaged with the modality and the role the modality

played. Influences of the larger dimensions of the learning context could also be seen, including

the school system and how technology was integrated into the K-12 learning experience and also

the larger cultural values placed on technology and learning to program.

 In this study and the specifics of the modalities used we can also see aspects of the exo-

and macrosystems and play. Specifically, the blocks-based design takes advantage of a puzzle-

piece metaphor, where visual cues denote how and when commands can fit together. This design

approach assumes that the user has experience with puzzles or toys that share this interlocking

assembling characteristic, be it Legos, train tracks, or jigsaw puzzles. Drawing on the form-

function shift framework (Saxe, 1999), Horn (2013) calls these cultural forms and argues that

such cultural practices and knowledge can be leveraged in the design of intuitive computing

interfaces. The blocks-based modality used in these classrooms serves as one example of a

cultural form being productively leveraged with positive outcomes.

 The fact that modality influences the classroom culture affects both the learner as well as

the teacher, whose role changed between the three conditions of the study. In interviews with the

teacher from the second year of the study, she described how the level of detail she needed to

 343
provide differed by modality and how students independence differed by modality, with the

Blocks students being the most self-sufficient (Weintrop & Wilensky, 2016a). Tightly coupled

with the role of the teacher is the set of pedagogical strategies supported by different modalities.

As discussed in the previous section, with modalities that provide high levels of scaffolding to

support learner independence, teachers’ pedagogical strategies can shift away from direct

instruction to one-on-one personal attention. The opposite is also true, when using modalities

with little in the way of novice support, the strategies the teacher uses differ and the

opportunities for meaningful conversation also shift.

 Just as the modality interacts with classroom culture and teaching practices, so too are the

curriculum and the set of activities the students work through similarly affected. Asking students

to have onscreen sprites move around and draw a specific shape will allow learners to leverage

different affordances of a modality than a different activity, like sorting numbers. More

concretely, in an activity involving motion, having a modality that supports natural language

expressions like turn right 15 degrees on a block, will provide a different form of support

than if a student had to type in the command rt(15); to accomplish the same behavior.

Likewise, the browsability of blocks-based modalities can facilitate creativity and exploration in

open-ended assignments differently than other modalities that do not have that ease of discovery.

This feature of the blocks-based modality is not surprising given the constructionist roots of the

modality.

Limitations and Future Work

 While this study provided insight into the relationship between modality and learning in

the domain of computer science, it does have limitations with respect to the claims that can be

made. This section reviews the limitations and discusses potential future directions that may be

 344
taken to try and address them. The first limitation of this study is related to the students who

were recruited to participate. The school where the study took place was a selective enrollment

institution. This means that all of the students that participated in the study have historically been

successful in formal educational contexts. Thus the findings of this dissertation do not

necessarily apply to underperforming students who have not had success in conventional

classroom settings. A second limitation of this study relates to the student population as this

study took place in an elective class. This means the students who participated in the study had

chosen to take part in a computer science learning opportunity, suggesting they showed a pre-

disposition for being more interested or placed a higher value on the concepts being taught. A

final participant-related limitation of the study has to do with the gender breakdown of the study.

In both years, female students made up less than one third of the student in the class. The gender

breakdown was beyond the control of the researchers as student recruitment for the classes was

outside of the scope of the study, but is none-the-less not representative of the greater student

population. All three of these limitations can be addressed by conducting future iterations of the

study at different schools where these limitations are not necessarily true. In some school

districts around the country, computer science is becoming a graduation requirement for high

school. Conducting a similar version of this study at a non-selective enrollment school where all

students must take the class would directly address all of these limitations and is one intended

future direction for this work.

 A second limitation of this study has to do with the teachers who volunteered to

participate. Finding a teacher who is willing to teach the same curriculum using three different

modalities is difficult. Any teacher willing to take on such a challenge will have a level of

confidence and experience that is rare among in-service computer science teachers.

 345
Understanding how modality affects less experienced and less confident teachers is an open

and important question to answer. Just as the way to address the student-related limitations of

this study was to replicate the study at a different site, the solution to the generalizability of the

findings due to the teacher can similarly be addressed this way. Working with a less

accomplished and experienced teacher (or set of teachers) is a direction of future work that goes

hand-in-hand with working with a different population of students, and is an intended avenue of

future work.

 A third limitation of the study has to do with duration of the second phase of the study.

The study followed students for the first ten weeks of the Java portion of the course. For a

number of reasons, the amount of content covered in the first 10 weeks of learning Java was

much smaller than the breadth of concepts students encountered in the 5-week introductory

portion of the course. There are a number of reasons for this, including the level of detail topics

are given, the ease of compiling running programs in Pencil.cc compared to Java, and the various

supports provided by different modalities that have been the focus of this dissertation. As a

result, some of the concepts covered in phase 1 were not encountered during phase 2, which

limits our ability to make claims about whether or not the conceptual learning of that concept

transferred. Similarly, when the students do re-encounter the concepts, a great deal of time will

have passed. For example, more than 15 weeks elapsed between when students used iterative

logic in Pencil.cc and when they learned it in Java. An alternative study design would have

students use an introductory modality to learn a concept, then immediately transition to Java to

learn the same concept, and then repeat this introductory modality then Java pattern for each

concept. The sequencing was initially proposed by one of the teachers in the study who said she

might use this approach in future courses. The means she sees pedagogical value in the

 346
introductory modalities, but would like to use them in a way that is different than how they

were used for this study. We hope to investigate this pedagogical approach in future work.

 A fourth limitation related to the structure of the study stems from the fact that the

courses took place at different points in the school day. The Hybrid condition was fourth period,

in the middle of the day, whereas the Blocks and Text conditions were seventh and eighth period

respectively. Being at the end of the day has a number of potential impacts on students in the

classroom. First, at the end of the school day, students may not be as attentive as they would be

during earlier periods, this may be due to fatigue from a long school day, or excitement about

post-school activities. Likewise, students in the classes at the end of the day were more likely to

be absent than classes in the middle of the day. For example, a few times during the study,

football players were excused from their eighth period class to prepare for their upcoming game.

As there were football players in the eighth period class, those three students received less

instruction relative to their non-football playing peers. While this limitation is unavoidable, it is

nonetheless important to note. The remedy for this limitation is similar to the solution for the

other study-design related limitations, more iterations of the study that vary the time of day for

each condition, thus giving us the ability to counter balance this dimension of the study.

 There are also limitations to this study related to the specific languages and tools that

were used. For this work, Pencil Code’s blocks editor was used to represent the blocks-based

modality, while it’s text editor served as the canonical text editor. In the case of the blocks editor,

other blocks-based modalities, like Scratch and Snap!, include additional features not supported

by Pencil Code]. Likewise, Pencil Code’s text editor included some built-in scaffolds like syntax

highlighting and automatic indentation, but not others that are common in text-based coding

tools like auto-complete. Also, the choice of CoffeeScript to serve as the underlying language in

 347
the introductory condition and Java as the transitioned-to professional language are both only

one of many possible ways such instruction could take place. The course just as easily could

have used JavaScript as the underlying language for the introductory portion and Python as the

professional language. In all of these cases, the design decisions made do not invalidate the

findings, but instead impose a set of qualifiers. We do not yet know if students working in a

blocks-based JavaScript environment then transitioning to Java (or even text-based JavaScript)

would produce different results. The exploration of different languages and different underlying

syntaxes is work that is being actively pursued. Just as the choice of language and specific

modality influence the findings, so too does the programming paradigm used and the design of

the curriculum. The fact that roughly half of the introductory assignments relied on drawing or

Turtle Geometry in some capacity does change the way students interact with the modality.

Again, this does not invalidate any of the claims made, but instead slightly constrains the

generalizability, an issue that can (and hopefully will) be addressed through future iterations of

similar studies with new languages, curricula, and paradigms.

 Along with this list of limitations, there are also other avenues of future work that we

hope to pursue and that this dissertation starts to address but by no means is definitive about. The

most obvious is the fact that the Hybrid environment used in this study was just one of many new

modalities. Looking at how other emerging modalities and new ways of blending existing

modalities influences and potentially improves the learning of the powerful ideas of computing

offers many opportunities for exciting work and new findings. A second avenue of future work is

to look at the impact of modality on different types of students. Do students struggling students

see more, less, or different benefits from working in a specific modality compared to students

who have excelled in academic settings? A third direction of future work is taking a similar

 348
modality-centric approach to concepts beyond programming and computer science. As

argued by Wilensky & Papert (2006, 2010), there is great promise and much work to be done

looking at restructurations across a diverse array of disciplines. As new fields becoming

increasingly computational, new tools, interfaces, and modalities are being invented to support

new computational endeavors. Research projects similar to this dissertation could fit well

amongst the various activities that accompany the formation new technologically enhanced tools

and practices and the larger emergence of new computational fields.

Conclusion

 This dissertation sought to answer foundational questions looking at the relationship

between modality and learning in the domain of computer science. This work serves as the first

systematic investigation of modality in formal high school computer science classrooms.

Through the design of the study, this dissertation makes claims about the role modality places in

shaping novice programmers’ attitudes, perceptions, and conceptual understanding. It also

revealed ways that modality can shape emerging programming practices. Further, in following

students as they moved from introductory programming environments to more conventional

professional languages, contributions were made with respect to our understanding of how and

when the impacts of working in introductory tools carry over into later programming

environments.

 The title of the dissertation states its central contribution: modality matters. The fuller

picture revealed by the two iterations of this classroom-based study found that, while modality

mattered along a number of dimensions while students were working in it, the introductory

modality had relatively little lasting impact with respect to attitudes and conceptual learning after

transitioning to other tools. This dissertation also provides a theoretical contribution in terms of

 349
how to think about and evaluate modality as a distinct aspect of a learning environment.

Additionally, it showed that modality should be thought of as a feature of a learning experience

that can be designed for, and that features of an interface and the capabilities of a system can

shape the way the user engages with it. While modality is a characteristic of all representational

systems, computer science, and computing education research in particular, is especially well

suited to serve as the context for conducting this work due to the malleability of the medium and

the blossoming of new languages, modalities, and learning opportunities.

 Collectively, this dissertation contributes to our understanding of the design of

introductory programming environments. Given the increasingly digital world that we live in,

determining how best to prepare today’s learners for the computational futures that await them is

of critical importance. This work is intended to help push this larger endeavor forward, providing

methods, evidence, and ideas to contribute to educating the next generation of computationally

literate citizens.

 350
10. References

Abelson, H., & DiSessa, A. A. (1986). Turtle geometry: The computer as a medium for exploring

mathematics. The MIT Press.

ACM/IEEE-CS Joint Task Force on Computing Curricula. (2013). Computer Science Curricula

2013. ACM Press and IEEE Computer Society Press.

Adams, J. (2007). Alice in Action with Java (1 edition). Boston, Mass: Cengage Learning.

Allen, E., Cartwright, R., & Stoler, B. (2002). DrJava: A lightweight pedagogic environment for

Java. ACM SIGCSE Bulletin, 34(1), 137–141.

American Association of University Women. (1994). Shortchanging Girls, Shortchanging

America. Washington, DC: AAUW Educational Foundation.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive Tutors:

Lessons Learned. The Journal of the Learning Sciences, 4(2), 167–207.

App Inventory Java Bridge. (2014). Retrieved from https://code.google.com/p/apptomarket/

Armoni, M., & Ben-Ari, M. (2010). Computer Science Concepts in Scratch. Retrieved from

http://onlinelibrary.wiley.com/doi/10.1002/app.1975.070190908/abstract

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to “Real”

Programming. ACM Transactions on Computing Education (TOCE), 14(4), 25:1-15.

Astrachan, O., & Briggs, A. (2012). The CS principles project. ACM Inroads, 3(2), 38–42.

Baker, R. S., & Yacef, K. (2009). The state of educational data mining in 2009: A review and

future visions. JEDM-Journal of Educational Data Mining, 1(1), 3–17.

Bakhtin, M. M. (1981). The dialogic imagination: four essays. Austin: University of Texas

Press.

 351
Baroth, E. C., & Hartsough, C. (1995). Experience Report: Visual Programming in the Real

World. Visual Object Oriented Programming, Edited by MM Burnett, A. Goldberg & TG

Lewis, Manning Publications, Prentice Hall, 21–42.

Bart, A. C., Tilevich, E., Shaffer, C. A., & Kafura, D. (2015). From interest to usefulness with

BlockPy, a block-based, educational environment. In Blocks and Beyond Workshop

(Blocks and Beyond), 2015 IEEE (pp. 87–89). IEEE.

Bau, D., Bau, D. A., Dawson, M., & Pickens, C. S. (2015). Pencil Code: Block Code for a Text

World. In Proceedings of the 14th International Conference on Interaction Design and

Children (pp. 445–448). New York, NY, USA: ACM.

Bayman, P., & Mayer, R. E. (1983). A diagnosis of beginning programmers’ misconceptions of

BASIC programming statements. Communications of the ACM, 26(9), 677–679.

Begel, A. (1996). LogoBlocks: A graphical programming language for interacting with the

world. Electrical Engineering and Computer Science Department. MIT, Cambridge, MA.

Begel, A., & Klopfer, E. (2007). Starlogo TNG: An introduction to game development. Journal

of E-Learning.

Behnke, K. A. (2013). SLASH: Scratch-based visual programming in Second Life for

introductory computer science education Poster Session. In Proceeding of the 44th ACM

technical symposium on Computer science education. Denver, CO.

Berland, M., Baker, R. S., & Blikstein, P. (2014). Educational Data Mining and Learning

Analytics: Applications to Constructionist Research. Technology, Knowledge and

Learning. http://doi.org/10.1007/s10758-014-9223-7

Berland, M., & Lee, V. R. (2011). Collaborative Strategic Board Games as a Site for Distributed

Computational Thinking. International Journal of Game-Based Learning, 1(2), 65–81.

 352
Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013). Using Learning

Analytics to Understand the Learning Pathways of Novice Programmers. Journal of the

Learning Sciences, 22(4), 564–599. http://doi.org/10.1080/10508406.2013.836655

Blackwell, A. F., Whitley, K. N., Good, J., & Petre, M. (2001). Cognitive factors in

programming with diagrams. Artificial Intelligence Review, 15(1–2), 95–114.

Blikstein, P. (2013). Digital fabrication and “making”in education: The democratization of

invention. In J. Walter-Herrmann & C. Büching (Eds.), FabLabs: Of Machines, Makers

and Inventors (pp. 1–21). Bielefeld: Transcript Publishers. R

Blikstein, P. (2013). Gears of our childhood: constructionist toolkits, robotics, and physical

computing, past and future. In Proceedings of the 12th International Conference on

Interaction Design and Children (pp. 173–182).

Blikstein, P., & Wilensky, U. (2009). An Atom is Known by the Company it Keeps: A

Constructionist Learning Environment for Materials Science Using Agent-Based

Modeling. International Journal of Computers for Mathematical Learning, 14(2), 81–

119.

Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014). Programming

Pluralism: Using Learning Analytics to Detect Patterns in the Learning of Computer

Programming. Journal of the Learning Sciences, 23(4), 561–599.

Bonar, J., & Liffick, B. W. (1987). A visual programming language for novices. In S. K. Chang

(Ed.), Principles of Visual Programming Systems. Prentice-Hall, Inc.

Bontá, P., Papert, A., & Silverman, B. (2010). Turtle, Art, TurtleArt. In Proceedings of

Constructionism 2010 Conference. Paris, France.

 353
Boroditsky, L. (2001). Does Language Shape Thought?: Mandarin and English Speakers’

Conceptions of Time. Cognitive Psychology, 43(1), 1–22.

Brady, C., Weintrop, D., Gracey, K., Anton, G., & Wilensky, U. (2015). The CCL-Parallax

Programmable Badge: Learning with Low-Cost, Communicative Wearable Computers.

In Proceedings of the 16th Annual Conference on Information Technology Education (pp.

139–144). New York, NY, USA: ACM. http://doi.org/10.1145/2808006.2808039

Bronfenbrenner, U. (1979). The Ecology of Human Development: experiments by nature and

design. Harvard University Press.

Bruckman, A. (1997). MOOSE Crossing: Construction, community, and learning in a networked

virtual world for kids. MIT.

Bruckman, A., Biggers, M., Ericson, B., McKlin, T., Dimond, J., DiSalvo, B., … Yardi, S.

(2009). Georgia computes!: Improving the computing education pipeline. In ACM

SIGCSE Bulletin (Vol. 41, pp. 86–90). ACM.

Bruckman, A., & Edwards, E. (1999). Should we leverage natural-language knowledge? An

analysis of user errors in a natural-language-style programming language. In Proceedings

of the SIGCHI conference on Human Factors in Computing Systems (pp. 207–214).

ACM.

Bruckman, A., Jensen, C., & DeBonte, A. (2002). Gender and Programming Achievement in a

CSCL Environment. In Proceedings of the Conference on Computer Support for

Collaborative Learning: Foundations for a CSCL Community (pp. 119–127). Boulder,

Colorado: International Society of the Learning Sciences.

Bruner, J. (1973). Beyond the Information Given: Studies in the Psychology of Knowing (1st

edition). New York: Norton & Co.

 354
Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., & Miller, P. (1997). Mini-

languages: a way to learn programming principles. Education and Information

Technologies, 2(1), 65–83.

Buechley, L., & Eisenberg, M. (2008). The LilyPad Arduino: Toward wearable engineering for

everyone. Pervasive Computing, IEEE, 7(2), 12–15.

Buffum, P. S., Lobene, E. V., Frankosky, M. H., Boyer, K. E., Wiebe, E. N., & Lester, J. C.

(2015). A Practical Guide to Developing and Validating Computer Science Knowledge

Assessments with Application to Middle School. Retrieved from

http://research.csc.ncsu.edu/learndialogue/pdf/LearnDialogue-Buffum-SIGCSE-2015.pdf

Burke, Q., & Kafai, Y. B. (2010). Programming & storytelling: opportunities for learning about

coding & composition. In Proceedings of the 9th International Conference on Interaction

Design and Children (pp. 348–351). ACM.

Chadha, K. (2014). Improving App Inventor through Conversion between Blocks and Text

(Honors Thesis). Wellesley College.

Chandhok, R. P., & Miller, P. L. (1989). The design and implementation of the Pascal Genie. In

Proceedings of the 17th conference on ACM Annual Computer Science Conference (pp.

374–379). ACM.

Cliburn, D. C. (2008). Student opinions of Alice in CS1. In Frontiers in Education Conference,

2008. FIE 2008. 38th Annual (p. T3B–1). IEEE.

Code.org Curricula. (2013). Code.org. Retrieved from http://code.org/educate

Collective, T. D.-B. R. (2003). Design-based research: An emerging paradigm for educational

inquiry. Educational Researcher, 5–8.

 355
Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and

methodological issues. The Journal of the Learning Sciences, 13(1), 15–42.

Colmerauer, A. (1985). Prolog in 10 Figures. Commun. ACM, 28(12), 1296–1310.

http://doi.org/10.1145/214956.214958

Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative

unit. Educational Studies in Mathematics, 26(2–3), 135–164.

Cooper, S., & Cunningham, S. (2010). Teaching computer science in context. ACM Inroads,

1(1), 5–8.

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-D tool for introductory programming

concepts. Journal of Computing Sciences in Colleges, 15(5), 107–116.

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in introductory computer

science. In Proceedings of the 34th SIGCSE technical symposium on Computer science

education (p. 195).

Danielak, B. A. (2014). How electrical engineering students design computer programs.

University of Maryland, College Park, MD.

Dann, W., Cooper, S., & Ericson, B. (2009). Exploring Wonderland: Java Programming Using

Alice and Media Computation. Prentice Hall Press.

Dann, W., Cooper, S., & Pausch, R. (2011). Learning to Program with Alice. Prentice Hall Press.

Dann, W., Cosgrove, D., Slater, D., Culyba, D., & Cooper, S. (2012). Mediated transfer: Alice 3

to Java. In Proceedings of the 43rd ACM technical symposium on Computer Science

Education (pp. 141–146). ACM.

 356
Denny, P., Luxton-Reilly, A., Tempero, E., & Hendrickx, J. (2011). Understanding the

syntax barrier for novices. In Proceedings of the 16th annual joint conference on

Innovation and technology in computer science education (pp. 208–212). ACM.

Dijkstra, E. W. (1982). How do we tell truths that might hurt? In Selected Writings on

Computing: A Personal Perspective (pp. 129–131). Springer.

Dijkstra, E. W. (1989). On the cruelty of really teaching computing science. Communications of

the ACM, 32(12), 1398–1404.

DiSalvo, B., Guzdial, M., Bruckman, A., & McKlin, T. (2014). Saving Face While Geeking Out:

Video Game Testing as a Justification for Learning Computer Science. Journal of the

Learning Sciences, 23(3), 272–315.

diSessa, A. A. (2000). Changing minds: Computers, learning, and literacy. Cambridge, MA:

MIT Press.

diSessa, A. A., & Abelson, H. (1986). Boxer: a reconstructible computational medium.

Communications of the ACM, 29(9), 859–868.

diSessa, A. A., Hammer, D., Sherin, B. L., & Kolpakowski, T. (1991). Inventing graphing: Meta-

representational expertise in children. Journal of Mathematical Behavior, 10, 117–160.

Donzeau-Gouge, V., Huet, G., Lang, B., & Kahn, G. (1984). Programming environments based

on structured editors: The MENTOR experience. In D. Barstow, H. E. Shrobe, & E.

Sandewall (Eds.), Interactive Programming Environments. McGraw Hill.

Doukakis, D., Grigoriadou, M., & Tsaganou, G. (2007). Understanding the programming

variable concept with animated interactive analogies. In Proceedings of the The 8th

Hellenic European Research on Computer Mathematics & Its Applications Conference

(HERCMA’07).

 357
du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational

Computing Research, 2(1), 57–73.

Duncan, C., Bell, T., & Tanimoto, S. (2014). Should Your 8-year-old Learn Coding? In

Proceedings of the 9th Workshop in Primary and Secondary Computing Education (pp.

60–69). New York, NY, USA: ACM. http://doi.org/10.1145/2670757.2670774

Education Policy Committee, A. (2014). Rebooting the Pathway to Success Preparing Students

for Computing Workforce Needs in the United States. Association for Computing

Machinery.

Eisenberg, M. (2003). Mindstuff Educational Technology Beyond the Computer. Convergence:

The International Journal of Research into New Media Technologies, 9(2), 29–53.

Erickson, F. (1986). Qualitative methods in research on teaching. In M. C. Wittrock (Ed.),

Handbook of research on teaching (pp. 119–161). New York: Macmillan.

Fagin, B., & Merkle, L. (2003). Measuring the effectiveness of robots in teaching computer

science. In ACM SIGCSE Bulletin (Vol. 35, pp. 307–311). ACM.

Feinstein, A. R., & Cicchetti, D. V. (1990). High agreement but low Kappa: I. the problems of

two paradoxes. Journal of Clinical Epidemiology, 43(6), 543–549.

Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (2004). The TeachScheme! project:

Computing and programming for every student. Computer Science Education, 14(1), 55–

77.

Feurzeig, W., Papert, S., Bloom, M., Grant, R., & Solomon, C. (1969). Programming-languages

as a conceptual framework for teaching mathematics (BBN Report No. 1889).

Cambridge, MA: Bolt, Beranek, and Newman.

 358
Feurzeig, W., Papert, S., & Lawler, B. (2011). Programming-languages as a conceptual

framework for teaching mathematics. Interactive Learning Environments, 19(5), 487–

501.

Fields, D., Giang, M., & Kafai, Y. (2014). Programming in the wild: trends in youth

computational participation in the online scratch community. In Proceedings of the 9th

Workshop in Primary and Secondary Computing Education (pp. 2–11). ACM Press.

Findler, R. B., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler, P., & Felleisen,

M. (2002). DrScheme: A programming environment for Scheme. Journal of Functional

Programming, 12(2), 159–182.

Fisher, A., Margolis, J., & Miller, F. (1997). Undergraduate women in computer science:

experience, motivation and culture. In ACM SIGCSE Bulletin (Vol. 29, pp. 106–110).

ACM.

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick, M. (2013).

Designing ScratchJr: Support for early childhood learning through computer

programming. In Proceedings of the 12th International Conference on Interaction Design

and Children (pp. 1–10). ACM.

Flowers, T., Carver, C. A., & Jackson, J. (2004). Empowering students and building confidence

in novice programmers through Gauntlet. In Frontiers in Education, 2004. FIE 2004.

34th Annual (p. T3H/10-T3H/13 Vol. 1). http://doi.org/10.1109/FIE.2004.1408551

Flowers, T. R., & Gossett, K. A. (2002). Teaching problem solving, computing, and information

technology with robots. Journal of Computing Sciences in Colleges, 17(6), 45–55.

Fraser, N. (2013). Blockly. https://developers.google.com/blockly/: Google.

 359
Garcia, D., Harvey, B., & Barnes, T. (2015). The Beauty and Joy of Computing. ACM

Inroads, 6(4), 71–79. http://doi.org/10.1145/2835184

Garlan, D. B., & Miller, P. L. (1984). GNOME: An introductory programming environment

based on a family of structure editors. ACM Sigplan Notices, 19(5), 65–72.

Garlick, R., & Cankaya, E. C. (2010). Using Alice in CS1: A quantitative experiment. In

Proceedings of the fifteenth annual conference on Innovation and technology in computer

science education (pp. 165–168). ACM.

Gibson, J. J. (1986). The ecological approach to visual perception. Psychology Press.

Goldenberg, E. P., & Feurzeig, W. (1987). Exploring language with Logo. Cambridge, MA: MIT

Press.

Goldman, R., Eguchi, A., & Sklar, E. (2004). Using educational robotics to engage inner-city

students with technology. In Proceedings of the Sixth International Conference of the

Learning Sciences (ICLS) (pp. 214–221).

Goode, J., Chapman, G., & Margolis, J. (2012). Beyond curriculum: the exploring computer

science program. ACM Inroads, 3(2), 47–53.

Goodman, D. (1988). The Complete HyperCard Handbook (2nd ed.). New York: Bantam Books.

Green, T. R. G. (1977). Conditional program statements and their comprehensibility to

professional programmers. Journal of Occupational Psychology, 50(2), 93–109.

Green, T. R. G., & Petre, M. (1992). When visual programs are harder to read than textual

programs. In Human-Computer Interaction: Tasks and Organisation, Proceedings of

ECCE-6 (6th European Conference on Cognitive Ergonomics). GC van der Veer, MJ

Tauber, S. Bagnarola and M. Antavolits. Rome, CUD. Citeseer.

 360
Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments:

A “cognitive dimensions” framework. Journal of Visual Languages and Computing, 7(2),

131–174.

Green, T. R. G., Petre, M., & Bellamy, R. K. E. (1991). Comprehensibility of visual and textual

programs: A test of superlativism against the’match-mismatch’conjecture. ESP, 91(743),

121–146.

Grover, S., Cooper, S., & Pea, R. (2014). Assessing computational learning in K-12 (pp. 57–62).

ACM Press. http://doi.org/10.1145/2591708.2591713

Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the

Field. Educational Researcher, 42(1), 38–43.

Guzdial, M. (2004). Programming environments for novices. Computer Science Education

Research, 2004, 127–154.

Guzdial, M. (2010). Does contextualized computing education help? ACM Inroads, 1(4), 4–6.

Guzdial, M. (2015). Learner-Centered Design of Computing Education: Research on Computing

for Everyone (Vol. 8). Retrieved from

http://www.morganclaypool.com/doi/10.2200/S00684ED1V01Y201511HCI033

Guzdial, M., & Ericson, B. (2009). Introduction to computing and programming in Python, a

multimedia approach. Prentice Hall Press. Retrieved from

http://dl.acm.org/citation.cfm?id=1695818

Hancock, C. M. (2003). Real-time programming and the big ideas of computational literacy.

Citeseer.

Harel, I., & Papert, S. (Eds.). (1991). Constructionism. Norwood N.J.: Ablex Publishing.

 361
Hartmann, B., MacDougall, D., Brandt, J., & Klemmer, S. R. (2010). What would other

programmers do: suggesting solutions to error messages. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (pp. 1019–1028). ACM.

Harvey, B. (1997). Computer science logo style: Beyond programming (Vols. 1–3). The MIT

Press.

Harvey, B., & Mönig, J. (2010). Bringing “no ceiling” to Scratch: Can one language serve kids

and computer scientists? In J. Clayson & I. Kalas (Eds.), Proceedings of Constructionism

2010 Conference (pp. 1–10). Paris, France.

Henriksen, P., & Kölling, M. (2004). Greenfoot: Combining object visualisation with interaction.

In Companion to the 19th annual ACM SIGPLAN conference on Object-oriented

programming systems, languages, and applications (pp. 73–82).

Hils, D. D. (1992). Visual languages and computing survey: Data flow visual programming

languages. Journal of Visual Languages & Computing, 3(1), 69–101.

Holbert, N., & Wilensky, U. (2011). FormulaT Racing: Designing a Game for Kinematic

Exploration and Computational Thinking. In Proceedings of the 7th Games, Learning, &

Society Conference. Madison, WI.

Holt, R. C., & Cordy, J. R. (1988). The Turing Programming Language. Commun. ACM, 31(12),

1410–1423. http://doi.org/10.1145/53580.53581

Homer, M., & Noble, J. (2014). Combining Tiled and Textual Views of Code. In IEEE Working

Conference on Software Visualisation (VISSOFT) (pp. 1–10). Victoria, BC: IEEE.

Hopscotch. (2014). New York, NY: Hopscotch. Retrieved from http://www.gethopscotch.com/

 362
Horn, M. S. (2013). The role of cultural forms in tangible interaction design. In Proceedings

of the 7th International Conference on Tangible, Embedded and Embodied Interaction

(pp. 117–124). New York, NY, USA: ACM. http://doi.org/10.1145/2460625.2460643

Horn, M. S., AlSulaiman, S., & Koh, J. (2013). Translating Roberto to Omar: computational

literacy, stickerbooks, and cultural forms. In Proceedings of the 12th International

Conference on Interaction Design and Children (pp. 120–127). New York, NY.

Horn, M. S., & Jacob, R. J. K. (2007). Tangible programming in the classroom with tern. In CHI

’07 extended abstracts on Human factors in computing systems (pp. 1965–1970). New

York, NY, USA: ACM.

Horn, M. S., Solovey, E. T., Crouser, R. J., & Jacob, R. J. . (2009). Comparing the use of

tangible and graphical programming languages for informal science education. In

Proceedings of the 27th international conference on Human factors in computing systems

(pp. 975–984). ACM Press.

Horn, M. S., Weintrop, D., Beheshti, E., & Olson, I. C. (2012). Spinners, dice, and pawns: Using

board games to prepare for agent-based modeling activities. Presented at the AERA,

Vancouver, Canada.

Horn, M. S., Weintrop, D., & Routman, E. (2014). Programming in the Pond: A Tabletop

Computer Programming Exhibit. In Proceedings of the Extended Abstracts of the 32nd

Annual ACM Conference on Human Factors in Computing Systems (pp. 1417–1422).

New York, NY, USA: ACM. http://doi.org/10.1145/2559206.2581237

Horstmann, C. S. (2012). Java Concepts: Early Objects (7 edition). Hoboken, NJ: Wiley.

Hour of Code. (2013). Code.org. Retrieved from http://code.org/learn

 363
Howland, K., & Good, J. (2014). Learning to communicate computationally with flip: A bi-

modal programming language for game creation. Computers & Education.

Hristova, M., Misra, A., Rutter, M., & Mercuri, R. (2003). Identifying and correcting Java

programming errors for introductory computer science students. In ACM SIGCSE

Bulletin (Vol. 35, pp. 153–156). ACM.

Hundhausen, C. D., Farley, S. F., & Brown, J. L. (2009). Can direct manipulation lower the

barriers to computer programming and promote transfer of training? ACM Transactions

on Computer-Human Interaction, 16(3), 1–40. http://doi.org/10.1145/1592440.1592442

Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1985). Direct manipulation interfaces. Human-

Computer Interaction, 1(4), 311–338.

Ioannidou, A., Repenning, A., & Webb, D. C. (2009). AgentCubes: Incremental 3D end-user

development. Journal of Visual Languages & Computing, 20(4), 236–251.

Jadud, M. C. (2005). A first look at novice compilation behaviour using BlueJ. Computer

Science Education, 15(1), 25–40.

Jadud, M. C., & Henriksen, P. (2009). Flexible, reusable tools for studying novice programmers.

In Proceedings of the fifth international workshop on Computing education research

workshop (pp. 37–42). ACM.

Jamieson, P. (2010). Arduino for teaching embedded systems. are computer scientists and

engineering educators missing the boat? Proc. FECS, 289–294.

Johnsgard, K., & McDonald, J. (2008). Using Alice in Overview Courses to Improve Success

Rates in Programming I. In IEEE 21st Conference on Software Engineering Education

and Training, 2008. CSEET ’08 (pp. 129–136). http://doi.org/10.1109/CSEET.2008.35

 364
Johnson, G. W. (1997). LabVIEW graphical programming: practical applications in

instrumentation and control. McGraw-Hill School Education Group.

Jona, K., Penney, L., & Stevens, R. (2015). “Re-mediating”Learning. In Proceedings of the 11th

Annual Conference on Computer Supported Collaborative Learning (CSCL. Gothenburg,

Sweden.

Kafai, Y. B., Peppler, K. A., & Chapman, R. N. (2009). The Computer Clubhouse:

Constructionism and Creativity in Youth Communities. Technology, Education--

Connections. Teachers College Press.

Kahn, K. (1999). From prolog to Zelda to ToonTalk. In Proceedings of the International

Conference on Logic Programming (pp. 67–78).

Kaput, J., Noss, R., & Hoyles, C. (2002). Developing new notations for a learnable mathematics

in the computational era. Handbook of International Research in Mathematics Education,

51–75.

Kay, A. (2005). Squeak etoys, children & learning. Online Article, 2006. Retrieved from

ftp://ofset2.unix-ag.uni-kl.de/speeches/jrfernandez/malaga08/doc/etoys_n_learning.pdf

Kay, A., & Goldberg, A. (1977). Personal dynamic media. Computer, 10(3), 31–41.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of

programming environments and languages for novice programmers. ACM Computing

Surveys, 37(2), 83–137.

Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling alice motivates middle school girls to

learn computer programming. In Proceedings of the SIGCHI conference on Human

factors in computing systems (pp. 1455–1464).

Kemeny, J. G., & Kurtz, T. E. (1980). Basic programming. John Wiley & Sons, Inc.

 365
Koh, K. H., Basawapatna, A., Nickerson, H., & Repenning, A. (2014). Real Time

Assessment of Computational Thinking. In Visual Languages and Human-Centric

Computing (VL/HCC), 2014 IEEE Symposium on (pp. 49–52). IEEE. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6883021

Kölling, M., Brown, N. C. C., & Altadmri, A. (2015). Frame-Based Editing: Easing the

Transition from Blocks to Text-Based Programming. In Proceedings of the Workshop in

Primary and Secondary Computing Education (pp. 29–38). New York, NY, USA: ACM.

http://doi.org/10.1145/2818314.2818331

Kölling, M., & McKay, F. (2016). Heuristic Evaluation for Novice Programming Systems.

Trans. Comput. Educ., 16(3), 12:1–12:30. http://doi.org/10.1145/2872521

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ System and its

Pedagogy. Computer Science Education, 13(4), 249–268.

Kölling, M., & Rosenberg, J. (1996). Blue—a language for teaching object-oriented

programming. In ACM SIGCSE Bulletin (Vol. 28, pp. 190–194). ACM.

Lave, J. (1988). Cognition in practice: Mind, mathematics, and culture in everyday life.

Cambridge Univ Pr.

Lee, I., Martin, F., & Apone, K. (2014). Integrating computational thinking across the K–8

curriculum. ACM Inroads, 5(4), 64–71.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., … Werner, L. (2011).

Computational thinking for youth in practice. ACM Inroads, 2(1), 32–37.

Lee, T. Y., Mauriello, M. L., Ahn, J., & Bederson, B. B. (2014). CTArcade: Computational

thinking with games in school age children. International Journal of Child-Computer

Interaction. http://doi.org/10.1016/j.ijcci.2014.06.003

 366
Lego Systems Inc. (2008). Lego Mindstorms NXT-G Invention System. Retrieved from

http://mindstorms.lego.com

Levy, S. T., & Mioduser, D. (2007). Does it “want” or “was it programmed to...”? Kindergarten

children’s explanations of an autonomous robot’s adaptive functioning. International

Journal of Technology and Design Education, 18(4), 337–359.

Levy, S. T., & Wilensky, U. (2011). Mining students’ inquiry actions for understanding of

complex systems. Computers & Education, 56(3), 556–573.

Lewis, C. M. (2010). How programming environment shapes perception, learning and goals:

Logo vs. Scratch. In Proceedings of the 41st ACM Technical Symposium on Computer

Science Education (pp. 346–350). New York, NY.

Lewis, J., & DePasquale, P. (2008). Programming with Alice and Java. Boston: Addison-

Wesley.

Luria, A. R. (1982). Language and cognition. (J. V. Wertsch, Ed.). Winston ; Wiley,

Washington, D.C. : New York ; Chichester :

Made with Code. (2014). Google. Retrieved from https://www.madewithcode.com/

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. In ACM SIGCSE

Bulletin (Vol. 39, pp. 223–227). ACM.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice:

Urban youth learning programming with Scratch. ACM SIGCSE Bulletin, 40(1), 367–

371.

Maloney, J. H., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch

programming language and environment. ACM Transactions on Computing Education

(TOCE), 10(4), 16.

 367
Margolis, J. (2008). Stuck in the shallow end: Education, race, and computing. The MIT

Press.

Margolis, J., & Fisher, A. (2003). Unlocking the clubhouse: Women in computing. The MIT

Press.

Martin, F., Mikhak, B., Resnick, M., Silverman, B., & Berg, R. (2000). To Mindstorms and

Beyond. Robots for Kids: Exploring New Technologies for Learning, 9.

Matsuzawa, Y., Ohata, T., Sugiura, M., & Sakai, S. (2015). Language Migration in non-CS

Introductory Programming through Mutual Language Translation Environment. In

Proceedings of the 46th ACM Technical Symposium on Computer Science Education (pp.

185–190). ACM Press. http://doi.org/10.1145/2676723.2677230

McNerney, T. (2004). From turtles to Tangible Programming Bricks: explorations in physical

language design. Personal and Ubiquitous Computing, 8(5).

http://doi.org/10.1007/s00779-004-0295-6

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011). Habits of programming in Scratch. In

Proceedings of the 16th Annual Joint Conference on Innovation and Technology in

Computer Science Education (pp. 168–172). Darmstadt, Germany: ACM.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. M. (2010). Learning computer science

concepts with scratch. In Proceedings of the Sixth international workshop on Computing

education research (pp. 69–76).

Mendelsohn, P., Green, T. R. G., & Brna, P. (1990). Programming languages in education: The

search for an easy start. Academic Press London.

 368
Miller, P., Pane, J., Meter, G., & Vorthmann, S. (1994). Evolution of novice programming

environments: the structure editors of Carnegie Mellon University. Interactive Learning

Environments, 4(2), 140–158.

Modrow, E., Mönig, J., & Strecker, K. (2011). Wozu JAVA? LOG IN, 31(168), 35–41.

Moher, T. G., Mak, D. C., Blumenthal, B., & Levanthal, L. M. (1993). Comparing the

comprehensibility of textual and graphical programs. In Empirical Studies of

Programmers: Fifth Workshop (pp. 137–161). Ablex, Norwood, NJ.

Mönig, J., Ohshima, Y., & Maloney, J. (2015). Blocks at your fingertips: Blurring the line

between blocks and text in GP. In 2015 IEEE Blocks and Beyond Workshop (Blocks and

Beyond) (pp. 51–53). http://doi.org/10.1109/BLOCKS.2015.7369001

Moskal, B., Lurie, D., & Cooper, S. (2004). Evaluating the effectiveness of a new instructional

approach. In Proceedings of the 35th SIGCSE technical symposium on Computer science

education (pp. 75–79).

Motil, J., & Epstein, D. (1998). JJ: a Language Designed for Beginners. Retrieved from

http://www.csun.edu/~jmotil/BeginLanguageJr.pdf

Mullins, P., Whitfield, D., & Conlon, M. (2009). Using Alice 2.0 as a first language. Journal of

Computing Sciences in Colleges, 24(3), 136–143.

Myers, B. A. (1990). Taxonomies of visual programming and program visualization. Journal of

Visual Languages & Computing, 1(1), 97–123.

Nemirovsky, R. (1994). On ways of symbolizing: The case of Laura and the velocity sign. The

Journal of Mathematical Behavior, 13(4), 389–422.

Nienaltowski, M.-H., Pedroni, M., & Meyer, B. (2008). Compiler error messages: What can help

novices? In ACM SIGCSE Bulletin (Vol. 40, pp. 168–172). ACM.

 369
Nishida, T., Kanemune, S., Idosaka, Y., Namiki, M., Bell, T., & Kuno, Y. (2009). A CS

unplugged design pattern. In ACM SIGCSE Bulletin (Vol. 41, pp. 231–235). ACM.

Norman, D. A. (1990). The design of everyday things. New York: Doubleday.

Norman, D. A. (1991). Cognitive artifacts. In J. M. Carroll (Ed.), Designing interaction:

Psychology at the human-computer interface. New York, NY: Cambridge University

Press.

Norman, D. A. (1993). Things that make us smart: Defending human attributes in the age of the

machine. Basic Books.

Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and

computers. Dordrecht: Kluwer.

Ong, W. (1982). Orality and Literacy: The technologizing of the world. London: Routledge.

Palmer, S. E. (1978). Fundamental aspects of cognitive representation. In E. Rosch & B. B.

Lloyd (Eds.), Cognition and categorization (Vol. 259, pp. 259–303). Hillsdale, N.J.:

Lawrence Erlbaum Associates.

Pane, J., & Miller, P. (1993). The ACSE multimedia science learning environment. In

Proceedings of the 1993 International Conference on Computers in Education (pp. 168–

173).

Papadimitriou, C. H. (2003). MythematiCS: in praise of storytelling in the teaching of computer

science and math. SIGCSE BULLETIN, 35(4), 7–9.

Papastergiou, M. (2009). Digital game-based learning in high school computer science

education: Impact on educational effectiveness and student motivation. Computers &

Education, 52(1), 1–12.

 370
Papert, S. (1972). Teaching Children to be Mathematicians Versus Teaching About

Mathematics. International Journal of Mathematical Education in Science and

Technology, 3(3), 249–262.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic

books.

Papert, S. (1993). The children’s machine: Rethinking school in the age of the computer. New

York: Basic Books.

Papert, S. (2006). Afterword: After how comes What. In R. K. Sawyer (Ed.), The Cambridge

Handbook of the Learning Sciences (pp. 581 – 586). Cambridge University Press.

Parsons, D., & Haden, P. (2007). Programming osmosis: Knowledge transfer from imperative to

visual programming environments. In S. Mann & N. Bridgeman (Eds.), Procedings of

The Twentieth Annual NACCQ Conference (pp. 209–215). Hamilton, New Zealand.

Pattis, R. E. (1981). Karel the robot: a gentle introduction to the art of programming. John

Wiley & Sons, Inc.

Pea, R. D. (1986). Language-independent conceptual“ bugs” in novice programming. Journal of

Educational Computing Research, 2(1), 25–36.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., … Paterson, J. (2007).

A survey of literature on the teaching of introductory programming. In ACM SIGCSE

Bulletin (Vol. 39, pp. 204–223). ACM.

Perlis, A. J. (1962). The computer in the university. MiT Press.

Petre, M. (1995). Why looking isn’t always seeing: readership skills and graphical programming.

Communications of the ACM, 38(6), 33–44.

 371
PicoBlocks. (2008). Playful Invention Company. Retrieved from

http://www.picocricket.com/download.html

Piech, C., Sahami, M., Koller, D., Cooper, S., & Blikstein, P. (2012). Modeling how students

learn to program. In Proceedings of the 43rd ACM technical symposium on Computer

Science Education (pp. 153–160). ACM.

Powers, K., Ecott, S., & Hirshfield, L. M. (2007). Through the looking glass: teaching CS0 with

Alice. ACM SIGCSE Bulletin, 39(1), 213–217.

Price, T. W., & Barnes, T. (2015). Comparing Textual and Block Interfaces in a Novice

Programming Environment (pp. 91–99). Presented at the ICER ’15, ACM Press.

Reed, D., Wilkerson, B., Yanek, D., Dettori, L., & Solin, J. (2015). How exploring computer

science (ECS) came to Chicago. ACM Inroads, 6(3), 75–77.

Repenning, A., Ioannidou, A., & Zola, J. (2000). AgentSheets: End-user programmable

simulations. Journal of Artificial Societies and Social Simulation, 3(3).

Repenning, A., & Sumner, T. (1995). Agentsheets: A medium for creating domain-oriented

visual languages. IEEE Computer, 28(3), 17–25.

Resnick, M. (1997). Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel

Microworlds. A Bradford Book.

Resnick, M., & Rusk, N. (1996). The Computer Clubhouse: Preparing for life in a digital world.

IBM Systems Journal, 35(3.4), 431–439. http://doi.org/10.1147/sj.353.0431

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., … Silver,

J. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60.

 372
Resnick, M., & Wilensky, U. (1993). Beyond the deterministic, centralized mindsets: New

thinking for new sciences. In annual meeting of the American Educational Research

Association, Atlanta, GA.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching Programming: A

Review and Discussion. Computer Science Education, 13(2), 137.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review

and discussion. Computer Science Education, 13(2), 137–172.

Roque, R., Kafai, Y., & Fields, D. (2012). From tools to communities: Designs to support online

creative collaboration in Scratch. In Proceedings of the 11th International Conference on

Interaction Design and Children (pp. 220–223). ACM.

Roque, R. V. (2007). OpenBlocks: An extendable framework for graphical block programming

systems (Master’s Thesis). Massachusetts Institute of Technology.

Rücker, M. T., & Pinkwart, N. (2015). Review and Discussion of Children’s Conceptions of

Computers. Journal of Science Education and Technology.

Ryoo, J. J., Margolis, J., Lee, C. H., Sandoval, C. D., & Goode, J. (2013). Democratizing

computer science knowledge: transforming the face of computer science through public

high school education. Learning, Media and Technology, 38(2), 161–181.

Sammet, J. E. (1981). The Early History of COBOL. In R. L. Wexelblat (Ed.), History of

Programming Languages I (pp. 199–243). New York, NY, USA: ACM.

Santori, M. (1990). An instrument that isn’t really (Laboratory Virtual Instrument Engineering

Workbench). IEEE Spectrum, 27(8), 36–39. http://doi.org/10.1109/6.58432

Saxe, G. B. (1999). Cognition, development, and cultural practices. In T. E. (Ed.), Culture and

Development. New Directions in Child Psychology. SF: Jossey-Bass.

 373
Scholtz, J., & Wiedenbeck, S. (1990). Learning second and subsequent programming

languages: A problem of transfer. International Journal of Human-Computer Interaction,

2(1), 51–72.

Schweikardt, E., & Gross, M. D. (2006). roBlocks: a robotic construction kit for mathematics

and science education. In Proceedings of the 8th international conference on Multimodal

interfaces (pp. 72–75). ACM.

ScratchBlocks. (2014). Retrieved from https://github.com/blob8108/scratchblocks2

Scribner, S., & Cole, M. (1981). The psychology of literacy (Vol. 198). Harvard University Press

Cambridge, MA.

Sengupta, P., & Wilensky, U. (2009). Learning Electricity with NIELS: Thinking with Electrons

and Thinking in Levels. International Journal of Computers for Mathematical Learning,

14(1), 21–50.

Settle, A., Goldberg, D. S., & Barr, V. (2013). Beyond computer science: computational thinking

across disciplines. In Proceedings of the 18th ACM conference on Innovation and

technology in computer science education (pp. 311–312). New York, NY, USA: ACM.

Shapiro, R. B., & Ahrens, M. (2016). Beyond Blocks: Syntax and Semantics. Commun. ACM,

59(5), 39–41. http://doi.org/10.1145/2903751

Sherin, B. L. (2000). How students invent representations of motion: A genetic account. The

Journal of Mathematical Behavior, 19(4), 399–441.

Sherin, B. L. (2001). A comparison of programming languages and algebraic notation as

expressive languages for physics. International Journal of Computers for Mathematical

Learning, 6(1), 1–61.

 374
Sherin, B. L., diSessa, A. A., & Hammer, D. (1993). Dynaturtle revisited: Learning physics

through collaborative design of a computer model. Interactive Learning Environments,

3(2), 91–118.

Sipitakiat, A., Blikstein, P., & Cavallo, D. P. (2004). GoGo board: augmenting programmable

bricks for economically challenged audiences. In Proceedings of the 6th international

conference on Learning sciences (pp. 481–488).

Sipitakiat, A., & Nusen, N. (2012). Robo-Blocks: designing debugging abilities in a tangible

programming system for early primary school children. In Proceedings of the 11th

International Conference on Interaction Design and Children (pp. 98–105).

Slany, W. (2014). Tinkering with Pocket Code, a Scratch-like programming app for your

smartphone. In Proceedings of Constructionism 2014. Vienna, Austria.

Sleeman, D., & Brown, J. S. (1982). Intelligent tutoring systems. Retrieved from

https://hal.archives-ouvertes.fr/hal-00702997/

Sleeman, D., Putnam, R. T., Baxter, J., & Kuspa, L. (1986). Pascal and high school students: A

study of errors. Journal of Educational Computing Research, 2(1), 5–23.

Smith, D. C. (1977). Pygmalion: A Computer Program to Model and Stimulate Creative

Thought. Birkhäuser.

Smith, D. C., Cypher, A., & Spohrer, J. (1994). KidSim: Programming agents without a

programming language. Communications of the ACM, 37(7), 54–67.

Smith, D. C., Cypher, A., & Tesler, L. (2000). Programming by example: novice programming

comes of age. Communications of the ACM, 43(3), 75–81.

 375
Smith, D. C., Cypher, A., & Tesler, L. (2001). Novice Programming Comes of Age. In H.

Lieberman (Ed.), Your wish is my command: Programming by example (pp. 7–20).

Morgan Kaufmann.

Smith, N., Sutcliffe, C., & Sandvik, L. (2014). Code Club: Bringing Programming to UK

Primary Schools Through Scratch. In Proceedings of the 45th ACM Technical

Symposium on Computer Science Education (pp. 517–522). New York, NY, USA: ACM.

Soloway, E., Guzdial, M., & Hay, K. E. (1994). Learner-centered design: The challenge for HCI

in the 21st century. Interactions, 1(2), 36–48.

Sorva, J. (2008). The same but different students’ understandings of primitive and object

variables. In Proceedings of the 8th International Conference on Computing Education

Research (pp. 5–15). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=1595360

Sorva, J. (2012). Visual Program Simulation in Introductory Programming Education. Aalto

University, Espoo, Finland.

Squire, K. (2005). Changing the game: What happens when video games enter the classroom.

Innovate: Journal of Online Education, 1(6).

Stead, A., & Blackwell, A. F. (2014). Learning Syntax as Notational Expertise when using

DrawBridge. Presented at the Psychology of Programmign Interest Group, University of

Sussex.

Stefik, A., & Gellenbeck, E. (2011). Empirical studies on programming language stimuli.

Software Quality Journal, 19(1), 65–99.

Stefik, A., & Hanenberg, S. (2014). The Programming Language Wars: Questions and

Responsibilities for the Programming Language Community. In Proceedings of the 2014

 376
ACM International Symposium on New Ideas, New Paradigms, and Reflections on

Programming & Software (pp. 283–299). New York, NY, USA: ACM.

Stefik, A., & Siebert, S. (2013). An Empirical Investigation into Programming Language Syntax.

ACM Transactions on Computing Education, 13(4), 1–40.

Stieff, M., & Wilensky, U. (2003). Connected chemistry—incorporating interactive simulations

into the chemistry classroom. Journal of Science Education and Technology, 12(3), 285–

302.

Stonedahl, F., Wilkerson-Jerde, M., & Wilensky, U. (2010). MAgICS: Toward a Multi-Agent

Introduction to Computer Science. Multi-Agent Systems for Education and Interactive

Entertainment: Design, Use and Experience, 1–25.

Strauss, A., & Corbin, J. (1994). Grounded Theory Methodology: An Overview. In Strategies of

Qualitative Inquiry (pp. 158–183). Thousand Oaks, CA: Sage Publications, Inc.

Sudol, L. A., & Studer, C. (2010). Analyzing Test Items: Using Item Response Theory to

Validate Assessments. In Proceedings of the 41st ACM Technical Symposium on

Computer Science Education (pp. 436–440). New York, NY, USA: ACM.

Suppes, P. (1966). The Uses of Computers in Education. Scientific American, 215, 206–220.

Suzuki, H., & Kato, H. (1995). Interaction-level Support for Collaborative Learning:

AlgoBlock—an Open Programming Language. In The First International Conference on

Computer Support for Collaborative Learning (pp. 349–355). Hillsdale, NJ, USA: L.

Erlbaum Associates Inc. http://doi.org/10.3115/222020.222828

Swetz, F. (1989). Capitalism and arithmetic: The new math of the 15th century. La Salle,

Illinois: Open Court.

 377
Tangney, B., Oldham, E., Conneely, C., Barrett, S., & Lawlor, J. (2010). Pedagogy and

processes for a computer programming outreach workshop—The bridge to college

model. Education, IEEE Transactions on, 53(1), 53–60.

Taylor, C., Zingaro, D., Porter, L., Webb, K. C., Lee, C. B., & Clancy, M. (2014). Computer

science concept inventories: past and future. Computer Science Education, 24(4), 253–

276.

Teitelbaum, T., & Reps, T. (1981). The Cornell program synthesizer: a syntax-directed

programming environment. Communications of the ACM, 24(9), 563–573.

Tempel, M. (2013). Blocks Programming. CSTA Voice, 9(1).

Tew, A. E., & Dorn, B. (2013). The Case for Validated Tools in Computer Science Education

Research. Computer, 46(9), 60–66. http://doi.org/10.1109/MC.2013.259

Tew, A. E., & Guzdial, M. (2010). Developing a validated assessment of fundamental CS1

concepts. In Proceedings of the 41st ACM technical symposium on Computer science

education (pp. 97–101).

Tew, A. E., & Guzdial, M. (2011). The FCS1: a language independent assessment of CS1

knowledge. In Proceedings of the 42nd ACM technical symposium on Computer science

education (pp. 111–116). ACM.

Traver, V. J. (2010). On compiler error messages: what they say and what they mean. Advances

in Human-Computer Interaction, 2010. Retrieved from

http://www.hindawi.com/journals/ahci/2010/602570/abs/

Turkle, S., & Papert, S. (1990). Epistemological pluralism: Styles and voices within the

computer culture. SIGNS: : Journal of Women in Culture and Society, 16(1), 128–157.

Tynker. (2014). Mountain View, CA: Tynker. Retrieved from http://www.tynker.com/

 378
Van Deursen, A., Klint, P., & Visser, J. (2000). Domain-specific languages: An annotated

bibliography. ACM Sigplan Notices, 35(6), 26–36.

Vossoughi, S., & Bevan, B. (2014). Making and Tinkering: A Review of the Literature. National

Research Council Committee on Out of School Time STEM. Washington, DC: National

Research Council, 1–55.

Vygotsky, L. (1986). Thought and language. Cambridge, MA: MIT Press.

Wagh, A., & Wilensky, U. (2012). Evolution in blocks: Building models of evolution using

blocks. In C. Kynigos, J. Clayson, & N. Yiannoutsou (Eds.), Proceedings of the

Constructionism 2012 Conference. Athens, Greece.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016).

Defining Computational Thinking for Mathematics and Science Classrooms. Journal of

Science Education and Technology, 25(1), 127–147. http://doi.org/10.1007/s10956-015-

9581-5

Weintrop, D., & Wilensky, U. (2012). RoboBuilder: A program-to-play constructionist video

game. In C. Kynigos, J. Clayson, & N. Yiannoutsou (Eds.), Proceedings of the

Constructionism 2012 Conference. Athens, Greece.

Weintrop, D., & Wilensky, U. (2013a). Supporting computational expression: How novices use

programming primitives in achieving a computational goal. Presented at the American

Education Researchers Association, San Francisco, CA, USA.

Weintrop, D., & Wilensky, U. (2014a). Program-to-play videogames: Developing computational

literacy through gameplay. In Proceedings of the 10th Games, Learning, & Society

Conference (pp. 264–271). Madison, WI.

 379
Weintrop, D., & Wilensky, U. (2014b). Situating programming abstractions in a

constructionist video game. In G. Futschek & C. Kynigos (Eds.), Proceedings of

Constructionism 2014. Vienna, Austria.

Weintrop, D., & Wilensky, U. (2015a). The challenges of studying blocks-based programming

environments. In 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond) (pp. 5–

7). http://doi.org/10.1109/BLOCKS.2015.7368989

Weintrop, D., & Wilensky, U. (2015b). To Block or Not to Block, That is the Question:

Students’ Perceptions of Blocks-based Programming. In Proceedings of the 14th

International Conference on Interaction Design and Children (pp. 199–208). New York,

NY, USA: ACM. http://doi.org/10.1145/2771839.2771860

Weintrop, D., & Wilensky, U. (2015c). To Block or not to Block, That is the Question: Students’

Perceptions of Blocks-based Programming. In Proceedings of the 14th International

Conference on Interaction Design and Children. Boston, MA.

Weintrop, D., & Wilensky, U. (2015d). Using Commutative Assessments to Compare

Conceptual Understanding in Blocks-based and Text-based Programs. In Proceedings of

the Eleventh Annual International Conference on International Computing Education

Research (pp. 101–110). New York, NY, USA: ACM.

Weintrop, D., & Wilensky, U. (2016a). Bringing Blocks-based Programming into High School

Computer Science Classrooms. In Paper presented at the Annual Meeting of the

American Educational Research Association (AERA). Washington DC, USA.

Weintrop, D., & Wilensky, U. (2016b). Cognitive affordances of blocks-based programming in a

two dimensional construction space. Presented at the The 46th Annual Meeting of the

Jean Piaget Society Annual Meeting, Chicago, IL.

 380
Weintrop, D., & Wilensky, U. J. (2013b). Designing for computational expression: Four

principles for the design of learning environments towards computational literacy. In D.

J. Loveless, B. Griffith, M. E. Bérci, E. Ortleib, & P. M. Sullivan (Eds.), Academic

knowledge construction and multimodal curriculum development (pp. 86–110). Hershey,

PA: IGI Global.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance

assessment: measuring computational thinking in middle school. In Proceedings of the

43rd ACM technical symposium on Computer Science Education (pp. 215–220).

Werner, L., McDowell, C., & Denner, J. (2013). A first step in learning analytics: pre-processing

low-level Alice logging data of middle school students. Journal of Educational Data

Mining, 5(2), 11–37.

Whitley, K. N. (1997). Visual programming languages and the empirical evidence for and

against. Journal of Visual Languages & Computing, 8(1), 109–142.

Whorf, B. L., Carroll, J. B., & Chase, S. (1956). Language, thought, and reality: Selected

writings of Benjamin Lee Whorf. MIT press Cambridge, MA.

Wiedenbeck, S. (1993). An analysis of novice programmers learning a second language. In

Empirical Studies of Programmers: Fifth Workshop: Papers Presented at the Fifth

Workshop on Empirical Studies of Programmers, December 3-5, 1993, Palo Alto, CA (p.

187). Intellect Books.

Wilensky, U. (1995). Paradox, programming, and learning probability: A case study in a

connected mathematics framework. The Journal of Mathematical Behavior, 14(2), 253–

280.

 381
Wilensky, U. (1997). StarLogoT. Center for Connected Learning and Computer-Based

Modeling, Northwestern University. https://ccl.northwestern.edu/cm/StarLogoT/.

Wilensky, U. (1999). NetLogo. Evanston, IL: Center for Connected Learning and Computer-

Based Modeling, Northwestern University. http://ccl.northwestern.edu/netlogo.

Wilensky, U. (2001). Modeling nature’s emergent patterns with multi-agent languages. In

Proceedings of EuroLogo (pp. 1–6). Linz, Austria.

Wilensky, U., Brady, C. E., & Horn, M. S. (2014). Fostering Computational Literacy in Science

Classrooms. Commun. ACM, 57(8), 24–28. http://doi.org/10.1145/2633031

Wilensky, U., & Novak, M. (2010). Teaching and Learning Evolution as an Emergent Process:

The BEAGLE project. In R. Taylor & M. Ferrari (Eds.), Epistemology and Science

Education: Understanding the Evolution vs. Intelligent Design Controversy. New York:

Routledge.

Wilensky, U., Papert, A., Sherin, B., DiSessa, A. A., Kay, A., & Turkle, S. (2005). Center for

Learning and Computation-Based Knowledge (CLiCK). Proposal to the National Science

Foundation - Science of Learning Center.

Wilensky, U., & Papert, S. (2006). Restructurations: Reformulations of knowledge disciplines

through new representational forms. (Manuscript in preparation).

Wilensky, U., & Papert, S. (2010). Restructurations: Reformulating knowledge disciplines

through new representational forms. In J. Clayson & I. Kallas (Eds.), Proceedings of the

Constructionism 2010 conference. Paris, France.

Wilensky, U., & Rand, W. (2014). Introduction to Agent-based Modeling. Cambridge, MA: MIT

Press.

 382
Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: Learning

biology through constructing and testing computational theories— an embodied

modeling approach. Cognition and Instruction, 24(2), 171–209.

Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making

sense of the world. Journal of Science Education and Technology, 8(1), 3–19.

Wilkerson-Jerde, M. H., & Wilensky, U. (2010). Restructuring Change, Interpreting Changes:

The DeltaTick Modeling and Analysis Toolkit. In J. Clayson & I. Kalas (Eds.),

Proceedings of the Constructionism 2010 Conference. Paris, France.

Wilson, A., & Moffat, D. C. (2010). Evaluating Scratch to introduce younger schoolchildren to

programming. Proceedings of the 22nd Annual Psychology of Programming Interest

Group (Universidad Carlos III de Madrid, Leganés, Spain.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

Wolber, D., Abelson, H., Spertus, E., & Looney, L. (2011). App Inventor: Create Your Own

Android Apps. Sebastopol, Calif: O’Reilly Media.

Wolfram, S. (2002). A New Kind of Science (1st ed.). Wolfram Media.

Yaroslavski, D. (2014). Lightbot. Retrieved from http://lightbot.com

Zweben, S., & Bizot, B. (2014). 2013 Taulbee Survey. COMPUTING, 26(5).

 383
11. Appendix A – Introductory Curriculum

This section presents the thirteen assignments that the students worked through during the

five-week introductory portion of the study. This appendix serves as a supplement to Table 3.1,

which provides a high-level overview. The assignments below are presented in the order that

were given to students. For each assignment, a text description is given (sometimes with an

accompanying image) and a brief statement of the goal of the assignment. Next, we include the

exact text that was given to the students during the study. The assignments were designed by the

author with the help of the teacher who was participating in the study. The exact format and

wording of the assignments is that of the teacher, who reformatted the assignments to fit into the

assignment template she uses in her classes.

Quilt

Description

Students will write a program to draw an image of something that represents them. The images

they create will then be “stitched” together to form a quilt for the class. A sample quilt patch was

shown to the class.

 384

Figure A.1. The sample quilt shown created by the teacher and shown to the students.

Goal

The goal of this assignment is to familiarize students with the Pencil.cc environment, specifically

how to assemble and run programs and some of the basic movement and drawing commands.

Text shown to students

You will be using http://pencil.cc to create a ”quilt,” this should be a drawing that represents you

and something you care about, you can include multiple things.

To visit an example of a completed quilt go to: http://share.pencil.cc/home/ccsf0-nudavid-quilt

a. Go to http://pencil.cc, fill in the drop downs and choose quilt for the assignment

b. Remember, while you are creating your quilt you are still investigating the

workspace. How do you get your turtle to move forward? If you are not sure where

can you “quickly” (hint) look? How do you get the turtle to use a pen (to draw)?

When you physically draw on paper do you move forward and then pick your pen or

do you first pick your pen and then move forward to draw? Do you think it is the

same for coding? Test out both ways and see which works.

 385
MadLibs

Description

This assignment has students author and implement a short “MadLib”. A MadLib is a text game

where one person (usually the author of the MadLib) asks the player for a part of speech (“give

me a proper noun” or “give me an adjective”). These suggestions are then plugged into the story.

Goal

This assignment is intended to introduce students to the concept of variables and the basic text

functionality of Pencil.cc

Text shown to students

Part 1: On a scrape piece of paper with a partner, create an algorithm for how to play MadLibs

You need to gather two adjectives and three nouns.

Does order matter? How can you store users response? How can you use the users

response?

Part 2: As individuals, in pencil.cc, choose the MadLib’s drop down and start to program using

your algorithm

How can you store users response? How can you use the users response?

Tip Calculator

Description

This assignment asks students to create a basic tip calculating program that prompts the user for

a bill amount and a tip percentage, then reports back to the user how much the tip should be.

Goal

 386
This assignment gives students further experience with variables, this time using them to

store numbers and doing basic mathematical calculations with variables.

Text shown to students

Write an algorithm to calculate the tip for a meal based on 20%., you must use variables to

represent numbers The result should be the amount of tip (example-4 on a $20 meal)

Paint by Quadrant

Description

In this assignment, students write a program that has the on-screen turtle follow the mouse cursor

around the screen. As the turtle moves, it leaves a trail behind it. The color of the trail is

determined by the color. The teacher demonstrated this assignment in class so students could see

the behavior.

Example shared in class:

Figure A.2. A static picture of the completed Paint by Quadrant program.

Goal

This assignment is intended to introduce learners to conditional logic, using a visual depiction of

how conditional logic can change the outcome of a program.

Text shown to students

[Students are first shown a demonstration of a working program.]

 387
Plan of attack? What’s the first thing we should do?

What does that look like? Write down on scrape piece of paper.

When directed, open pencil. What blocks/code could you use to complete action?

Movie Recommendation Engine

Description

This assignment asks students to develop a simple movie recommendation engine. The program

will prompt the user with a pair of questions about their movie preferences and then, based on

those preferences, recommend a movie to the user.

Goal

The goal of this assignment is for the students to gain further experience using conditional logic,

in this case, comparing user input to predefined values to change the output of their program.

Text shown to students

Create an algorithm to suggest a movie to watch on Netflix based on a few (multiple) conditions:

1) At least two categories to choose from (ie comedy or action or drama or etc…)

2) Once the category is chosen, the user must choose another sub category (ie comedy

would be romantic comedy or comedic parodies…)

3) End with suggesting a movie (must be school appropriate)

Grade Ranger

Description

This assignment asks student to write a program that will convert a letter grade (like B+) to a

percentage (87% - 89%).

 388
Goal

This program is intended to serve as a more complex application of conditional logic by having

multiple nested conditions.

Text shown to students

In our program A- , A and A- (etc.) each have a different value so we need conditionals to help

sort it out.

1. Ask the user for a letter (A-D)

2. Ask the user to enter either a +, -, or = (= for ‘regular A, + would be B+ and – would look

like A-).

3. After taking in these two inputs, the program will tell the user what that range of grades is

using if/else or conditionals. Here are the grade ranges: So, if the user types in an ‘A’,

then a ‘+’, the program will say: A+ is from 97-100.

The grade ranges are:

A+97-100
A 93-96
A-90-92
Repeat for B, C, D
F, F- and F+ are all equal to 0-59

Guessing Game

Description

This assignment is a canonical introductory programming activity. Students write a program that

randomly picks a number between 1 and 100 and then the user has a fixed number of tries to

guess the number. After each guess, the program tells the user if their guess was too high, too

low, or correct.

 389
Goal

This assignment introduces learners to iterative logic while also asking them to use conditional

logic to determine the appropriate feedback.

Text shown to students

Part 1: You will be programming a game that stores a number in a variable and allows the user to

guess the number. Use conditionals to check the two numbers. When the guess is too low, the

program says “too low”, when the guess is too high, the program says “too high”, when the user

guesses it, the program says – you got it! Write an algorithm for the program.

Part 2: Change the game so the user only gets 7 guesses, so the program stops when the user

guesses correctly or if the users uses up all 7 guesses. After the users guesses the number of fails

in 7 attempts, ask the user if they want to play again, if yes, then let them play again, if not, end

the game.

Radial Art

Description

This assignment has students create a visual pattern that demonstrates radial symmetry. Students

were shown the example displayed in Figure A.3.

 390

Figure A.3. An example program for the Radial Art assignment.

Goal

The goal for this assignment was to built student intuition about iterative logic.

Text shown to students

Part1: Draw a geometric picture in pencil.cc, use at least 3 colors.

Part 2: Use a loop to repeat the picture

Squiral

Description

Students were asked to draw a pair of “squirals” (shown in Figure A.4).

Figure A.4. A pair of squirals.

Goal

 391
This assignment was intended to give students the experience of using loops and variables in

conjunction. To draw a squiral, the students need to increment a value over time to produce the

visual pattern shown.

Text shown to students

Recreate the following pictures, you may choose either for or while loops and you may pick the

color. One squiral starts in and moves out, one squiral starts out and gets smaller

Polygoner

Description

In this assignment, students are given a basic function that draws a square and are asked to

modify the function so that it takes in the number of sides and the length of sides as arguments

and draws the specified polygon.

Goal

This assignment introduces learners to the concept of functions and parameters.

Text shown to students

Recreate the code in pencil.cc in the polygoner project (shown in), test it out.

What did you notice the program was doing? What is poly? How are sides and len used? What

does poly (6, 100) do?

 392

(Shown to the Text and Hybrid conditions) (Shown to the Blocks condition)

Figure A.5. Templates for the Polygoner project.

 Working in the polygoner project, first correct the logic so the function draws a polygon

of sides number of sides. Next, add the option to change the lengths of the sides of the shape

and the color of the polygon by adding a new parameters. Don’t forget to add this parameter into

the existing functions being used!!

Connect 4

Description

This project asks students to draw a Connect 4 board (a grid) and then add the ability for users to

play connect four by rendering a black or red dot where the user clicks. No logic with regard to

winning or making sure the players followed the rules was required.

Goal

The goal of this project was to ask students to define multiple functions and call them inside of

each other.

Text shown to students

 393
Part 1: Create a function that draws 8 lines that are equally spaced apart, use a parameter that

will allow the user to make the lines vertical or horizontal.

Part 2: We need to create the code for when the user (player 1) clicks a spot on the grid a black

dot is created at that spot, when the user clicks again (player two) a red dot appears in the new

spot.

You can starts with this function that has already been created.

Click (e) ->

 Moveto e

Brick Wall

Description

This penultimate assignment asks students to combine conditional logic, repeating logic,

variables, and functions. The assignment prompts the user for a number and then draws a brick

wall with that many rows. Figure A.6 shows an example of what an 11 -row brick wall should

look like.

Figure A.6. An 11-row brick wall.

Goal

 394
The goal of this assignment is to ask students to combine the four concepts they have learned

over the five week curriculum into a single program.

Text shown to students

a. Create a function to draw a brick.

b. Next create a second function that creates a row of bricks across your screen.

c. Create another function that draws an “odd” row of bricks

d. Create a function that will let the user choose the number of bricks to be drawn

Final Project

Description

For the final project, students are given a week to create a project that incorporates all the

concepts covered since the beginning of the year. On the last day of the curriculum, students

share their projects with their peers. Students are given a number of project ideas, including

making games, interactive stories, or music videos.

Goal

The goal is for the students to demonstrate their understanding of the ideas covered in the course.

Further, like the introductory assignment, this assignment gives students an opportunity to bring

their own interests into the classroom.

Text shown to students

Create a game or program that has the following:

• 3 functions with parameters
• for loop
• while loop

 395
• variables
• variable referencing
• if/else conditionals

 396
12. Appendix B – Attitudinal Survey

This appendix entry includes the pre attitudinal survey in its entirety as well as the new

questions added for the Mid and Post survey. The survey was administered online at the

beginning, middle, and end of the study. The demographic questions (birthday, grade, gender,

etc.) were only asked on the Pre assessment.

Pre Attitudinal Survey

1) Name
2) Student ID
3) Programming Class
4) Birthday
5) Grade
6) Gender
7) Race/Ethnicity (multi-select box with other free response option)
8) What language (or languages) do you speak at home?

The following questions are asked on a 10-point Likert scale and were asked on all three

administrations of the survey.

9) Programming is fun
10) I will be good at programming
11) Programming is hard
12) I know more than my friends about programming
13) Most women can learn to program
14) In the future, I would like a job that involves programming
15) I like programming
16) Programming is a talent - you either have it or you do not
17) My family encourages me to learn to program
18) Knowing how to program is important
19) My friends like using computers
20) I can become good at programming
21) I like the challenge of programming
22) I think programming will be useful in the future
23) I cannot learn to program well if the teacher does not explain things well
24) I plan to take more computer science courses after this one.
25) Computer Science is all about programming

 397
The following set of questions give the student a text field to type in their responses and were

only asked on the Pre survey.

26) Why are you taking this course?
27) What do you hope to learn in this course?
28) The thing I am most excited about for this class is:
29) Do you have any friends taking this course? If so, how many?
30) How did you hear about this course?
31) To be successful in programming courses, students need to:

The following three questions were asked on all three administrations of the survey

32) I define programming as:
33) The most important thing about programming is:
34) The hardest thing about programming is:

The following questions are asked on a 10-point Likert scale on all three surveys.

35) I will do well in this course
36) I am excited about this course
37) I think learning to program can help me with other classes
38) I think learning to program will help me with things outside of school
39) I think about the programs that control the devices I use in my everyday life.

The final set of questions were multiple choice and only asked on the first administration of the

survey.

40) How much time do you spend on a computer at home each day?
a) I don't use a computer
b) Less then 1 hour
c) Between 1 and 2 hours
d) Between 2 and 3 hours
e) More then 3 hours

41) What do you do on the computer outside of school? 
42) What types of computational devices do you own/use regularly? Check all that apply.

a) Laptop computer 
b) Desktop computer 
c) Tablet (iPad, Surface, etc.) 
d) Smartphone (iPhone, Samsun Galaxy, etc) 
e) Portable Media Player (iPod, portable movie player, etc.)

 398
f) Game console (Xbox, Play Station, Wii, etc.)

43) Have you taken any programming courses previously? If so, what coure(s) and when?
44) Have you ever used these languages/programming tools? Check all that apply.

a) Scratch or Snap! 
b) App Inventor 
c) Alice 
d) HTML, CSS or Javascript
e) Java, C++ or C#
f) Python, Lisp or Scheme
g) Pencil Code 
h) Other:

45) Do you know any professional programmers? If so, who?

Mid Attitudinal Survey

This section only includes new questions to the survey.

1) The thing I learned in Pencil.cc that will be most useful in Java is:
2) The thing will be the most different about programming in Java compared to

programming in Pencil.cc is:
3) The thing I like most about Pencil.cc is:
4) The thing I like least about Pencil.cc is:

The following questions were asked on a ten-point Likert scale.

5) What I learned with Pencil.cc will help me learn Java 
6) Pencil.cc has made me a better programmer
7) I think Pencil.cc was a good use of class time
8) Pencil.cc is similar to what real programmers do
9) I will do well in this course
10) I am excited about this course
11) What are variables? How are they used in programs?

The last set of questions on the mid survey asked about the concepts covered in the introductory

portion of the course. Each question starts with a 7-point Likert question followed by a free

response question.

12) How easy was it to use variables in Pencil.cc?
13) What do for loops and while loops do? How are they used in programs?  
14) How easy was it to use loops (for and while) in Pencil.cc?
15) What do if and if/else statements do? How are they used in programs?
16) How easy was it to use if and if/else statements in Pencil.cc?
17) What is a function? How are functions used in programs?
18) How easy was it to use functions in Penci.cc?

 399
Post Attitudinal Survey

This section includes the new questions added to the survey for the final administration.

1) The thing I learned in Pencil.cc that was the most useful in Java is:
2) The thing that is the most different between Pencil.cc and Java is:
3) Now that I am programming in Java, the thing I miss the most about Pencil.cc is:
4) Now that I am programming in Java, the thing I miss the least about Pencil.cc is:

The following questions were asked on a 10-point Likert scale.

5) What I learned in Pencil.cc has helped me in Java  
6) Pencil.cc made me a better programmer
7) I think Pencil.cc was a good use of class time
8) Pencil.cc is similar to what real programmers
9) I will do well in this course
10) I am excited about what we will be doing the rest of the year in this course
11) I am more excited about programming now than I was at the start of the year

 400
13. Appendix C – The Commutative Assessment

This appendix includes a full version of the Commutative Assessment. Details about the

design of the assessment and how it was administered can be found in Chapter 3. Every program

included in the Commutative Assessment can be displayed in either Pencil Code Blocks, Pencil

Code Text, or Snap! Blocks. For the appendix, only one version of each script is provided. The

assessment in its entirety, including the instructions and information about the assessment, is

presented below exactly as it was shown to students.

Programming Concepts

Take your time on these questions. If you reach a question you do not know the answer to, please

make your best educated guess. Your score on this activity will not count towards your grade in

the class.

For all of the questions below, please assume the all functions exist and behave as the name

suggests. For example, if there is a program the includes the command: word.getLastLetter(),

you can assume this function returns the last letter of that word.

Calls to the function "write" will print the value passed in and anything wrapped in ‘’ (single

quotes) denotes that those words are printed on the screen, so the line: write "Hi!" will print 'Hi!'

on screen.

A note on the text-based questions

 401

a. x is equal to 15; y is equal to 15
b. x is equal to 10; y is equal to 5
c. x is equal to 5; y is equal to 10
d. x is equal to 10, 15; y is equal to 5, 10
e. x is equal to 'x + 5'; y is equal to 'x'
f. x is equal to 15; y is equal to 10

 402

a. ‘hi and bye and’
b. ‘’ [nothing will be printed]
c. ‘hi bye and’
d. ‘hi and bye’
e. ‘hi and and bye and’

a. This program will cause an error
b. Prints 'Hello' 5000 times
c. Prints 'Hello' once after 5 seconds has elapsed
d. Prints 'Hello' continuously for 5 seconds
e. Prints 'Hello' once

 403

a. Store user entered information
b. Display text on the screen
c. Compare two letters to each other to determine if they are the same
d. Convert letters into numbers and numbers into letters
e. Create and modify data as a program runs

a. ‘’ [nothing with be printed]
b. ‘apple orange apple orange apple orange’
c. It will be different each time you run it
d. ‘apple apple apple orange orange orange’
e. ‘apple orange’

b. 0
c. 1
d. 5
e. 10
f. 50
g. It will be different each time you run it

 404

a. ‘The word is still too short!’
b. ‘The word is just rightthe word is still too short!’
c. ‘The word is just right’
d. ‘The word it too long!’
e. ‘The word is too short!’

a. ‘The word is too short!’
b. ‘The word is just right’
c. ‘The word is still too short!’
d. ‘The word it too long!’
e. ‘The word is just rightthe word is still too short!’
f. 'The word is too short!The word is still too short!'

a. ‘sentence’
b. ‘BoysHello Girls’

 405
c. ‘Hello Girls and Boys
d. ‘y + z + “ and “ + x’
e. ‘Hello Boys and Girls’

a. It always sets x equal to 5
b. This program will cause an error
c. Makes sure the value of x is less than 5
d. Makes sure the value of x is not equal to 10
e. Makes sure the value of x is between 10 and 5

True or False: Part F must be the first step in the program
True or False: It is necessary that part A comes before part B
True or False: Part C must come before part E
True or False: Part B is optional; the game will work without it
True or False: There is only one way to write the code for these six parts of the program so
that the game works

a. E and F
b. A, B, C, and D
c. B, C, and E
d. Only E

 406

a. x is equal to 'yes, no'; y is equal to 'yes, maybe'; z is equal to 'yes, no'
b. x is equal to 'no'; y is equal to 'maybe'; z is equal to 'yes'
c. x is equal to ‘yes'; y is equal to 'maybe'; z is equal to 'no'
d. x is equal to 'no'; y is equal to 'maybe'; z is equal to 'no'
e. x is equal to 'no'; y is equal to 'maybe'; z is equal to 'x'

a. ‘I include He and I include !’
b. ‘ and I include !’
c. ‘’ [nothing will be printed]
d. ‘I include He and I include three Ls and I include !’
e. ‘I include He’

 407
a. it will be different each time you run it
b. ‘3’
c. ‘531’
d. ‘31’
e. ‘543210’
f. ‘31-1’

a. ‘func1 func2 func1’
b. ‘func1 func2’
c. This program would cause an error
d. '' [nothing is printed]
e. ‘write func1 write func2’

a. ‘func3 func3 func1’
b. ‘func3 func1 func3’
c. ‘func3 func1’
d. ‘’ [nothing is printed]
e. This program would cause an error
f. ‘func3’ will be printed over and over until the script is stopped

 408
a. Makes a and b equal to each other
b. Rearranges the variables a, b, and tmp
c. This program do not do anything
d. Swaps the values of a and b
e. This script doesn’t do anything

a. The steps you follow to match the input period to your stored schedule is incorrect
b. You are using the wrong command to print words onto the screen
c. You are reading in the class period incorrectly
d. You accidentally stored your first period class for every period of the day

b. A then B
c. A then B then C
d. A then C
e. Just C
f. C then D then E

a. a_names has fewer or the same number of names in it as all_students
b. No two students will have the same name
c. There will be no student names in a_names
d. If you run the program twice for the same class, you will get a different list of names

printed out each time

 409

a. Set all three inputs to a temporary value
b. Returns the largest of the three numbers
c. Randomly returns on of the three numbers
d. Return the smallest of the three numbers
e. This program will cause an error

a. 0
b. 1
c. 5
d. 10
e. ‘here’ will be continuously printed until the script is stopped
f. It will be different each time you run it

a. ‘inside the if inside the else all done’
b. ‘inside the if’
c. ‘inside the if all done’
d. ‘all done’
e. ‘inside the else all done’

 410

a. x is equal to 8; y is equal to 4; z is equal to 84
b. x is equal to 8; y is equal to 8; z is equal to 16
c. x is equal to 8; y is equal to 8; z is equal to 12
d. x is equal to 8; y is equal to 4, 8; z is equal to 12
e. x is equal to 8; y is equal to 8; z is equal to ‘x + y’

a. ‘Inside first if’
b. ‘Inside first ifInside second if’
c. ‘It will be different each time’
d. ‘Inside second if’

a. 3
b. 6
c. 10
d. 18
e. It will be different each time you run it

 411

a. ’11’ then ’11’ then ’11’
b. ’11’ then ’13’ then ’18’
c. ‘’ [Nothing will be printed]
d. This program will cause on error
e. ‘x’ then ‘x’ then ‘x + 5’
f. ‘18’ then ‘18’ then ‘18’

a. Prints the word one letter at a time in the original order
b. Prints the word once for each letter of the word (so for a 3-letter word, the whole word is

printed 3 times)
c. Prints the last letter of the word that is passed in
d. Prints the word one letter at a time in reverse order
e. This program will cause an error

 412
a. ‘55’
b. ‘5’
c. ‘’ [nothing is printed]
d. ‘10’
e. This program would cause an error

a. ‘21’
b. ‘9’
c. ‘81’
d. ‘’ [nothing is printed]
e. This program would cause an error

 413
14. Appendix D – Interview Protocols

 This appendix includes the interview protocols used for the interviews conducted at the

beginning, middle, and end of the 15-week study.

Pre Interview Protocol

Programming and Computer Science Background

Tell me about your programming experience?

ECS students:

• Tell me about ECS
• What did you like about the class?
• What didn’t you like?
• What do you think the goal was?
• What did you learn?
• How did it prepare you for this course?
• Tell me about the projects in the class:

Tell me about your Scratch experience?

Initial Perceptions of Pencil.cc

About Pencil.cc

• Do you have any PencilCode experience?
• Is Pencil.cc programming?

o What about it makes it programming?
o What about it makes it different from ‘real programming’?

• What is easy about pencil.cc, what is difficult?
• Why do you think we are starting the year with pencil.cc?

Program Comprehension

For this portion of the interview, students are shown a program in the modality they will see in

their class and asked questions about it. The two programs and subsequent questions are

presented below.

 414

Figure D.1. The first program shown to students in the pre interview.

• What does it do?
• Are all the lines necessary?
• If we wanted to make it print out all the letters twice in a row what would you change?

(h,h,e,e,l,l,o,o)
• If we wanted to make it print the word twice in a row, what we would we change?

(h,e,l,l,o,h,e,l,l,o)?

Figure D. 2. The second program shown to students in the pre interviews.

• What does it do?
• Are all the lines necessary?
• If we wanted to add another option where if the number was between 40 and 60 it would

count down by 15, how we would do that?

Program Generation

 415
The last portion of the interview asks students to write the following program:

Write a program that prompts the student for their grade and then reports back if the student

is a underclassman if they enter 9 or 10, and an upperclassmen if they enter 11 or 12.

Mid Interview Protocol

Reflection on the Course
• How has the class been going so far?
• Did you like working in Pencil.cc

o What was your favorite thing about it?
o What was your least favorite thing about it?

• If a friend of yours asked you to describe what you have done in class so far this year,
what would you tell them?

Transition to java
• You just started working on Java, how has that been going?
• How is it different that what you did in Pencil.cc in the first 5 weeks of school?
• Do you think what you learned in pencil.cc is helpful for Java? If so what and how?
• What has been the biggest difference between Pencil.cc and Java?

Final Project Discussion

Ask student to explain their final project and how it works

Program Generation

The last activity of the mid interview asks students to write the following program:

Have the computer pick a random number less that 15 and then print out every multiple of

that number that is less than 100. So if you pick 8, it would print 8, 16, 24….96.

Post Interview Protocol

Reflection on the Course and Java
• How is the class been going so far?
• Do you like Java?
• What have you liked? And what have you not liked?
• What have you learned so far about programming in Java?
• What types of things can you do with Java?

 416
o What types of things could you do with Pencil Code?

• What is it important to know to be good at Java?
• What do you think the easiest thing?
• Do you like programming in Java?

o Did you prefer programming with Pencil Code?
• If a friend of yours asked you to describe what you have done in class so far this year,

what would you tell them?

Java Compared to Pencil.cc
• So how does what you’re doing now in Java compare to what we did at the start of the

year w/ Pencil Code?
• What do you think are the big differences between Java and Pencil Code?
• How is what you have done so far in Java different than what you did in the first part of

the year in Pencil Code?
o What is the same between Java and Pencil Code?

• Do you think the stuff you did in Pencil Code was helpful for what you’re doing now?
o If so, what and how has it helped?
o Is there anything from Pencil Code that you think made Java harder?

• Are there any strategies for programming that you developed while using Pencil Code
that you now use in Java?

o Any strategies that are different in Java?
• You have worked in both java and in Pencil Code

o Which format do you find easier to read programs in?
§ Why?

o Which format do you find easier to write programs in?
§ Why?

• Next year do you think we should spent the first 5 weeks using Pencil Code? Why or why
not?

 417
15. Appendix E – Coding Manuals

 This appendix includes the coding manual for all of the qualitative coding done as part of

this dissertation. The coding manuals are in order of when the appear in the dissertation. For each

set of code, the corresponding Figure and section of the dissertation is referenced. All codes were

applied by a secondary coder with the inter-rater reliability scores included in the text where the

Figure appears.

Pencil.cc vs. Java Comparison Coding Manual

This coding manual was used for Figure 5.1and Figure 5.2 in Chapter 5.

Code Description

Visual Layout
Response mentions the presence or absence of blocks or the blocks-like
nature of the interface (note: this does not include the visual execution
or the program)

Ease of
Composition

Response refers to the drag-and-drop programming or explicitly
mention how it is easier/harder to write programs in one modality. This
code also includes the need to type in (or not type in) commands

Browsability
Response mentions the presence of the on the blocks in the palette and
the ability to read through them. This also includes mentioning how
commands do not need to be memorized or remembered

Prefabricated
Commands

Response talks about how blocks can do more than a single command,
or there not being a block for everything

Visual
Outcomes

Response talks about the visual execution environment (i.e. moving a
sprite or turtle compared to outputting text)

Syntax Response references differences in syntax (i.e. semicolons or different
keywords or a new language)

In-editor Help Response references in-editor help features such as the help tip that
appears when hovering over a command or the Quick Reference menu

Other Response articulate other differences between Pencil.cc and Java not
captured by the above codes

What do ____ do? And how are they used in programs? Coding Manuals

Variables Coding Manual

This coding manual was used for Figure 6.1 in Chapter 6.

 418
Code Description
Container Response describes a variable as something that holds or stores things
Placeholder Response describes a variable as a placeholder, a copy of something, or as

a thing that references or refers to something else
Pointer Response describes a variable as a thing that points to something else
Their Own
Thing

Response describes a variable as its own thing (a value, a mini-program, a
thing the computer uses) or is defined relative to itself

Note: All categories are mutually exclusive.

Conditional Logic Coding Manual

This coding manual was used for Figure 6.2 in Chapter 6.

Code Description
Decides What
Gets Run

Response says that conditional logic is used to control the set of
commands that will be run.

Branching
Logic

Response includes language saying that conditional statements can be
used to make one set of command run or another (i.e. either/or feature
explicitly mentioned)

Condition to
Meet

Response include language saying that a conditional statement includes
a condition that needs to be met or a condition that decides what will be
run. It does not includes responses that use event-based language
("when x happens…")

Boolean
Statements Response explicitly includes the words true, false and/or Boolean
If and If/Else
Discussed Response defines both if and if/else

Misconceptions
Response includes misconceptions or incorrect statements about
conditional logic. In particular using event-based languages (i.e. "if
something happens then…")

Note: Condition to Meet and Boolean Statements are mutually exclusive.

Iterative Logic Coding Manual

This coding manual was used for Figure 6.3 in Chapter 6.

Code Description
Define For
Loops

Response includes a definition (or attempted definition) for what a for
loop is (i.e. it runs a set number of times)

Define While
Loops

Response includes a definition (or attempted definition) for what a
while loop is (i.e. it runs until a certain condition is met)

 419

Save typing &
Convenience

Response includes language saying the loops are used to save typing, to
make things easier, or to save the programmer from having to repeat
code

Temporal
Explanation

Response includes language suggesting that loops happen at a certain
time (i.e. the mechanism is temporal as opposed to sequential)

No Repetition Response does not include any language about repetition

Incorrect or
Misconception

Response gives an incorrect definition of what either a for loop or a
while loop, or show a fundamental misunderstanding of their behavior.
Note: this is mutually exclusive with the temporal explanation category

Functions (metaphors) Coding Manual

This coding manual was used for Figure 6.4 in Chapter 6.

Code Description

Instruction
Sets

Reponses talks about functions as if they are a set of instructions,
collection of commands, set of actions. It is explicit that the function is
made up of a collection of things (statements, commands, actions, etc.)

Equations Response talks about how functions are like equations or expressions
Variables Response defines functions as variable or a type of variable

Storage Response talks about functions as a type of storage or a way to store
things (i.e. store information not store lists of commands).

A way to Do
Things

A function is a singular thing that can be used to do something in a
program (i.e. an action, a task, a mini-program, etc.)

Note: All categories are mutually exclusive.

Functions (features) Coding Manual

This coding manual was used for Figure 6.5 in Chapter 6.

Code Description

Modularization
 & Convenience

Response says that functions are used to make programming easier, to
save the user from typing, can be called repeatedly with different
inputs or produce different outputs, or to break the program down into
pieces

Can be called Response attends to the fact that functions are things that can be called
or run

Take Inputs Response includes the fact that functions can take inputs or have
parameters

Have Outputs Response includes the fact that functions can (or do) have outputs

Use Variables Response talks about how functions use variables or a similar to
variables

Like Equations Response talks about how functions are similar to equations

Thing I Learned in Pencil.cc that Will be/Was Most Helpful in Java Coding Manual

 420
This coding manual was used for Figure 8.2 and 8.3 in Chapter 8.

Code Description
Specific
Concepts

Response cites a specific concept or set of concepts (i.e. conditional
logic, variables, etc.)

Programming
Basics

Response references programming basics, either explicitly or by
mentioning general programming components, like using blocks or
commands

Syntax &
Format

Response alludes to the syntax or format of code. This includes specific
features like semicolons and curly brackets

Process Response speaks to some process related to programming (i.e. figuring
things out step-by-step)

Order &
Sequence

Response speaks to the order in which code is executed or the
relationship between sequential statements

Meta
Programming
Concepts

Response speaks to a meta-aspect of programming, like problem
solving, figuring out the relationship between the code and an outcome,
or knowing what you want a program to do

Note Sure Response says they are not sure about what will be useful between the
two environments or is unable to draw link between Pencil.cc and Java

 421
16. Appendix F: Java Compilation Error Parser

 This appendix presents the code that was used to categorize error reported by the Java

complier. The bulk of the logic in this program involves the use of regular expressions for

pattern matching against standardized error messages generated by the compiler. This program

was used in the analysis presented in the Frequency of Java Errors section of Chapter 8. This

code was largely written by Connor Bain as part of an independent study organized by Uri

Wilensky and lead by David Weintrop.

import re

def ErrorTypeIdentifier(theError):

Incorrect javac call (missing .java)
 if re.search("Class names, '.*', are only accepted if
annotation processing is explicitly requested", theError):
 return "incorrect javac call"
 if re.search("javac: file not found: (.*)\.java", theError):
 return "incorrect javac call"
 if re.search("javac: invalid flag: (.*)$", theError):
 return "incorrect javac call"

Class name does not match file name
 if re.search("class .* is public, should be declared in a
file named .*\.java$", theError):
 return "wrong file/class name"

Incorrect package import
 if re.search("package (.*) does not exist$", theError):
 return "wrong package name"

Missing parenthesis or bracket
 if theError == "\']\' expected":
 return "unmatched parenthesis or bracket"
 if re.search("\'\(\' or \'\[\' expected", theError):
 return "unmatched parenthesis or bracket"
 if re.search("\'\)\' expected", theError):
 return "unmatched parenthesis or bracket"
 if theError == "'(' expected":

 422
 return "unmatched parenthesis or bracket"

Missing curly brace
 if re.search("reached end of file while parsing", theError):
 return "missing curly brace"
 if re.search("\'{\' expected", theError):
 return "missing curly brace"

illegal escape characters
 if theError == "illegal character: '\'":
 return "illegal escape character"
 if theError == "illegal escape character":
 return "illegal escape character"

copy and pasted smart quotes
 if theError == "illegal character: '\u201d'":
 return "used smart quotes"
 if theError == "illegal character: '\u201c'":
 return "used smart quotes"

variable already defined
 if re.search("variable (.*) is already defined in method
(.*)$", theError):
 return "variable already defined"

variable not initialized
 if re.search("variable .* might not have been initialized$",
theError):
 return "variable not initialized "
 if theError == "variable not initialized ":
 return "variable not initialized"

Static / Context issues
 if re.search("Illegal static declaration in inner class
(.*)$", theError):
 return "static context issues"
 if re.search("non-static method (.*) cannot be referenced
from a static context$", theError):
 return "static context issues"
 if re.search("non-static variable (.*) cannot be referenced
from a static context$", theError):
 return "static context issues"

Type issues
 if re.search("incompatible types: (.*)", theError):
 return "type mismatch"

 423
 if re.search("incomparable types: (.*)", theError):
 return "type mismatch"
 if re.search("bad operand types for binary operator
'(.*)'$", theError):
 return "type mismatch"
 if re.search("bad operand type (.*) for unary operator
'(.*)'$", theError):
 return "type mismatch"

Method argument issues
 if re.search("no suitable method found for (.*)$",
theError):
 return "wrong arguments"
 if re.search("no suitable constructor found for (.*)$",
theError):
 return "wrong arguments"
 if re.search("constructor (.*) in class (.*) cannot be
applied to given types;$", theError):
 return "wrong arguments"

 return theError

