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Abstract 

 
Computation is changing our world. From how we work, to how we communicate and 

how we relax - few parts of our world have been left unaffected by computation and the 

technologies that it enables. The field of computer science and the ideas of the discipline are 

driving these changes, yet relatively little of it is present in contemporary K-12 education. 

Numerous local and national initiatives are underway to bring the powerful ideas of computing 

into classrooms around the world. An increasingly popular strategy being employed in this effort 

is the use of graphical, blocks-based programming environments like Scratch, Snap! and Alice. 

While these environments have been found to be effective at broadening participation with 

younger learners, open questions remain about their suitability in high school contexts. This 

dissertation uses a quasi-experimental, mixed methods design to understand the effects of 

blocks-based, text-based, and hybrid blocks-text programming environments in high school 

classrooms. Three custom-designed programming environments were created and used to 

understand how modality (blocks-based, text-based, and hybrid blocks/text) affects learners’ 

emerging understandings of core computer science concepts and their attitudes towards and 

perceptions of the discipline. Additionally, the study investigates if and how the different 

introductory programming modalities support learners’ transitions to more conventional text-

based professional programming languages.  

 Findings from the study reveal that the modality matters. Differences were found with 

respect to students’ conceptualizations of programming constructs as well as student 

performance on content assessments and attitudinal surveys. The data show students in the 

Blocks condition scoring higher on content evaluations after a five-week curriculum and 

reporting higher levels of confidence, enjoyment, and interest in the field relative to students 
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using an isomorphic text-based interface. However, these findings did not translate to greater 

success or better self-reported experiences upon transitioning to a professional, text-based 

programming language. After ten weeks of learning the Java programming language, students in 

the text condition showed comparable scores on content assessments and positive trends on 

attitudinal questions, whereas their blocks-based peers showed decreasingly levels of 

engagement and enjoyment. This study also demonstrates the potential of hybrid environments 

that blend features of blocks-based and text-based interfaces for providing the scaffolds and 

engagement of blocks-based tools with the perceived power and authenticity of text-based 

introductory environments. Collectively this work contributes to our understanding of the 

relationship between computational representations and learning programming, and can be used 

to inform the tools that will train the next generation of computationally literature citizens. 
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1. Introduction 

Computation is changing our world. From how we communicate and make decisions, to 

how we relax and how we shop - few aspects of our lives have been left unaffected by the long 

reach of computation and the technologies that it enables. Smartphones, tablets, and laptops have 

become the lenses through which we see, organize, and interpret the world. As such, for young 

learners growing up in this technological landscape, being able to recognize the capabilities and 

limitations of these technologies and, most critically, to be able to contribute in this technological 

culture is essential. Programming is the skill that enables this participation. Programming, and 

the critical thinking and problem solving skills that accompany it, constitute a new 21st century 

literacy that will need to live alongside reading, writing, and mathematics as essential 

competencies to empower today’s students to fully engage with our technological world. These 

skills have far reaching benefits as they underpin and enable new forms of creative expression, 

support learning in diverse computational contexts across a wide range of disciplines, and 

provide the foundation for future careers in our increasing computationally driven economy. The 

importance of these skills has been documented by a number of federal agency and industry 

organizations. The Bureau of Labor Statistics estimates that 135,000 new computing jobs are 

created every year in the technology sector. Similar growth of computing jobs is projected in 

other fields; by 2020, one in every two jobs in the STEM disciplines will be in computing (ACM 

Education Policy Committee, 2014).  

Despite this momentous shift happening in our world and the far-reaching benefits that 

accompany learning to program, very little programming education can be seen in today’s 

schools. Computer science, the field that is driving this computational revolution, is rarely 

present in K-12 education. Only an estimated 10% of schools offer programming or computer 
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science courses (Code.org, 2014), and in schools where computer science is present, courses 

are often taught in ways disconnected from the computational lives of today’s students, failing to 

instill the sense of relevance and feelings of empowerment that can and should accompany such 

learning experiences. Further, the students who have the opportunity to pursue programming do 

not reflect the racial and gender distribution of the larger population. In 2013, 14.6% of 

bachelor’s degrees in computer science and related fields were granted to female students, with 

4.5% of the graduates being African American, and 6.5% being Hispanic (Zweben & Bizot, 

2014). This disturbing trend is mirrored at the high school level, where only 18.6% of students 

who took the 2013 AP Computer science exam were female, while 8.2% of test takers were 

Hispanic, and only 3.7% were African American. Research into the cause of these low numbers 

has identified numerous causes, including limited access to courses, a lack of support for 

students who express interest in the field, and cultural issues that make underrepresented 

populations feel unwelcome (Margolis, 2008; Margolis & Fisher, 2003). 

While recent attention has focused on computer science and programming, that is just one 

of the many ways the computers interact with learning. Since the emergence and recognition of 

computers as ‘Protean ‘devices with widespread applications major scholars have seen great 

potential in their use for learning and education (A Kay & Goldberg, 1977; Papert, 1980; Perlis, 

1962; Suppes, 1966). The role computers were to play amongst these and other early advocates 

of computers as tools for education differed. Some were excited by discipline of computer 

science itself, while others saw it having much wider potential, spreading across disciplinary 

boundaries. Some focused on the power of programming as a learning activity, including the 

Constructionist learning approach, while others focused not on the practice of programming but 

the tools and environments that could be built through programming, such as cognitive tutors and 
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other forms of computer-aided instruction. Others viewed computers as supports for 

standardized content-based instruction while others viewed computers as a medium for 

supporting personal expression and fostering creativity, art, and the creation of personally 

meaningful artifacts. Others still argued for learning computer science ideas is broadly applicable 

both when working on a computer, as well as for being more efficient and success at non-

computer-based activities. Collectively, these various perspectives on the role of computation in 

education and their work, along with others in the decades since, have produced a plethora of 

technologies, curricula, pedagogies, and learning experiences designed to leverage the power of 

computers. Having recognizing the larger picture of the intersection of computers and 

computational technologies and learning, we bring the discussion back to programming and 

computer science, the focus of this dissertation. A longer discussion of this broader computer and 

learning landscape will be discussed in the next chapter, along with situating the work being 

presented within this larger orientation. 

Numerous local and national efforts are underway to address the lack of computational 

learning opportunities for both underrepresented minorities and the student body at large. These 

efforts are utilizing innovative materials, engaging pedagogy, and new tools and environments 

for students to learn the powerful ideas of computing. This includes initiatives and learning 

environments designed for informal settings like computer clubhouses (Kafai, Peppler, & 

Chapman, 2009; Resnick & Rusk, 1996) and game-based learning environments (Berland & Lee, 

2011; Holbert & Wilensky, 2011; T. Y. Lee, Mauriello, Ahn, & Bederson, 2014; Weintrop & 

Wilensky, 2014a), as well as more formal school-based contexts. Within the initiatives designed 

to teach computer science in formal contexts, a number of strategies are being used, including 

creating new Advanced Placement (AP) courses that can be adopted nationally (Astrachan & 



 17 
Briggs, 2012) and designing new and engaging computer science courses organized around 

more appealing topics like media-based computing (Guzdial & Ericson, 2009) and game design 

(Papastergiou, 2009). There is also a thrust of work exploring and studying the approach of 

integrating computing and computational thinking across the K-12 curriculum (I. Lee, Martin, & 

Apone, 2014; Settle, Goldberg, & Barr, 2013; Weintrop, Beheshti, Horn, Orton, Jona, Trouille, 

& Wilensky, 2016). Other computing outreach programs are looking at moving away from the 

screen towards physical computing (Brady, Weintrop, Gracey, Anton, & Wilensky, 2015; M. S 

Horn, Solovey, Crouser, & Jacob, 2009; Jamieson, 2010), Making (P Blikstein, 2013; Eisenberg, 

2003; Vossoughi & Bevan, 2014), robotics (Fagin & Merkle, 2003; T. R. Flowers & Gossett, 

2002; Goldman, Eguchi, & Sklar, 2004), and even fully off-line curricula like the CS Unplugged 

design approach (Nishida et al., 2009). Central to many of these initiatives is the use of new, 

more inviting and accessible approaches to programming that emphasize personal expression, 

foreground ease-of-use, align with current youth culture, and draw on prior student knowledge 

and values.  

While there is need for research looking across the full spectrum of computing learning 

opportunities mentioned above, this dissertation focuses on formal high school computer science 

classrooms as the learning context of interest. This decision is motivated by a number of factors, 

including the growing importance of computational thinking and computer science in society, the 

ability to reach learners in meaningful ways in formal classrooms settings, and as an attempt to 

inform the increasing number of efforts to bring computer science coursework into high schools 

happening at the local and national scale. These efforts includes Chicago’s CS4All initiative that 

is making computer science a graduation requirement and the New York City school districts 

plans to bring computer science into every school across the city over the next ten years. These 
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and other large-scale initiatives are being implemented in the midst of a blossoming of new 

approaches to programming and the development of new and engaging programming tools. 

Given this co-occurrence, it is not surprising that many of the new curricula that are being 

designed and widely adopted rely on recently designed programming tools that have little 

empirical evidence with respect to their effectiveness for high school aged learners in formal 

settings. As such, there is great need and opportunity for investigating the effectiveness of design 

features of the current generation of introductory programming tools in formal settings. This 

dissertation will answer three sets of interrelated research questions all of which address different 

facets of the guiding question: How best can we design high school computer science learning 

environments to educate the next generation of computationally literate citizens? 

The first set of questions investigates the relationship between the modality students use 

while learning to program and the resulting attitudinal and conceptual outcomes. By modality we 

mean to capture the representational infrastructure used to depict the program, as well as the 

various forms of composition supported by the representation and the affordances it provides for 

each. Understanding the impact of modality is important because, as previously mentioned, new 

environments for teaching programming are emerging and becoming increasingly used in formal 

educational settings, but we lack a clear understanding of the relationship between these new 

tools and the resulting conceptual gains, attitudinal outcomes, and programming practices they 

promote. Prominent among the features of these new environments is the introduction of 

graphical, blocks-based interfaces (Figure 1.1) that allow learners to use only a mouse to drag-

and-drop commands together to form functioning programming. Led by the popularity of 

environments such as Scratch (Resnick et al., 2009), Alice (Cooper, Dann, & Pausch, 2000), and 

Pencil Code (Bau, Bau, Dawson, & Pickens, 2015), a growing number of formal curricula are 
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now utilizing blocks-based programming.  Examples include the Exploring Computer 

Science (Goode, Chapman, & Margolis, 2012), at least two curricula being designed for the AP 

CS Principles Course (Astrachan & Briggs, 2012; Garcia, Harvey, & Barnes, 2015), and many of 

the curricular materials being developed and disseminated by Code.org (Code.org Curricula, 

2013). Despite its growing popularity, open questions remain surrounding the effectiveness of 

blocks-based programming for helping high school aged students learn basic programming 

concepts and the overall effectiveness of the approach for preparing learners for future computer 

science learning opportunities that rely on text-based languages. Research towards this end has 

identified that representational tools greatly affect the learning process and outcomes (diSessa, 

2000; Green & Petre, 1996; Sherin, 2001; Wilensky & Papert, 2010), but little work has been 

done on the current generation of programming environments with respect to these questions. 

 

	 	

(A) (B) 

Figure 1.1. Comparable blocks-based (A) and text-based (B) programs 

The second set of research questions looks at the suitability of these new introductory 

programming approaches for preparing learners for future computer science learning 

opportunities. Research is emerging that suggests that blocks-based programming environments, 

while successful in changing attitudes and engaging learners, do not adequately prepare them to 

transition to more conventional programming languages, thus imposing an artificial ceiling on 
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how far learners can progress with these tools (Cliburn, 2008; Garlick & Cankaya, 2010; 

Parsons & Haden, 2007; Powers et al., 2007). This finding is consequential as it calls into 

question the utility of such introductory tools in formal learning contexts in the first place. The 

work done to date has largely provided descriptive accounts of learners failing to transfer 

knowledge and practices from introductory environments to more sophisticated, powerful tools. 

This dissertation will contribute detailed accounts of students transitioning from introductory to 

professional programming environments, and provide mechanistic, theoretically sound cognitive 

explanations of how and why gains made in introductory environments do or do not transfer to 

more sophisticated programming tools. 

The third set of research questions surround the evaluation of a new hybrid introductory 

programming environment that was designed and constructed as part of this dissertation. The 

new environment is intended to blend the strengths of various existing programming tools in an 

effort to create a tool that provides the low-threshold to entry and high level of engagement of 

existing introductory approaches, with the high-ceiling and powerful expressivity of more fully 

featured programming tools. Based on findings from the first two sets of questions, the newly 

designed hybrid environment will serve as an empirically grounded example that can be used to 

evaluate whether or not it is possible to blend the strengths of introductory and professional 

environments. In creating and evaluating a hybrid environment, this work will serve as one 

possible example of what a blended environment can look like and be evaluated alongside 

complementary introductory and professional analogous environments.  

This dissertation is built around a three-condition, quasi-experimental study comparing 

three isomorphic introductory programming tools – two environments are exemplars of common 

modalities currently used in introductory programming contexts, and the third is the newly 
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developed hybrid environment developed as part of the third research question.  The term 

isomorphic used here and throughout the dissertation is meant to capture the fact that the 

capabilities and expressive power of the environments are equivalent; anything that can be done 

in one environment can also be achieved in the other two. Justification for this isomorphism will 

be made in Chapter 4, which focuses on the design of the programming environments. The study 

took place over 15 weeks in three sections of the same class at a diverse urban public high 

school. This comparative study design in an ecologically valid setting makes this work one of the 

“rare” studies investigating actual learning benefits in a scientifically rigorous way (Kölling & 

McKay, 2016). Beginning on the first day of school, students spent five weeks working through 

a custom designed curriculum using one of the three introductory programming environments 

(the three conditions of the study). At the conclusion of the fifth week of school, all three classes 

transitioned to the Java programming language and followed the same curriculum for the 

remainder of the year. This study design allows for a direct, side-by-side comparison of the three 

introductory environments, as well as, providing data to answer questions about their suitability 

for preparing students for future learning with more conventional, professional programming 

languages. The study uses a mixed-methods approach and will include qualitative, quantitative, 

and computational data collection and analysis techniques. During the 15-week study, a variety 

of data were collected including weekly classroom observations, one-on-one student interviews, 

automated collection of student-authored programs, and pre, mid and post content assessments 

and attitudinal surveys. Collectively these data were used to answer the research questions being 

pursued. 

Research Questions 
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 As stated earlier, this dissertation seeks to answer three sets of interrelated research 

questions. The first two are empirical questions on the relationship between the modality used to 

introduce learners to programming and the conceptual understandings, programming practices, 

and attitudes and confidence they engender. The third is a design question exploring and 

evaluating programming language, environment, and modality designs. The three sets of research 

questions are: 

1. (a) For text-based, blocks-based, and hybrid blocks/text programming tools, what is the 

relationship between the programming modality used and learners’ perceptions of 

programming with respect to confidence, authenticity, enjoyment, and to their larger 

attitudes towards the field of computer science? (b) How does the representational 

infrastructure used affect learners’ emerging understandings of programming concepts? 

c) What programming practices do learners develop when working in each of these three 

modalities?  And for each of these questions, how do the answers differ across blocks-

based, text-based, and hybrid blocks/text environments? 

2. (a) How do understandings and practices developed while working in different 

introductory programming modalities support or hinder the transition to conventional 

text-based programming languages? (b) How do learners’ understanding of and attitudes 

towards programming change as learners shift from introductory environments to more 

widely used, professional programming languages? How is this different between text-

based, blocks-based and hybrid blocks/text introductory modalities? 

3. Can we design hybrid introductory programming environments that blend features of 

blocks-based and text-based programming that effectively introduce novices to 

programming and computer science more broadly? How does such an environment 
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perform relative to blocks-based and text-based programming tools with respect to 

conceptual understanding, development of productive programming practices, and 

attitudinal, motivational, and engagement outcomes for learners? 

 

 The first set of research questions explores what effects blocks-based, text-based and 

hybrid blocks/text representational systems have on learners while they are learning with them. 

This includes how each tool influences learners’ emerging conceptual understanding, the 

programming practices they develop with the tool, and how the tool affects learners’ attitudes 

and perceptions. Each of these questions will be analyzed using isomorphic blocks-based, text-

based, and hybrid blocks/text tools. The second set of questions explores the suitability of each 

of these modalities used in an introductory programming context for preparing learners for future 

text-based programming learning experiences. Answering these questions involves looking at 

students’ perceptions of the representation when used in introductory programming 

environments and follows them as they move from them to conventional text-based languages. 

Like with the first set of questions, our data sources for these questions will be gathered from 

students’ work with blocks-based, text-based, and hybrid blocks/text introductory tools. The final 

research question is a design question intended to explore ways to draw on the strengths of both 

blocks-based and text-based programming to see if it is possible to effectively create tools that 

blend the two modalities.  

Intended Outcomes 

There are three overarching goals for this dissertation, all with an eye towards taking the 

findings of this work to make positive changes in classrooms and computer science learning 

opportunities around the world. The first is to better understand the relationship between 
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representations of programming concepts and learners’ emerging understandings, practices 

and attitudes towards programming in the early stages of learning to program. The first research 

question is designed to achieve this goal. The second goal for this dissertation is to produce 

evidence-based recommendations on features to look for and features to avoid when choosing 

introductory programming environments and languages based on their effects on students 

learning as well as the suitability for preparing students for future programming and computer 

science learning opportunities. With this goal, the hope is to make use of the findings from the 

first two research questions to provide guidance to computer science educators who are eager for 

empirically grounded recommendations. The final goal for this dissertation is to provide a proof-

of-concept introductory programming environment that blends the strengths of textual languages 

with the affordances of the blocks-based programming approach to create a potentially powerful 

new interface for novice programmers. The hypothesis here is that it is possible to pair the low-

threshold aspects of graphical programming tools that research has identified with the high-

ceiling, text-based programming approach used in higher education and professional contexts. 

Having created this environment, and should the research bear out that such a hybrid interface is 

capable of achieving this balance, the dissertation will contribute a new, evidence-backed 

approach to teaching beginner to program. 

 We are at a critical juncture in the history of computer science education in this country. 

The ability to program is a central skill all students should develop, but it is currently absent 

from the coursework of today’s students. To address this gap, educators, school administrators, 

and state and national legislators are all taking action to bring computer science into the 

classroom. The practices, tools, and curricula that are being developed today, will become the 

standards used for years to come. Therefore, it is critical that we are confident that the curricula 
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and environments that we advocate for today are effective at teaching the core concepts, 

engaging learners from diverse backgrounds, and successful in preparing students for the 

computational endeavors they will face in the future. The findings from this dissertation will 

advance our understanding of how best to introduce students to these core 21st century skills and 

contribute new tools that will prepare students to be successful in the computational futures that 

await them. 

Structure of this Dissertation 

 The remainder of this dissertation is broken down into 5 main sections. The first of these 

sections is a comprehensive literature review that covers the history of programming languages 

and environments designed for learners and prior work on outcomes of using various 

introductory programming environments with learners. Care is taken in this chapter to lay the 

theoretical and empirical foundation for the questions being pursued in this dissertation as well 

as identifying the gaps in the literature this study is addressing.  

 The next section, chapter three, presents the methodological approach used in this study. 

This includes the study design, the instruments and procedures used, a description of the various 

data collected, and information about the participants of the study and the setting in which the 

work was conducted. The third section (chapter four) of the dissertation is an extension of the 

methods section focusing specifically on the design of the three programming environments that 

lie at the heart of this work. In this chapter, the three environments used in the first year of the 

study are described with a brief analysis of the outcomes from this first year. In particular, this 

analysis focuses on what was learned in the first year and how it informed the design of the three 

versions of the programming environment used in year two of the study. 
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 The fourth section, which covers four chapters (chapters six – eight), is the analysis 

and findings from the study. Each of these chapters addresses a separate part of the stated 

research questions. Chapter five focuses on students’ attitudes and perceptions of programming 

and how modality differentially influenced these aspects of the learners (RQ 1a). The next 

chapter, chapter six, looks at conceptual understanding by modality (RQ 1b), specifically trying 

to understand the role of modality in facilitating learners’ emerging understandings of 

foundational programming concepts. Chapter seven focuses specifically on the differential 

practices that form across the three variations of the introductory environment (RQ 1c). The 

fourth and final analysis chapter (chapter eight) looks at if and how gains, both attitudinal and 

conceptual, made in through the use of the introductory programming environments carry over to 

the Java programming language (RQ 2). 

 The ninth and final chapter of this dissertation constitutes the summative discussion and 

conclusions. In this chapter, the findings are summarized and contributions of this work are 

discussed in greater detail, synthesizing what was learned across the various analyses that were 

conducted. As part of this section, the third research question, trying to understand the 

affordances and drawbacks of the newly developed hybrid programming interface are discussed. 

The dissertation concludes with limitations of this study, future work that is still to be done, and 

potential implications of this work.  



 27 
2. Literature Review 

A large body of research has informed this dissertation including work on the challenges 

beginners face when learning programming concepts, the design of languages and environments 

for novice programmers, and research on the relationship between representations and the 

understandings they engender. Before diving into the literature most directly tied to this 

dissertation, this chapter begins with a discussion of the historical relationship between computer 

and learning and a high-level mapping of different approaches taken for teaching computer 

science, discussing various dimensions along which the challenge of teaching programming has 

been approached. From there we continue with a review of literature on the relationship between 

representations and learning as it is this relationship that underpins the discussion of the design 

of novice programming languages and environments and studies evaluating their strengths and 

weaknesses that follows. We then review the history of the design of programming environments 

for novices, giving special attention to the constructionist tradition from which the environments 

used in the study emerged. From there, we broaden our lens to look at the larger class of visual 

programming tools and empirical work that has been done evaluating them, with a particular 

emphasis on the blocks-based programming paradigm. We conclude the chapter by reviewing 

work that looks at the relationship between blocks-based and text-based programming and 

research on students transitioning across those environments.  

Computers and Learning 

Early on in the history of digital computers, their utility for learning was recognized. The 

earliest advocates for computers as tools for learning came from university faculty members with 

experience working with computers, teaching students, and access to the computers of the day. 
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Early advocates saw different pedagogical uses for these new digital machines. In the early 

1960s, Alan Perlis, the director of the Computation Center at what was then called the Carnegie 

Institute of Technology4, argued for the inclusion of programming in the curriculum for all 

learners as part of as working with computers would help develop well-rounded students who 

would be ready for whatever challenges the world put before them (Perlis, 1962). Perlis 

envisioned students writing programs to solve real world problems, in doing so, he argued they 

would improve their abilities to abstract, organize, plan, and use information from diffuse and 

abstract environments. While Perlis was thinking about programming as a pedagogical strategy 

at the undergraduate level, others saw the potential of learning as a powerful learning strategy for 

younger learners. Papert and his colleagues at MIT and BBN Labs developed the Logo 

programming language as a way to allow younger learners to engage in programming and the 

various metacognitive practices that accompany it (Feurzeig, Papert, Bloom, Grant, & Solomon, 

1969; Papert, 1980). In foregrounding the act of authorship and construction of programming, 

this type of learning experience, which Papert called “Constructionism”, also granted autonomy 

to learners, using the computer as a medium for creativity and personal expression. The view of 

the computer as an expressive and powerful medium for learning has shaped decades of designs 

of computational learning environments (diSessa & Abelson, 1986; A Kay & Goldberg, 1977; 

Resnick et al., 2009; Wilensky, 1999). The type of learning enabled by computers and advocated 

by Papert and colleagues went beyond just the act of programming to include other aspects of the 

potential of computer for learning, which will be returned to below.  

 
4 Later renamed Carnegie Melon University. 
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Other early proponents of computers as tools for learning saw their utility in creating 

computer-aided instruction. This support could take a number of forms. One argument was that 

computers could use their “information-processing capacities [to] adapt mechanical teaching 

routines to the needs and the past performance of the individual student” (Suppes, 1966, p. 207). 

This thinking led to the development of intelligent tutoring systems, which are software packages 

that are designed to replicate the personalized and customized supports that human tutors can 

provide (Derek Sleeman & Brown, 1982). Later iterations of these types of computer-aided 

instruction systems integrated findings from cognitive science, creating cognitive tutors, that 

used computational models of cognition to try and diagnose learners misconceptions and provide 

customized feedback and carefully curated questions to facilitate the learning process (Anderson, 

Corbett, Koedinger, & Pelletier, 1995). In this role, the computers are providing instructional 

supports and thus serving a much different role than the one previously mentioned that saw the 

act of programming as a the central learning activity. Papert summarized the extreme versions of 

these two approaches thusly: in computer-aided instruction “the computer is being used to 

program the child” whereas in Constructionism, “the child programs the computer” (Papert, 

1980, p. 5). It is important to mention both of these approaches to computers in education have 

been shown to support positive learning outcomes. 

As the importance of computing and computational technologies in society has grown, so 

too have the ways computers have been brought into educational spaces and the arguments made 

for what should be taught with respect to computers and why.  With the rise in importance for 

learners to be comfortable with keyboards, computers and standard software packages (notably 

the Microsoft Office Suite), one thread of computing education has looked at what is often called 

“Computer Literacy.” This is meant to connate a basic familiarity with computers and was once a 
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focus of vocational and high school classes, but has since fallen in prevalence in K-12 

classrooms given the increased presence of computers outside of classrooms.  This dissertation is 

not concerned with this portion of the computers and education landscape. 

A second more recent case made for bringing computers into education is the idea that 

computers and ideas from computer science can help deepen learners’ understandings of content 

beyond computer science. This idea began with Logo, which was designed as a language to 

allow learners to engage with powerful mathematical ideas (Feurzeig et al., 1969; Papert, 1972, 

1980). Other examples followed, showing computation and programming to be a powerful 

context to engage learners with ideas ranging from physics (Sherin, diSessa, & Hammer, 1993), 

to complex systems (Wilensky, 2001), to language and grammar (Goldenberg & Feurzeig, 1987).  

Taking this view one step further, it has been argued that computers can serve as a 

medium for exploring new ideas and fields (Wolfram, 2002) as well as be tools for creating new 

types of representations with which to express ideas and explore and understand aspects of our 

world (Wilensky & Papert, 2010). In this view, computers and the ideas and skills from 

computer science can serve as a foundational new literacy to express and communicate ideas 

(diSessa, 2000). In this framing, the case for bringing computers into formal education spaces 

goes beyond the improving of learning and instruction of existing subjects to now include 

teaching ideas and skills that otherwise would not be possible. 

In the last decade, a growing number of people have been making the argument that the 

ideas from computer science are broadly useful across diverse setting, both on and away from a 

computer. Collected under the umbrella term “Computational Thinking”, it has (and is) being 

argued that these skills constitute core 21st century skills and deserves a place alongside reading, 

writing, and arithmetic as essential content that all learners should be taught (S. Grover & Pea, 
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2013; Wing, 2006). While this movement has been successful in gaining momentum, 

attention, and commitment from decision makers at various levels of education and government, 

the concept itself remains under-specified, resulting in many looking to the other literature 

mentioned in this chapter for guidance.  

 The last major intersection of computer and education, and the focus of this dissertation, 

is formal instruction in the field of computer science. The case for the importance of teaching 

students computer science has taken a number of forms in recent years, including economic 

motivation and job opportunities, reasons of equity and empowerment, and responding to the 

growing prevalence of computers and technology in society. These arguments are on top of those 

listed in previous sections, as in many cases; formal computer science education accomplishes 

the goals laid out by other motivations and approaches of brining computers and education 

together. It is important to note there are still challenges associated with teaching computer 

science in formal contexts. Some of which are infrastructural (like a lack of qualified teachers 

and school resources) while others stem from the quickly changing nature of the disciplines and 

the large open questions that remain with respect to how best to teach computer science to all 

students. It is these last issues that this dissertation is seeking to contribute to solving. Having 

laid out the high-level relationship between computers and education, this literature review now 

begins to narrow its focus, first looking at different dimensions of computer science education 

and then further narrowing its focus to cover the literature most directly tied to the questions 

being answered in this work. 

The Computer Science Education Landscape 

 Since the emergence of the field of computer science, there has been work looking at how 

best to introduce learners to the discipline. Given the growing scope and nature of the field, new 
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and diverse approaches are constantly being developed while tried-and-true strategies are 

being reimagined and reconstructed with new technologies. In deciding how to teach computer 

science, or computing more broadly, there are a number of decisions that need to be made. These 

decisions exist along various dimensions of the space associated with learning the discipline. 

Dimensions include whether instruction is going to be online or offline, in a formal learning 

context (i.e. classroom) or an informal space, whether or not to prioritize inclusivity and the goal 

of broadening participation, if computer science is going to be a stand alone topic or integrated 

with other disciplines, deciding which pedagogical strategy should be taken, selecting a 

programming language and environment to be used, whether to use physical or virtual learning 

tools, and choosing the programming paradigm that will be used (turtle graphics, object oriented, 

functional, etc.). Any given designed learning experience makes decisions along most (or all) of 

these dimensions, either explicitly or implicitly, and thus, when talking about a given approach 

to learning computer science these various dimensions factor into the discussion. To start this 

literature review, we briefly discuss each of these dimensions and highlight important work in 

that space. At the conclusion of this section, we situate the approaching taken in this dissertation, 

taking care to be clear about what is held constant and what is being varied and investigated. 

Throughout this high-level review, when encountering work that is closely tied to this 

dissertation, reference is made to later portions of this literature review chapter where the ideas 

or approach are more systematically reviewed. Before presenting the landscape, it is important to 

note that any given learning experience is a mix of these various dimensions. In some cases 

specific features (like the language or goals of the activities) are foregrounded, but decision are 

made with respect to all of the dimensions discussed below. 

Learning Context 
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As technology pervades our daily lives, there are growing opportunities to have 

learners engage with ideas from computer science across diverse contexts both in formal and 

informal contexts. A growing body of work is looking at ways to teach computing in informal 

settings, be they at home or in shared communal spaces like libraries or museums. At the same 

time, new initiatives to bringing computer science into formal spaces are also underway. In many 

ways, these two approaches complement each other and have a different goals and contain a 

different set of features that can draw diverse populations of learners into the field. 

In the formal space, long standing courses like AP Computer Science are being 

supplemented with new curricula like the AP Computer Science Principles course (Astrachan & 

Briggs, 2012) and other curricula leveraging new technologies and programming environment 

like the Exploring Computer Science (Goode et al., 2012) project and a Taste of Computing 

course (Reed, Wilkerson, Yanek, Dettori, & Solin, 2015). Formal learning opportunities provide 

infrastructure, access to teachers and extended amounts of time for learners to engage with core 

ideas in computing, but are often limited by resources available to schools and other constraints 

that come from being situated inside existing educational infrastructure. 

Informal learning environments provide a much more open canvas upon which to create 

learning opportunities and allow for types of engagement that are not possible with the 

constraints of schools.  Projects like the Computer Clubhouse initiative (Kafai et al., 2009; 

Resnick & Rusk, 1996) give learners an open space for learners to pursue projects of their own 

interest, grant greater flexibility to learners in terms of the types of activities they engage in, and 

are not subject to the same constraints or expectations that accompany school-based learning. 

Other after school projects offer more structure, but still take advantage of the freedom that 

accompanies informal learning, such as the FUSE project (Jona, Penney, & Stevens, 2015). 
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Other efforts look at contexts such as video games (Holbert & Wilensky, 2011; T. Y. Lee et 

al., 2014; Weintrop & Wilensky, 2014a), board games (Berland & Lee, 2011; M.S. Horn, 

Weintrop, Beheshti, & Olson, 2012), and online communities (Fields, Giang, & Kafai, 2014; 

Resnick et al., 2009) as informal contexts to engage learning in computer science. Museums 

offer another out-of-school space for introducing learners to computer science (M. S Horn et al., 

2009; M. S Horn, Weintrop, & Routman, 2014). Again, these approaches bring the ideas of 

computing in to the lives and practices of the learners their trying to reach. It is important to note 

there have been initiatives to bring productive aspects of informal learning into formal spaces 

with varying degrees of success (M.S. Horn & Jacob, 2007; Malan & Leitner, 2007; Squire, 

2005). 

The Role of the Computer 

 While one might initially assume that learning about computer science requires the use of 

a computer, a growing body of work is showing that learners can engage with core ideas from 

the field without sitting in front of a screen. This approach is especially productive when 

working with younger learners, where tasks like using a mouse or typing in commands are not 

trivial. The growing set of activities in the Computer Science Unplugged catalog serve as an 

exemplar of what it looks like to learn computer science away from the computer. Other non-

computer based computer science learning work includes board games (Berland & Lee, 2011), 

sticker books (Michael S. Horn, AlSulaiman, & Koh, 2013), and embodied motion (often called 

“playing turtle”) (Papert, 1980) as ways to allow learners to explore computer science away from 

a computer. 

Stand Alone Versus Integrated Computer Science 
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 Another dimension along with computer science educational work has differed is on 

its relation to other fields and courses. Traditionally, computer science has been treated as a 

stand-alone course akin to a mathematics or foreign language class. An alternative to this 

approach that is growing in popularity is to bring computer science, or computational thinking 

more broadly, into other courses including mathematics, sciences, and the arts (I. Lee et al., 

2014; Settle et al., 2013; Weintrop et al., 2016). A number of arguments have been made in 

advocating for this approach including addressing issues of a lack of teachers and resources for 

stand-alone computing course, pedagogical and conceptual advantages to blending computing 

with other disciplines, providing a more realistic perspective of increasingly computational fields 

like biology and chemistry, and finally, using other disciplines as a meaningful context in which 

to situating learning core ideas from computer science. Another, related, form of this approach 

comes through the use of computational modeling as a way to blend content (often science 

related, but not always), with central ideas of computer science and computational thinking (I. 

Lee et al., 2011; Repenning, Ioannidou, & Zola, 2000; Stonedahl, Wilkerson-Jerde, & Wilensky, 

2010; Wilensky, 2001; Wilensky, Brady, & Horn, 2014).  

Prioritizing Inclusivity and Broadening Participation 

The field of computer science has historically struggled with both gender and racial 

diversity. The most recent numbers from the annual Taulbee Survey that tracks enrollment in 

computer science related disciplines find that only 14.5% of bachelor’s degrees awarded in 2013 

went to women, while 6.5% went to Hispanic students and only 4.5% were to Black or African 

American students (Zweben & Bizot, 2014). The male-dominated nature of the computing field 

and the culture that has emerged are well documented and many interventions have been 

proposed to try to address it (American Association of University Women, 1994; Fisher, 
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Margolis, & Miller, 1997; Margolis & Fisher, 2003). Similarly that lack of racial diversity in 

the field has also been the focus of much scholarship (Margolis, 2008). To address these issues 

of underrepresentation, a growing number of tools, curricula and initiatives specifically designed 

to attract and engage learners from these underrepresented populations have been developed.  

A number of strategies for accomplishing this have been pursued. One avenue is the 

creation of activities and larger curricula that draw on areas of interest and cultural relevance 

(Bruckman, Jensen, & DeBonte, 2002; DiSalvo, Guzdial, Bruckman, & McKlin, 2014). A 

related approach that has found success and been employed in a number of projects leverages the 

practice of storytelling (Burke & Kafai, 2010; Papadimitriou, 2003). One successful tool that 

builds of storytelling is Storytelling Alice. As the name suggests, Storytelling Alice is a version 

of Alice, a widely used graphical programming tool, that has been altered to support storytelling 

as its central activity. Studies comparing Storytelling Alice to conventional Alice (which lacks 

some storytelling support features) found that girls using Storytelling Alice were more motivated 

to program and spent longer working on their programming projects (Kelleher, Pausch, & 

Kiesler, 2007).  

Another avenue for promoting inclusivity in computer science education has been the 

creation of curricula designed to directly confront existing stereotypes. One version of this 

approach takes the form of courses that paint a richer, more diverse (and accurate) view of what 

computing is (i.e. it’s more than just programming). The Exploring Computer Science (ECS) 

course is one notable example of this strategy. The creators of the ECS curriculum took care to 

build their course and train their teachers to emphasis “inquiry, culturally relevant curriculum, 

and equity-oriented pedagogy” (Ryoo, Margolis, Lee, Sandoval, & Goode, 2013, p. 1).  

Physical Computing & Robotics 
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While introductory programming and computer science learning activities have 

historically taken place in the virtual realm with programming featured prominently, a growing 

number of toolkits and technologies are making physical computing another avenue for learning 

about computing. There is a long history of technologically enhanced physical devices serving as 

contexts for meaningful computational learning experiences (Paulo Blikstein, 2013; Eisenberg, 

2003; McNerney, 2004). A growing ecosystem of microcontroller, like the Arduino (Jamieson, 

2010), GoGo board (Arnan Sipitakiat, Blikstein, & Cavallo, 2004), Lego Mindstorms kits (Lego 

Systems Inc, 2008), and the CCL-Parallax Programmable Badge (Brady et al., 2015) are 

allowing learners to engage with foundational computer science ideas through physical devices. 

Physical computing devices have been designed to appeal to diverse ranges of learners. For 

example, the Lilypad Arduino (Buechley & Eisenberg, 2008) is a fabric based construction kit 

that enables novices to design and build their own e-textiles and bring crafting and fabric-work 

into the computing educational space. Likewise, robotics has served has a compelling context in 

which to engage learning with ideas from computing while grounding the learning in the 

construction, manipulation, and controlling of physical devices (Fagin & Merkle, 2003; Martin, 

Mikhak, Resnick, Silverman, & Berg, 2000). Thus, yet another dimension along which 

computing education varies is the incorporation of computationally enhanced physical devices 

and artifacts. 

Programming Languages and Environments  

 The decision of what program language to use and when environment learners will 

program in has a long been a subject of vigorous debate in the computing education research 

community (Stefik & Hanenberg, 2014). As the design of programming languages and 

introductory environments is closely related to the questions being pursued in this dissertation, 
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this portion of the literature is presented in much greater detail later in this chapter. The 

chapter includes discussion of textual versus graphical approaches to programming interfaces as 

well as the design of languages and environment design for novice programmers. 

Programming Paradigm 

Along with differing languages and tools, there are also bigger picture differences around 

types of languages and programming paradigms. An early paradigm for introductory 

programming activities that gained lots of followers and has been replicated in various ways 

across countless environments is the use of “body-syntonicity” (Papert, 1980) as a way to ground 

programming understanding. Started by Papert and his colleagues in the creation of Logo, a large 

family of environments leverage an embodied motion component to early programming 

experiences, as can be seen in environments ranging from Scratch (Resnick et al., 2009) to Karel 

the Robot (Pattis, 1981) and all its descendants. Common across these languages are primitives 

that relate to egocentric motion as well as a graphical execution of programs where programs can 

be visually executed. These environments are in contrast to conventional programming 

environment that are entirely text-based, both in the form the programs take as well as what 

output looks like. Many early environments (and vestiges of them that remain in use) constrain 

the learner to a command line interface where all input and output must come from the keyboard. 

 Along with the types of programs that can be authored with the language, there are also a 

number of different programming paradigms that have been advocated for in terms of how 

students should be introduced to the subject. A growing number of tools and educational 

researchers advocate an object-oriented approach to programming as being the best suited for 

beginners. As such, environments like BlueJ (Kölling, Quig, Patterson, & Rosenberg, 2003) and 

Alice (Cooper, Dann, & Pausch, 2003) have been created that follow an object-oriented 
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approach. In a separate, but equally active camp are educators and computer scientists who 

advocate for functional languages as being the best suited for introductory programming contexts 

(Felleisen, Findler, Flatt, & Krishnamurthi, 2004). At the same time researchers are arguing for 

paradigm-based instruction, there are many instructional approaches that rely on general 

purpose, multi-paradigm languages like Java and Python that usually begin with an imperative 

programming orientation, saving object-oriented features or functional strategies for later in the 

learner’s trajectory. A final paradigm for teaching computing that moves even further from 

language features advocates teaching not a programming language, but instead grounding 

computer science instruction in predicate calculus and Boolean algebra (Dijkstra, 1989). 

Situating This Dissertation in the Larger Landscape 

 As mentioned in the introduction of this high-level overview section, any given learning 

environment puts a stake in the ground at some point along each of these dimensions. While 

work can prioritize one facet over another, all must be accounted for. In this dissertation, the 

focus is on the design of programming languages and interfaces, but does fall at specific points 

along the other dimensions. The work takes place in high school classrooms, so falls at the 

formal end of the context spectrum and does not try and integrate the material with other 

coursework. The curriculum designed for the students to follow is geared toward open-ended 

activities and encourages students to incorporate various aspects of their own personality and 

interests into the final project, in this way, it tries to be appealing to a diverse array of learning 

and create an inclusive, participatory context. As the dissertation focuses on features of 

programming languages and environments, it resides entirely in the virtual world, not utilizing 

offline or physical aspects that are increasingly included in introductory computer science 

courses. With respect to programming paradigm, the environment includes a turtle graphics 
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interface, so follows in the Logo tradition, but only half of the assignments take advantage of 

that feature, the other half use only text. Finally, as the questions being pursued relate to the 

design of languages, the dissertation does not take a specific stand with respect to the design of 

introductory programming languages, but instead uses multiple conditions that live at different 

points along the spectrum to provide the data that will allow us to better understand the impact of 

this decision on various aspects of learning computer science. 

Representations and Learning 

“The tools we use have a profound (and devious!) influence on our thinking habits, and, 

therefore, on our thinking abilities.” (Dijkstra, 1982) 

 

 As stated by the Turing Award winning computer scientist Edsger Dijkstra in the quote 

above, the tools we use, in this case the programming languages and development environments, 

have a profound, and often unforeseen, impact on how and what we think. diSessa (2000) calls 

this material intelligence, arguing for close ties between the internal cognitive process and the 

external representations that support them: “we don’t always have ideas and then express them in 

the medium. We have ideas with the medium” (diSessa, 2000, p. 116 empahsis in the original). 

He continues: “thinking in the presence of a medium that is manipulated to support your thought 

is simply different from unsupported thinking” (diSessa, 2000, p. 115). These symbolic systems, 

provide a representational infrastructure upon which knowledge is built and communicated 

(Kaput, Noss, & Hoyles, 2002). Adopting this perspective informs why it is so crucial to 

understand the relationship between a growing family of programming representations and the 

understandings and practices they promote. This literature informs the dissertation as we are 

fundamentally investigating the relationship between programming representations and learners. 
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 We begin our literature review of representational infrastructure by first investigating 

the role of external representational systems broadly to understand the various purposes they 

serve, which in turn will inform the role they place in cognition and learning. Palmer (1978), in 

his early work forming a cognitive framework for understanding representations, states: “a 

representation is, first and foremost, something that stands for something else" (p. 262-3). His 

framework makes a division between the represented world and the representing world with a 

correspondence existing between the two and argues that using representations involves 

processing these two worlds to determine the relations held between the two. This is categorized 

as a “symbol-systems” perspective (Nemirovsky, 1994; Sherin, 2000). Drawing on the work of 

Bhaktin (1981) and his distinction between a sentence and an utterance, Nemirovsky (1994) 

developed a framework that makes a distinction between the symbol-system perspective of 

Palmer and what he calls symbol-use, shifting focus from the rules of the representational system 

to an emphasis on their use and the meaning they carry within a particular in context. This 

emphasis on symbols-in-use and a recognition that learners’ own knowledge and experience 

should influence the representations used and how they are studied and evaluated has been a 

recurring idea within the Learning Sciences (Confrey & Smith, 1994; diSessa, Hammer, Sherin, 

& Kolpakowski, 1991; Lave, 1988; Noss & Hoyles, 1996; Sherin, 2000; Weintrop & Wilensky, 

2014b; Wilensky, 1995). Bringing this perspective to the study of the design of programming 

representation broadens our focus from the representations in isolation, to a broader analytic lens 

that incorporates the contexts, activity, and learners themselves to understand the relationship 

between modality and learning.  

The role of representations on cognition has been studied across a variety of 

representational infrastructures and their influence on various cognitive tasks. One large body of 
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work that has emerged from studying this question is identifying the relationship between 

language, literacy and thought (Boroditsky, 2001; Luria, 1982; Ong, 1982; Scribner & Cole, 

1981; Vygotsky, 1986; Whorf, Carroll, & Chase, 1956). As we are less interested in thought and 

natural language broadly but instead logical thinking coupled with symbolic formalisms, we 

focus our review on scholarship within the mathematics domains as the structure imposed by 

mathematical symbolic forms and the concepts they express are more closely related to our 

domain of computer science. 

 As our interest is in student learning with representations, taking a perspective that moves 

past the symbol-system in isolation is essential as “a symbol systems analysis does not, in its raw 

form, provide a theory of the knowledge or capabilities possessed by students. Instead, it 

describes knowledge only by the function that it must perform” (Sherin, 2000, pp. 405–6). 

Sherin, having identified this gap between the symbolic systems view and the understanding they 

promote and usages they enable, pursued a research course to better understand this relationship 

that is similar to our own. Focusing on concepts from physics and investigating the use of 

conventional algebraic representations as compared to programmatic representations, Sherin 

(2001) found that different representational forms have different affordances with respect to 

students learning physics concepts and, as result, affects their conceptualization of the material 

learned. “Algebra physics trains students to seek out equilibria in the world. Programming 

encourages students to look for time-varying phenomena, and supports certain types of causal 

explanations, as well as the segmenting of the world into processes” (Sherin, 2001, p. 54). 

 Wilensky and Papert (2006, 2010) give the name structuration to describe this 

relationship between the representational infrastructure used within the domain and the 

understanding that infrastructure enables and promotes. While often assumed to be static, 
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Wilensky and Papert show that the structurations that underpin a discipline can, and 

sometime should, change as new technologies and ideas emerge. In their formulation of the idea 

of structurations, Wilensky and Papert (ibid) document a number of restructurations, shifts from 

one representational infrastructure to another, and provide a set of criteria with which to evaluate 

them. Shifts including the move from Roman numerals to Hindu-Arabic numerals (Swetz, 1989), 

the use of the Logo programming language to serve as the representational system to explore 

geometry (Abelson & DiSessa, 1986), and the use of agent-based modeling to representation 

various biological, physical, and social systems (Blikstein & Wilensky, 2009; Wilensky, 1999; 

2001; Wilensky & Reisman, 2006). This work highlights the importance of studying 

representational systems, as restructurations can profoundly change the expressiveness, 

learnability, and communicability of ideas within a domain. As we will see in the next sections, 

the rise of new programming modalities, representations, and tools demand that such analyses be 

conducted to better understand the effects of these emerging approaches to teaching, learning, 

and using ideas within the domain of computer science. 

Novice Programming Environments 

The previous section highlighted the critical importance of representations and their 

influence on cognition and learning, with that as a backdrop, we now proceed with a review of 

various design efforts indented to improve a learner’s introduction to the field of computer 

science and the practice of programming. A great deal of work has been done on the design and 

implementation of programming languages and environments for beginners (for reviews of this 

work, see: Duncan, Bell, & Tanimoto, 2014; Guzdial, 2004; Kelleher & Pausch, 2005). In this 

section we discuss some of the more influential languages and environments and theoretical 

contributions that informed the environments and designs being investigated in this dissertation. 
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Also, it is important to note that this section does not include a detailed review on all aspects 

of learning to program, instead it more narrowly focuses on the design of learning environments 

and the relationship between modality and learning. For larger reviews of the computer science 

education literature see (Guzdial, 2015; Pears et al., 2007; Anthony Robins, Rountree, & 

Rountree, 2003). 

Languages and Environments from constructionist tradition 

 Constructionism has a long history of producing computer-based learning environments 

that empower learners and make computational and mathematical ideas accessible (Harel & 

Papert, 1991; Papert, 1980, 1993). This work laid much of the important theoretical and design 

groundwork upon which current movements to promote programming and computer science are 

built. Languages and environments from the constructionist tradition have successfully enabled 

children (as well as adults) to construct their own, personally meaningful computational artifacts, 

often with little (or no) formal instruction. In this section we provide a brief history of the more 

influential constructionist programming environments, beginning with Logo, the language that 

started it all. 

Logo 

 The Logo programming language was iteratively developed by Seymour Papert and 

colleagues in Boston in the 1960’s. Logo was the earliest programming language designed 

explicitly for children (an early report is given in Feurzeig et al., 1969). Based on the Lisp 

programming language, “Logo was designed to provide a conceptual foundation for teaching 

mathematical and logical ways of thinking in terms of programming ideas and activities” 

(Feurzeig, Papert, & Lawler, 2011, p. 487). In Mindstorms, Papert (1980) dedicates a chapter to 
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discussing the theoretical roots that most directly informed the design and creation Logo. The 

first stems from Piaget and his work on epistemology, recognizing that to study how a child 

comes to understand a concept is to study the concept itself. Logo, in its design to teach 

mathematics in a fundamentally different way, reimagines what mathematics looks like and how 

the learner interacts with and thinks with mathematical concepts. This can be seen in the way 

Logo shifts learners away from viewing mathematics as a domain of calculations and towards 

envisioning mathematics as series of processes (Papert, 1972). The second theoretical influence 

to Logo was from the field of artificial intelligence (AI). As one of the goals of AI is to build 

machines that can perform intelligent behavior, such an endeavor needs to study the nature of 

intelligence. An appeal of this work was that its methodology relies heavily on computation and 

computational environments that force theoreticians to concretize and explicitly represent their 

ideas and theories of learning by computationally reifying them. Papert saw in this line of work 

the potential for giving children the opportunity to similarly think concretely about mental 

processes and what it means to learn.  

 Logo was designed with the principle of “low threshold, no ceiling” and saw early and 

widespread international adoption and influence in the mathematics community especially 

among forward thinking educators. A central contribution of Logo to introductory programming 

design was the invention of the turtle – an entity (either physical or virtual) that the user controls 

in the form of movement instructions, then watches the turtle carries them out. The turtle 

leveraged what Papert (1980) called “body sytonicity” which enabled learners to use their own 

experiences in the world as a productive resource for generating programming instructions. As 

we will see throughout this review, this design feature shows up repeatedly as an accessible way 

for learners to engage in, and have early successes with, programming. 
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Naïve Realism and Spatial Metaphors with Boxer 

 Boxer (diSessa & Abelson, 1986) was an early descendant of Logo that added to the 

environment the feature that every object in the system had an on-screen graphical representation 

that could be inspected, modified and extended. This design feature was based on the naïve 

realism theory of mind and was intended to create a programming interface where “users should 

be able to pretend that what they see on the screen is their computational world in its entirety” 

(diSessa & Abelson, 1986, p. 861). As such, the environment presents the user with a complete 

visual model of what is happening in the machine. This resulted in a design where all 

computational objects in Boxer are displayed as two-dimensional boxes (hence the name). These 

boxes can each be unpacked, giving the users access to its contents, creating a “glass-box” 

environment where nothing is hidden from the learner. A second major design feature of Boxer 

was the use of a spatial metaphor as a way to display information about the entities within a 

program and their relation to each other. As such, boxes visually rendered inside other boxes 

spatially depict a hierarchy of boxes. This use of visual layout of commands as a means of 

communicating information about the program and the effect of such an interface will resurface 

again in later environments and is at the heart of the questions being pursued in this study.  

Many-Turtled Logo Environments 

 A second that the Logo language was built upon was to relax the constraint that there can 

be only a single entity being controlled in the environment. By allowing users to introduce as 

many turtles as they want and providing tools that allow them to give instructions to only a 

subset of the turtles, learners could create programs that support the investigation of emergent 

and decentralized complex systems (Resnick, 1997; Wilensky & Rand, 2014; Wilensky & 

Resnick, 1999). Two early version of these environments were StarLogo (Resnick & Wilensky, 
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1993) and StartLogoT (Wilensky, 1997). The successor to StartLogoT, NetLogo (Wilensky, 

1999b), has since become a very widely used implementation of a Logo-based multi-agent 

programming environment.  

 Building on the finding that programming and construction are effective ways for 

learners to develop mathematical understandings, these multi-turtle environment environments 

(subsequently named agent-based models) have extended this work beyond mathematics to 

include a wide range of STEM topics. NetLogo was designed as a modeling environment that 

captures emergent phenomena (Wilensky, 2001). NetLogo enables learners to use, modify, and 

create models of real-world phenomena as a means to develop deep understandings of the 

underlying mechanisms and properties of the topic under investigation. A core constructionist 

design principle of NetLogo is that by programming models of scientific phenomena, students 

will learn science more deeply while also learning programming and modeling. This approach 

has been found to be effective for teaching students in a wide variety of domains including 

biology (Wilensky & Reisman, 2006), electromagnetism (Sengupta & Wilensky, 2009), 

chemistry (S. T. Levy & Wilensky, 2011; Stieff & Wilensky, 2003), evolution (Wilensky & 

Novak, 2010) and material sciences (Paulo Blikstein & Wilensky, 2009). By situating the 

programming activity within a larger goal of learner specific content introduces another oft-

replicated feature of introductory programming environment – the importance of context 

surrounding the programming activity (Cooper & Cunningham, 2010; Guzdial, 2010). 

Blocks-based and Graphical Logo Environments 

 The last Logo descendants we include in this review are environments that use a blocks-

based or other graphical programming approach. Scratch (Resnick et al., 2009) is the most well 

known of the group, but other blocks-based constructionist tools include LogoBlocks (Begel, 
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1996), StarLogo TNG (Begel & Klopfer, 2007), and Snap! (Harvey & Mönig, 2010). These 

environments replace the textual interface of Logo with a programming-primitive-as-puzzle-

piece metaphor that allows users to drag commands into place and snap them together to 

assemble their programs. Other approaches that leverage similar graphical approaches include 

ToonTalk (Kahn, 1999), which relies on a much more direct visual metaphor for defining 

instructions, and Squeak (now e-toys) (Alan Kay, 2005), which uses a rules-as-tiles 

programming mechanism. We only briefly mention these environments here, as more time will 

be dedicated to graphical and blocks-based programming tools later in this chapter. 

Languages and Environments from outside the Constructionist community 

 While many early programming languages emerged from the constructionist research 

community, the computer science education community also developed a number of 

programming languages and environments designed for novices. Here we review some of the 

more influential efforts that helped inform this dissertation. This includes languages designed 

explicitly for educational contexts as well as software authoring tools for novices. 

Beginner Programming Languages  

 Early on it was recognized that the design of the language itself can support or hinder 

students in their quest to master programming, which resulted in early efforts to develop more 

accessible programming languages (Mendelsohn, Green, & Brna, 1990). Along with Logo, 

which was explicitly designed with mathematics learning in mind, other languages emerged with 

the goal being to serve as an introduction to the field of computer science. An early, influential 

language designed for novices was BASIC (Kemeny & Kurtz, 1980), whose acronym stands for 

Beginner's All-purpose Symbolic Instruction Code. BASIC included a relatively small 
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instruction set, removed all unnecessary syntax, and was designed to support short turn 

around times between composition and execution of programs, which collectively made it more 

accessible to novices. BASIC experienced a great deal of success and was a popular language 

throughout the early era of personal computing from the mid 1970’s through the 1980s.  

 As the field of computer science education matured, new languages and strategies 

emerged that were designed to serve as introductory tools and prepare learners for more 

industrial, fully featured languages. Languages such as Blue (Kölling & Rosenberg, 1996) and JJ 

(Motil & Epstein, 1998) simplified syntax and provided tools to allows learners to focus on 

programming fundamentals before progressing to fully featured languages. Other languages tried 

to blend the best features of various languages in hopes of developing new languages that were 

both powerful and easy to learn and use (Holt & Cordy, 1988). Another direction introductory 

programming languages took was to create more declarative languages in which programming 

was a more direct, rule defining activity. Languages such as Prolog (Colmerauer, 1985), and later 

graphical environments such as Agentsheets (Repenning et al., 2000), ToonTalk (Kahn, 1999) 

and StageCast Creator (D. C. Smith, Cypher, & Tesler, 2000) utilize this strategy.  

 A third approach was the use of mini-languages, which are small, simple languages 

designed to support the first steps in learning to program (Brusilovsky et al., 1997). Mini-

languages often centered around specific activities and provided only the commands necessary to 

accomplish the immediate task, such as Karel the Robot, which has learners write short programs 

to control an on-screen robot (Pattis, 1981). These mini-languages share features with domain-

specific languages, which are not intended for general purpose programming, but instead tailor a 

smaller language around specific tasks, narrowing the gap between the objective and the 

representations in which intentions are encoded (Van Deursen, Klint, & Visser, 2000). In doing 
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so, the designer of the language can leverage the existing knowledge of the user to provide a 

set of tools tailored for the task at hand, narrowing what Norman (1991) calls the gulf of 

execution.  

 Another approach taken in the design of programming languages for novices is to bring 

the programming language closer to natural language. The first language that tried to draw on 

natural language grew out of an effort to create a “Common Business Language” (COBOL), 

which intentionally tried to maximize the use of English in its syntax (Sammet, 1981). Another 

early language that took this approach was Hypercard. When asked about Hypercard’s ancestors, 

designer Bill Atkinson responded: “The first one is English. I really tried to make it English-like” 

(Goodman, 1988 as cited in Bruckman & Edwards, 1999, p. 208). A more recent language that 

adopted this strategy, that was designed explicitly for younger learners is the MOOSE 

programming language designed to enable kids to create places, creatures and other objects in a 

text-based virtual game (Bruckman, 1997). This desire for a more readable, natural language-like 

aesthetical can also be seen in the blocks-based visual programming languages we will review in 

the next section, as these tools use other mechanisms to facilitate the computational parsing of 

programs, thus allowing the language itself to be more expressive with it’s commands. This 

feature has been found to influence learners’ perceived ease of use of the language (Weintrop & 

Wilensky, 2015b). 

 A final strategy that is important to include in this review of approaches to designing 

programming languages for novices is the creation of languages that try to address the 

documented issues that novices have with the syntax of programming languages. Research has 

found language syntax, the seemingly esoteric punctuation and formatting rules that must be 

followed when composing programs, to be a serious barrier for novice programmers (Denny et 
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al.; Stefik & Siebert, 2013). Through a series of controlled experiments that had novices use 

one of a variety of languages that demonstrated various syntactic features, Stefik and Siebert 

(2013) found that characteristics of syntax do directly influence a languages learnability. One 

solution to the syntactic problem is the creation of programming tools that prevent syntax errors 

through the use of visual cues and graphical composition tools. This feature is especially relevant 

to the proposed study, as graphical programming proponents boast that the lack of syntax is a 

key features that contributes to its appropriateness for young learners (Maloney et al., 2010; 

Resnick et al., 2009), but research is finding this approach does not solve the syntax problem, but 

only delays it (Parsons & Haden, 2007; Powers et al., 2007). This issue will be discussed in more 

detail later in our literature review. 

Integrated Development Environments for Novices 

 Along with recognizing that features of the language can support or hinder learnability, it 

was realized that software used to author programs (called Integrated Development 

Environments or IDEs) themselves could provide a large number of supports the help the novice 

overcome challenges including syntax errors, deciphering compilation errors, and problematic 

sections of programs. This recognition coincided with a larger shift in the computing space that 

was advocating for a shift away from users conforming to computer requirements towards a 

world where the computer conformed to the user (Donald A. Norman, 1993). These efforts 

initially focused on supporting experts, but educational technology designers soon realized that 

what is good for the expert is often not the same as what is best for the novice and when 

designing educational tools, you should proceed with the learner in mind (Soloway, Guzdial, & 

Hay, 1994). As such, a growing number of IDEs have been developed explicitly with novice 

programmers in mind. 
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 An early and influential development environment designed to facility novices 

specifically through a reduction on potential syntax errors was the Cornell Program Synthesizer, 

which built on the fact that programs are not flat text, but instead “hierarchical compositions of 

computational structures and should be edited, executed, and debugged in an environment that 

consistently acknowledges and reinforces this viewpoint” (Teitelbaum & Reps, 1981, p. 563). 

The Cornell Program Synthesizer provided users with templates that followed the syntactic 

structure of the language and thus, when filled in, would result in valid statements that could be 

added to the program. These templates were constructed by following the grammar defined by 

the language’s abstract syntax tree (AST). While a number of different project and research 

groups followed the lead set by the Cornell Program Synthesizer, Carnegie Mellon University 

emerged as a leader in the development of programming tools that used features of the language 

to support novices. Over the course of a number of projects, the CMU group iteratively 

developed a family of programming environments including GNOME (Garlan & Miller, 1984), 

Genie (Chandhok & Miller, 1989), and ACSE (Pane & Miller, 1993). These environments 

progressively introduced features including code layout based on the language’s AST, 

incremental parsing and feedback for syntax errors while editing, supporting multiple views of 

the same program simultaneously including high-level design views and code navigation views, 

and runtime visualization tools (a history of these environments can be found in Miller, Pane, 

Meter, & Vorthmann, 1994). Differentiating these tools from the efforts in the previous section is 

the fact that being environments, these tools were not necessarily tied to a specific language. For 

example, GNOME environments were created for various languages including Karel the Robot, 

Pascal, Fortran, and Lisp (Miller et al., 1994). The inclusion of a language’s AST as part of what 
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determines how programs are composed is central to the blocks-based visual programming 

tools of interest to this dissertation and an idea we will return to later in this literature review. 

 More recently, a new generation of IDEs have been developed that are designed with a 

specific language in mind and include features unique to that language and even to specific 

pedagogies for learning that language. Environments such as DrScheme developed for the 

scheme programming language (Findler et al., 2002), and DrJava, a similar tool developed for 

Java (Allen, Cartwright, & Stoler, 2002), present an integrated, graphics-rich editor and use a 

functional read-evaluate-print development cycle to assist novices in their early programming 

endeavors. The BlueJ environment is a popular Java IDE designed to support an object-first 

approach to learning to program in Java (Kölling et al., 2003). BlueJ was intentionally designed 

to keep the interface simple as to not overwhelm the learner and emphasize the features of the 

language deemed most important, which in BlueJ is the object-oriented nature of Java. Building 

off of the successes of BlueJ and remaining faithful to the learner-focused design, the BlueJ team 

released a second IDE called Greenfoot, designed for younger learners that adds visual program 

execution to the IDE to further support younger learners and their developing understanding of 

programming concepts (Henriksen & Kölling, 2004). A particular feature of Greenfoot that is of 

relevance to this study is the decision to share many interface features between BlueJ and 

Greenfoot to make transition between the environments easier for learners as they progress. As 

we discuss below, transition from introductory to more sophisticated programming environments 

and language is rarely a consideration for designers of IDEs for novices. More recently, the 

Greenfoot team has released a new language called Stride, that is based off Java and supports a 

new form of hybrid text-graphical editing the call Frame-based Editing (Kölling, Brown, & 
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Altadmri, 2015), we will return to this new environment and programming approach later in 

the chapter.  

Visual Programming  

 As the development of programming languages and environments evolved, it was found 

that shifting from an all-text representation of programs to an approach that leverages spatial and 

graphical features could be productive for learning and understanding (D. C. Smith, 1977). 

Collected under the label “Visual Programming”, these environments are broadly defined as 

“any system that allows the user to specify a program in a two (or more) dimensional fashion” 

(Myers, 1990, p. 98). While this definition is intentionally broad, it excludes text-based 

programming (which is considered to constrain composition of programs to a single, horizontal 

dimension), software used to produce visualizations (like animation and drawing programs), and 

tools that visually depict the execution of programs (like environments that visually render 

memory contents or algorithmic flow of a running program).  To provide a framework for 

evaluating visual programming environments, Green and Petre (1996) developed a cognitive 

dimensions framework that characterizes features of these environments and maps out the trade-

offs that exist between different visual design choices. These cognitive dimensions include 

Abstraction Gradient (various granularities of abstraction supported), Consistency (how 

formulaic is the language), Progressive Evaluation (what feedback is available from partially-

complete programs), and Visibility (how easy is it see and read the code) among others. This 

framework proved to be productive and is widely used to evaluate visual programming 

environments. 
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 Direct manipulation was an early and widely implemented approach to graphical 

programming that touches on a number of strengths of a graphical authoring modality. Hutchins 

et al. (1985) explain the concept: 

The promise of direct manipulation is that instead of an abstract computational medium, 

all the "programming” is done graphically, in a form that matches the way one thinks 

about the problem. The desired operations are performed simply by moving the 

appropriate icons onto the screen and connecting them together. Connecting the icons is 

the equivalent of writing a program or calling on a set of statistical subroutines, but with 

the advantage of being able to directly manipulate and interact with the data and the 

connections. There are no hidden operations, no syntax or command names to learn. 

What you see is what you get. (p. 314) 

Included in this definition are a number of key features of graphical programming: the presence 

of onscreen icons that carry some computational or programmatic meaning that can be controlled 

directly, a two (or more) dimensional space to work within, a minimization (or absence) of 

syntax or commands, and a general transparency that permeates the environment and how it is 

meant to be used. Bruner (1973) distinguishes between this “transparent” use of a 

representational medium, where actions are guided by reasoning about the entities being 

represented, and an “opaque” use of symbols, where attention is focused on the inscriptions 

themselves. 

Based on the promise of easier to learn, easier to use, programming systems, many visual 

programming languages have been designed and evaluated. Direct manipulation tools often rely 

on flow-chart or data-flow diagrams that map logical flows through instructions (Hils, 1992). 

LabVIEW (Johnson, 1997; Santori, 1990), a circuit diagram program built on an electronic block 
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wiring metaphor, often serves as an exemplar direct manipulation environment in studies of 

this programming modality, with the results of these studies generally being mixed (Whitley, 

1997). Flogo (Hancock, 2003), a graphical programming environment designed to facilitate 

learners programming robot behaviors, used a visual dataflow view of information intended to 

make programs more understandable, accessible, and modifiable. A more contemporary version 

of direct manipulation software is the Lego Mindstorms NXT-G programming tool (Lego 

Systems Inc, 2008), which allows children to program robots by dragging iconic representations 

of program commands and robot components from a palette onto a workspace, where they can be 

wired together. 

 Another family of programming tools that emerged from this tradition use images and a 

graphical stage rendered as a grid to allow users to program rules the system can follow. 

Building on the idea of programming-by-demonstration, KidSim, later renamed Stagecast 

Creator (D. C. Smith, Cypher, & Spohrer, 1994; D. C. Smith et al., 2000), was developed to 

allow users to create games by defining rules using symbols and graphics, removing the need for 

syntax or text-based programming commands. These graphical rules govern the behavior of the 

entities (called agents) in the world being programmed making it easy to create playable video 

games. Repenning and colleagues took a similar approach (although they choose to call it 

programming-by-problem-solving) in the development of Agentsheets, an environment in which 

users program sets of agents that move via graphical rules (Repenning & Sumner, 1995). Unlike 

Stagecast Creator, Agentsheets moves beyond game-making to include the creation and 

exploration of scientific models and simulations as part of its uses (Repenning et al., 2000). With 

the release of Agentcubes, the two dimensional restriction of the stage has been lifted, enabling 
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learners to create three-dimensional games and simulations (Ioannidou, Repenning, & Webb, 

2009). 

Two other approaches to visual programming are important to mention. The first is the 

use of tangibles as representations of programming statements. Tools such as AlgoBlocks 

(Suzuki & Kato, 1995), the Digital Construction Set for Lego Bricks (McNerney, 2004), and 

Tern (M.S. Horn & Jacob, 2007) all explored different ways to program with physical devices. In 

a comparative study with Tern, Horn and colleagues found the tangible programming approach 

to be more approachable and resulted in longer engagement by visitors in a museum setting (M. 

S Horn et al., 2009).  The second consist of languages that do not rely on visual metaphors of 

rules or objects, but visual metaphors of programming statements and abstractions directly. We 

call these blocks-based programming environments and review them in more detail later in the 

chapter as they are a focus of this dissertation. 

Evaluating Visual Programming Environments 

 In the early 1990s a thread of research, lead by Green and Petre among others, 

systematically compared text-based and visual programming to understand which was superior. 

While some studies showed promise in the use of visual programming tools (Baroth & 

Hartsough, 1995), other studies conducted in more controlled environments found contradictory 

evidence. Green and collaborators found that visual programming environments required longer 

amounts of time to develop solutions and provided less guidance on strategic approaches, 

resulting in more difficulty among novice programmers (Green & Petre, 1992; Green, Petre, & 

Bellamy, 1991; Petre, 1995). They attributed these findings to unfamiliarity with available 

secondary notations of the languages (a dimension from the Green and Petre’s cognitive 

dimensions framework that captures the use of layouts and other informal cues to express 



 58 
structure) and the match-mismatch hypothesis (Green, 1977), which links difficulty in 

generating function solutions to misalignment between the structure of a problem with the 

structures supported by the language. These findings were reproduced in a later set of studies 

with a larger set of visual programming tools, in which it was found that various visual 

representations were at best on-par with their textual equivalents (Moher et al., 1993). For a 

longer review of this work, see Blackwell et al. (2001). While much of this comparative work 

was conducted over twenty years ago, the field is still active with studies being conducted with 

new tools (for example Hundhausen, Farley, & Brown, 2009). We will return to these more 

contemporary studies later as they focus not just on comparisons between tools, but also 

transitioning between representations. 

Blocks-based Programming 

 The blocks-based approach of visual programming, while not a recent innovation, has 

become widespread in recent years with the emergence of a new generation of tools, lead by the 

popularity of Scratch (Resnick et al., 2009), Snap! (Harvey & Mönig, 2010), and Blockly 

(Fraser, 2013). These programming tools are a subset of the larger group of editors called 

structured editors (Donzeau-Gouge, Huet, Lang, & Kahn, 1984)  that make the atomic unit of 

the composition tool a node in the abstract syntax tree (AST) of the program, as opposed to a 

smaller piece (i.e. a character) or a larger piece (a fully formed functional unit). In making these 

AST elements the building blocks, then providing constraints to ensure a node can only be added 

to the program’s AST in valid ways, the environment can protect against syntax errors. The 

constraints can be provided in a number of ways. Blocks-based programming environments 

leverage a programming-primitive-as-puzzle-piece metaphor that provides visual cues to the user 

about how and where commands can be used as their means of constraining program 
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composition. Programming in these environments takes the form of dragging blocks into a 

scripting area and snapping them together to form scripts. If two blocks cannot be joined to form 

a valid syntactic statement, the environment prevents them from snapping together, thus 

preventing syntax errors but retaining the practice of assembling programs instruction-by-

instruction. Along with using block shape to denote usage, there are other visual cues to help 

programmers, including color coding by conceptual use, and nesting of blocks to denote scope 

(Maloney et al., 2010; Tempel, 2013).  

 Early versions of this interlocking approach include LogoBlocks (Begel, 1996) and 

BridgeTalk (Bonar & Liffick, 1987) which helped formulate the programming approach which 

has since grown to be used in dozens of applications. Alice (Cooper et al., 2000), an influential 

and widely used environment used in introductory programming classes, uses a very similar 

interface and has been the focus of much scholarship evaluating the merits of the approach. 

Figure 2.1 shows programs written in a number of blocks based programming tools.  

 

    

(a) (b) (c) (d) 



 60 
Figure 2.1. Four example blocks-based programming languages: (a) BridgeTalk, (b) 

LogoBlocks, (c) Scratch, and (d) Alice. 

 In addition to being used in more conventional computer science contexts, a growing 

number of environments have adopted the blocks-based programming approach to lower the 

barrier to programing across a variety of domains.  These include: mobile app development with 

MIT App Inventor (Wolber, Abelson, Spertus, & Looney, 2011) and Pocket Code (Slany, 2014), 

modeling and simulation tools including StarLogo TNG (Begel & Klopfer, 2007), DeltaTick 

(Wilkerson-Jerde & Wilensky, 2010), NetTango, and EvoBuild (Wagh & Wilensky, 2012), 

creative and artistic tools like Turtle Art (Bontá, Papert, & Silverman, 2010), and PicoBlocks 

(PicoBlocks, 2008), commercial educational programming applications like Tynker (Tynker, 

2014) and Hopscotch (Hopscotch, 2014), and game-based learning environments like 

RoboBuilder (Weintrop & Wilensky, 2012), Lightbot  (Yaroslavski, 2014) and the activities 

included in Code.org’s Hour of Code (Hour of Code, 2013) and Google’s Made with Code 

initiative (Made with Code, 2014). Further, a growing number of libraries are being developed 

that make it easy to develop application or task specific blocks-based languages (Fraser, 2013; R. 

V. Roque, 2007). This diverse set of tools and the ways the modality is being used highlights its 

recent popularity and speaks to the need for more critical research around the affordances and 

drawbacks of the approach (Shapiro & Ahrens, 2016; Weintrop & Wilensky, 2015a). There is 

also a growing number of environments they blend blocks-based and text-based programming 

approaches, including Pencil Code (Bau et al., 2015) and Tiled Grace (Homer & Noble, 2014). 

Evaluating Blocks-based Programming Environments 
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 In our review of literature focusing on the educational efficacy of blocks-based 

languages, we focus on Scratch and Alice, as these two tools have the widest use in 

contemporary computer science education of the blocks-based environments listed above. While 

both Alice and Scratch have been used in formal education environments, it is important to keep 

in mind that the two projects initially had different goals and different target age groups. Scratch 

from its inception, was focused on younger learners and informal environments (Resnick et al., 

2009), while Alice was targeted at more conventional computer science educational contexts 

and, as such, has a been the focus of more initiatives to evaluate student learning of 

programming concepts (Cooper et al., 2000). 

 We begin by reviewing literature on Scratch investigating its use as the language of 

choice in formal computer science environments. Ben-Ari and colleagues have conducted a 

number of studies of the use of Scratch for teaching computer science. Using activities of their 

own design (Armoni & Ben-Ari, 2010), Meerbaum-Salant et al. (2010) concluded that Scratch 

could successfully be used to introduce learners to central computer science concepts including 

variables, conditional and iterative logic, and concurrency. While students did perform well on 

the post-test evaluation from this project, a closer look at the programming practices learners 

developed while working in Scratch gave pause to the excitement around the results. The 

researchers found that students developed unfavorable habits of programming, including a totally 

bottom-up programming approach, a tendency for extremely fine-grained programming, and 

often incorrect usages of programming structures as a result of learning programming in the 

Scratch environment (Meerbaum-Salant, Armoni, & Ben-Ari, 2011). Other work looking at 

comparing blocks-based to text-based programming using Scratch has similarly found that 

Scratch can be an effective way to introduce learners to programming concepts, although it is not 
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universally more effective than comparable text languages (C. M. Lewis, 2010). Given 

Scratch’s intention on being used in informal spaces and its emphasis on introducing diverse 

learners to programming, it is important to highlight Scratch’s success in generating excitement 

and engagement with programming among novice programmers (Malan & Leitner, 2007; 

Maloney et al., 2008; Tangney et al., 2010; Wilson & Moffat, 2010). 

 Compared to Scratch, the Alice programming environment has a longer history of serving 

as the focal programming tool in introductory programming courses. Much of the motivation for 

using Alice in courses is based on findings that Alice is more inviting and engaging than text-

based alternatives, and improves student retention in CS departments (Johnsgard & McDonald, 

2008; Moskal, Lurie, & Cooper, 2004; Mullins, Whitfield, & Conlon, 2009). Alice has also 

effectively been used by instructors who adopt an object-first approach to programming as it 

provides an intuitive and accessible way to engage with objects with little additional 

programming knowledge needed. Part of Alice’s success and relatively widespread use is due to 

the fact that the creators of Alice have authored a number of textbooks and curricula that can 

serve as texts for an introductory programming course (Dann, Cooper, & Ericson, 2009; Dann, 

Cooper, & Pausch, 2011).  It is also important to mention here the growing body of work looking 

at blocks-based programming as an introductory tool used for preparing students for learning 

more conventional text-based programming, which is discussed in the next section. Until 

recently more research had been conducted around the transition from Alice to Java, as it is more 

frequently featured in conventional CS contexts, but recently this line of research has expended 

to include Scratch and other blocks-based tools. As this goal is at the heart of this dissertation, 

we devote a full section to reviewing efforts towards this end.  
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 A small but growing body of research is conducting systematic comparisons of 

blocks-based and text-based environments. In a pilot study of this dissertation, we found that 

students perform differentially on questions asked in blocks-based form compared to the 

isomorphic text alternative (Weintrop & Wilensky, 2015d). These differences were not universal 

however, but instead were influenced by the concept under question, with students performing 

better on blocks-based questions related to conditional logic, function calls, and definite loops, 

and finding non statistically significant differences on questions related to variables, indefinite 

loops, and program comprehension questions. Other studies investigating learning outcomes in 

blocks versus text environments found little difference in learning outcomes, but did report that 

students completed activities in blocks-based environments at a faster rate. This suggests that 

while the same learning can be achieved, it happens more quickly in blocks-based environments 

(Price & Barnes, 2015).   

From Blocks-based to Text-based Programming 

 With the rise in popularity of the blocks-based approach to programming, a question of 

growing importance is how well these tools prepare students for future, text-based programming 

languages. Do students develop understandings that can serve as a foundation for future learning 

or do students struggle to apply what they have learned in new programming contexts with more 

powerful, text-based programming languages.  Recent studies have begun to explore this 

question of transfer of programming knowledge between blocks-based and text-based 

programming. Before reviewing this literature, it is important to note that not everyone is in 

agreement that blocks-based programming is indeed only to be used as a stepping-stone for text-

based programming. Some argue that a blocks-based modality is a sufficient end-point for those 

who are not intent on pursing a career in programming (Modrow, Mönig, & Strecker, 2011). 
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While we see merit to this position, as we are focused on high-school aged students, and all 

widely adopted computer science assessments (notably the AP Computer Science exam) are 

conducted with text-based programming languages and a vast majority of libraries and 

programming tools are text-based, we see this as a question of great importance. We begin this 

review by looking at studies attempting to bridge Alice and Java as it has the longest, and most 

well documented history. 

 From the outset, Alice was intended for formal educational contexts and was widely 

shared and discussed in computer education circles. As a result, it has become a popular tool for 

use in introductory computing courses at the university level, thus the challenge of transition 

from Alice to Java has become an active area of research. As is often the case, results have been 

mixed in studies looking at the transition of students from Alice to Java. Powers et al. (2007), in 

their study following students from a semester in Alice to a semester in Java (using BlueJ) 

documented a number of challenges faced by their students including issues with syntax, 

frustration with the lack of progress at a similar pace as in Alice, and a feeling that programming 

in Alice was not authentic due to its graphical nature. This position has been taken to various 

degrees (Cliburn, 2008), with some researching going so far as to state “based on our classroom 

experience, we question its real pedagogical value for programming education at the tertiary 

level. Students do not seem to naturally make a strong connection between the formal coding 

process and what they are doing with Alice” (Parsons & Haden, 2007, p. 213). Another study 

compared students spending time using Alice compared to students working through the same 

activities in pseudo-code and found that students in the pseudo-code condition performed better 

on standard performance measures (Garlick & Cankaya, 2010). In contrast, other researchers 

have found Alice to be an effective way to introduce learners to programming and had success 
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using it as a tool for transition to Java. Notably, the authors of Alice developed a tool that 

allowed students to move back and forth between Java and Alice which was found to be effective 

at bridging this gap (Dann et al., 2012). Citing this work, classes have adopted this strategy of 

mixing Java and Alice as a way to leverage the strengths of the visual programming approach 

while mitigating issues cited above (Dann et al., 2009). A number of textbooks have also been 

written to bridge the gap (Adams, 2007; Dann et al., 2009; J. Lewis & DePasquale, 2008), but 

research evaluating the effectiveness of these texts is relatively sparse. 

 A few studies have been conducted looking at the transition from Scratch to other text-

based programming languages. While many of these report only anecdotal evidence, Armoni, 

Merrbaum-Salant & Ben-Ari (2015) conducted a longitudinal study looking at whether students 

who had taken Scratch programming classes in middle school performed better in a high school, 

text-based programming course. Overall, the researchers found little quantitative difference in 

performance on assessments between students who had previous worked with Scratch and those 

who had not, but were able to find some areas where the Scratch students out-performed their 

peers (specifically on the concept of looping). Additionally, the authors found qualitative 

differences between the two populations, with students who had prior Scratch experience 

reporting high levels of motivation and self efficacy. 

 Beyond Alice, a growing number of tools are being designed to address the blocks-to-text 

gap, either as new stand-alone tools or add-ons to existing tools. Such efforts including the 

ScratchBlocks (ScratchBlocks, 2014), Pencil Code (Bau et al., 2015), Tiled Grace (Homer & 

Noble, 2014), PyBlocks (Bart, Tilevich, Shaffer, & Kafura, 2015) and SLASH (Behnke, 2013) 

add-ons to Scratch, the TAIL plugin (Chadha, 2014) and the App Inventor Java Bridge (App 

Inventory Java Bridge, 2014) for MIT App Inventor. PicoBlocks (PicoBlocks, 2008), TurtleArt 
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(Bontá et al., 2010), and recently the Tynker platform (Tynker, 2014) all come with the 

ability to view text-based equivalents to programs constructed with the blocks-based interface. 

Other tools provide native language translation, for example, the Blockly toolkit comes with 

built-in language generators that allow you to convert graphical scripts to equivalent JavaScript, 

Python, or XML files (Fraser, 2013). Additionally, Blockly is architected in such a way as to 

make it easy to add additional generators to the library making it extensible for future blocks to 

text transformations. The DrawBridge project is noteworthy in it’s effort to bridge blocks-based 

and text-based programming by introducing pen-and-paper drawing and program-by-

demonstration features into its larger pedagogical strategy (Stead & Blackwell, 2014). Game 

authoring has also been used as a context to motivate blocks-to-text programming as 

demonstrated by the Flip project, although this environment’s text-programming uses natural 

language expressions over conventional text-based programming syntax (Howland & Good, 

2014). 

While these environments provide a one-way transition from a blocks-based interface to 

the textual form, a growing number of tools are providing bi-directional support for new and 

established languages. Pencil Code (Bau et al., 2015) provides a two-way transition between 

blocks and Coffee Script, JavaScript, and HTML, while tools have also been built for Java 

(Matsuzawa, Ohata, Sugiura, & Sakai, 2015), Python (Bart et al., 2015), and Grace (Homer & 

Noble, 2014). Little work has been published on these hybrid environments. One notable 

exception is Matsuzawa et al.’s (2015) study in which they taught a semester long introductory 

programming course using an environment that allowed users to program with either a blocks-

based or text-based Java interface. The authors found that over the course of the class, students 

systematically transitioned from blocks to text on their own, and also found a correlation 
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between learners’ initial confidence and the modality they chose to work in (Matsuzawa et 

al., 2015). 

It is also important to note the difficulty in transferring between graphical and text-based 

programming environments should not be surprising as researchers have documented difficulties 

in novices transferring knowledge between two text-based programming languages (Scholtz & 

Wiedenbeck, 1990; Wiedenbeck, 1993), so seeing similar difficulties across modalities is 

unsurprising. 

This concludes our review of the various literatures that have informed the design of this 

study. In the next chapter, we layout the study design used to answer the stated research 

questions, including the data sources used, settings in which the research was conducted, the 

population we recruited, and the analytical methodology used to evaluated the collected data. 
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3. Methodology 

 The study that makes up the heart of this dissertation is a three-condition, quasi-

experimental study designed to understand the effects of using blocks-based, text-based, and 

hybrid blocks/text programming tools in formal introductory computer science classrooms. The 

study is broken up into two phases: A Three-way Introduction to Programming followed by The 

To-text Transition. During the three-way introduction, we followed three sections of an 

introductory programming class at the high school level for the first five weeks of the school 

year. The To-text Transition follows those same three classrooms as the students transition from 

the introductory tools to more a conventional text-based programming environment. The second 

phase commences immediately following the conclusion of the three-way introduction phase and 

will last for 10 weeks. This is a mixed-methodology study, so a variety of data sources were 

used, including classroom observations, written assessments, student and teacher interviews, and 

the collection of student-generated artifacts. This chapter presents the various methodological 

aspects of the study, including a detailed description of the study design, information about the 

setting and participants, and a discussion of the data that were collected. We also present the 

analytic approach taken for each set of data collected.  

Study Design 

 Like many studies in the field of the Learning Sciences, this study is inspired by the 

design-based research methodology (Design-based Research Collective, 2003; Collins, Joseph, 

& Bielaczyc, 2004,). In design-based research, designed artifacts are used to inform our 

understanding and advance our theory of how students come to understand the topic under 

investigation. In this study, the three variations of our introductory programming tool serve as 
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the central design component with which to investigate student understanding. A central 

characteristic of design-based research studies is their iterative nature, where earlier trials with a 

given tool are used to inform and revise the designed artifacts. This study was conducted over 

two consecutive school years. The first year was used as a pilot study for the programming 

environments, the curriculum, and the data collection methodologies. The data collected in the 

first year were used to inform and revise the materials and procedures for the second iteration of 

the study5. Both years of the study followed the same study design and were conducted in the 

same setting. As the findings presented in this dissertation focus on data collected in the second 

year, we will focus our methodological discussion on that iteration of the study. 

Phase One: A Three-way Introduction to Programming 

 The first phase of the study was designed to examine the use of three different versions of 

the same introductory programming tools in a high school level introductory programming 

classroom. This phase of the study follows three classrooms during their first 5 weeks of a 

yearlong introduction to programming course. Each of the three classes used a different variant 

of the same programming environment called Pencil.cc (a customized version of the Pencil Code 

environment). The difference between the three versions of the environment is in how programs 

are represented and authored. One class used a blocks-based interface, the second used a text-

based authoring interface, and the third version of the tool used a hybrid blocks/text approach. 

While there are many differences that exist between the introductory environment and 

conventional Java programming environments, the focus in this work is on the role modality 

 
5 The findings from the pilot study and a discussion of how they informed the design of the tools 
used in the second study are discussed in the next chapter, which focuses on the design of the 
introductory programming environments. 
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plays in influence novice programmers’ experiences. The three environments are discussed in 

greater detail in the next chapter. These three classrooms make up the three conditions of our 

quasi-experimental design. All three classes worked through the same set of activities and 

engage in the same classroom discussions. One teacher taught all three classes, allowing us to 

control for teacher effects, though some overall results will be influenced by the specific teacher. 

The design of the three environments, which is central to this dissertation are discussed in detail 

in the next chapter. 

Curriculum 

 The five-week curriculum for the introductory course is based on the Beauty and Joy of 

Computing course designed by Daniel Garcia and Brian Harvey at UC Berkeley (Garcia et al., 

2015), along with an assortment of other introductory computing activities grounded in the 

Constructionist programming tradition pioneered by Papert and others around the Logo 

programming language (Harvey, 1997; Papert, 1980). An emphasis of this design was to allow 

students creative freedom in each assignment, confronting the traditional approach to 

programming assignments where each assignment is the same. This approach resonated with 

students, as one students said at the conclusion of the five-week curriculum: “I liked the fact that 

we were able to, like, we were given a prompt and we were able to go from there, for most 

projects. That was cool, I found that fun. It kind of let me go off, it let me tinker a bit, but it also 

let me stay focused. I really liked that.” 

 Over the course of the five weeks, four major conceptual topics are covered: variables, 

conditional logic, looping logic (including both definite and indefinite loops), and procedures. 

Throughout the activities, care was taken to blend visually executing programs (like traditional 

Logo graphics drawing assignments) and number or text processing activities. Table 3.1 and 
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Table 3.2 provide a high-level outline of the curriculum, a more detailed description of the 

curriculum, including detailed descriptions of the specific activities can be found in Appendix A. 

Table 3.1. A high-level summary of the 5-week introductory curriculum. 

Week 1: Introduction to Pencil.cc and Variables 
The goal of the first week is to acclimate students to programming in Pencil.cc. 
This includes introducing them to the environment, the quick reference menu 
where additional information can be found, and various basic commands (mostly 
associated with moving the on-screen turtle and basic I/O).  

Activities: Quilt, Mad-Libs, Tip Calculator 
Week 2: Conditionals 

In this second week we introduce students to conditional logic and predicates. 
Activities: Color-by-Quadrant, Movie Recommendation Engine, Grade Ranger 
Week 3: Iterative Logic  

In week three, we introduce looping logic. This includes an assignment having 
students draw repeating figures using definite loops and concentric shapes with 
indefinite loops. 

Activities: Guessing Game, Radial Art, Squiraling 
Week 4: Procedures 

The fourth week begins with an activity showing students how to define new 
procedures and how to pass parameters into them. The second half of the week 
includes an assignment that asks students create procedures and also use 
conditional and looping logic. 

Activities: PolyGoner, Connect Four, Brick Wall 
Week 5: Summative project 

The final week of the curriculum has students develop their own projects. The 
only requirement is that projects must include all of the concepts students have 
encountered (variables, iterative logic, conditional statements, and define 
functions). Students spent four days working on their projects then presented them 
to their peers on the final day of the initial phase of the study. 

Table 3.2. A high level description of the 13 assignments given during the 5 week introductory 
portion of the course. 

# Assignment Graphical or Text-based? Concept 
1 Quilt Graphical Introduction 
2 Madlibs Text-based Variables 
3 Tip Calculator Text-based Variables 
4 Paint by Quadrant Graphical Conditional Logic 

5 
Movie Recommendation 
Engine 

Text-based Conditional Logic 

6 Grade Ranger Text-based Conditional Logic 
7 Guessing Game Text-based Iterative Logic 
8 Radial Art Graphical Iterative Logic 
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9 Squiral Graphical Iterative Logic 
10 Polygoner Graphical Procedures 
11 Connect 4 Graphical Procedures 
12 Brick Wall Graphical Procedures 
13 Final Project Graphical Summative Project 

Phase Two: The To-Text Transition 

 The second phase of this study is intended to shed light on the question of how well each 

of the three introductory tools used in phase one prepared students for future computer science 

instruction in a more conventional text-based language. In this phase we followed students as 

they transition from the introductory programming environments used in the first five-weeks of 

class to the Java programming language, which is the language they will use for the remainder of 

the school year and also the language the school’s AP Computer Science class. All students 

learned Java and used the same basic text editor for their programming assignments, regardless 

of what condition they were in during the first phase of the study. The choice for using a basic 

text editor that does not include common programming editor features like syntax highlighting or 

auto-formatting was the teacher’s.  

 We followed the students through their first ten weeks in Java. The course follows the 

Java Concepts: Early Objects text book (Horstmann, 2012) which, as the name suggests, uses an 

objects-first approach. This means students encounter the concepts of objects and classes before 

conditional logic and loops. During the ten weeks of the Java portion of the study, students 

encountered basic input/output, variables, data types, creating objects, and calling functions. 

While there is not complete content overlap between the introductory curriculum and the first ten 

weeks in Java, there are concepts that were encountered in both, notably variables and 

procedures. 

Methods and Data Collection 
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 This study utilizes a mixed-method approach to answer the stated research questions. 

This includes quantitative and qualitative methodologies as well as computational methods to 

analyze the large dataset of learner-authored materials. In this section, we breakdown each data 

source used, present our data collection schedule and describe what the data is and how and 

when it was gathered. We begin by discussing our quantitative data sources then continue with 

our qualitative and then computational data.  

Quantitative Data Sources 

 The main quantitative data sources for this study are a series of attitudinal surveys and 

content assessments. The surveys were administered three times over the course of the study: (1) 

at the outset in week 1, (2) between phase 1 and phase 2 which is after students have completed 

the portion of the study where they will be using the introductory programming environments, 

and (3) after the conclusion of the first Java unit, which was roughly 10 weeks into the course. 

Each administering of the surveys helps us answer a different question. The initial set of data 

gives us a base line for each student and the classes as a whole. The second set allows us to 

measure the impact of the introductory programming environments, both within each condition 

as well as how they do relative to one another. The third data set will allow us to measure 

students’ initial experiences learning to program in Java. This data set gives us insight into 

students’ attitudes and whether or not confidence has shifted since moving to text-based 

programming as well as information about if and how concepts learned with the introductory 

tools are still salient after leaving those tools behind. Administering these two instruments 

multiple times over the course of the study gives us power to speak to the effects of the tools 

immediately, comparatively, as well as their lasting effects.  
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 The surveys were administered online during class time on consecutive days so as to 

minimize testing fatigue. The attitudinal survey took students around 20 minutes and the content 

assessment took close to 25 minutes. The assessments were given at the same time for all three 

classes. The surveys were hosted on Google Forms and the responses were recorded in a Google 

spreadsheet. Students who were absent the day it was given were asked to take the survey 

outside of class time, although not all did as course credit could not be given for completion of 

the surveys under the agreement made with the school district. 

Attitudinal Surveys  

 The attitudinal surveys are loosely based on materials used as part of the Georgia 

Computes initiative (Bruckman et al., 2009). The questions in this survey are designed to gain 

insight into a number of attitudinal and perceptual facets. The three versions of the survey were 

largely the same, with a few additional questions being added with the second and third 

administrations asking students to reflect on their experience in the class. The survey begins with 

17 Likert scale (1-10) questions asking students about their confidence in taking the course, their 

excitement for the course, and their general perception of the field of computer science. The 

survey then continues with 9 short answer questions about motivations for taking the course, 

prior experience with programming and computer science culture, things they are excited to learn 

as part of the class, and some open-ended prompts about how they view the field of computer 

science. In the first administration of the assessment, we ask a number of questions about 

students’ prior experience with computer science and technology. A full copy of the attitudinal 

survey can be found in Appendix B.  

The Commutative Assessment 
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 For this dissertation a customized content assessment was designed.  

Across educational research broadly there is a recognized need for high quality and validated 

assessments, a position echoed in computer science education circles (Tew & Dorn, 2013). 

Towards this end, a number of assessments have been developed and validated with the goal of 

improving our ability to evaluate and measure student learning across a variety of languages, 

environments, and contexts (Shuchi Grover, Cooper, & Pea, 2014). Related work has sought to 

define the process one follows to develop quality computer science assessments, beginning with 

identifying the goals of the assessment and the material to cover, through validating, piloting, 

and refining the instrument (Buffum et al., 2015). Additionally, new techniques are being 

developed and applied to programming assessments to improve accuracy and build confidence in 

new assessments (Sudol & Studer, 2010). One notable example of a rigorous, validated 

assessment is the Foundational CS1 assessment (FCS1) (Tew & Guzdial, 2011), which is a 

language independent instrument designed to decouple concepts from the language used to 

represent them. This makes it useful to learners regardless of the language used during 

instruction. This is in contrast to most validated programming assessments developed by testing 

boards, like the Advanced Placement (AP) CS exam and the A-level General Certificate of 

Education in Computing, both of which are currently designed for the Java language.  

 There are a growing number of projects working towards developing assessments for the 

blocks-based approach to programming that we are investigating herein. Much of this work looks 

to assess not programming specifically, but computational thinking more broadly (Shuchi Grover 

et al., 2014). For example, the Fairy assessment (Werner, Denner, Campe, & Kawamoto, 2012), 

designed for middle school aged learners, uses Alice and presents learners with partially 

completed, or buggy, programs that need to be fixed in order for in-world characters to 
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accomplish a specific task. In taking this approach, the Fairy assessment evaluates both 

comprehension (learners understanding of what a written program does) as well as gives learners 

a chance to problem solve, design and implement algorithmic solutions to assessment tasks. This 

design addresses the critique that process is often lost in conventional assessments of 

programming knowledge (Piech, Sahami, Koller, Cooper, & Blikstein, 2012). Another 

innovative assessment approach to computational thinking comes out of the Scalable Game 

Design group that developed an automated way to measure the frequency of computational 

thinking patterns in student-authored programs as a way to assess learning (Koh, Basawapatna, 

Nickerson, & Repenning, 2014). Despite this growing number of assessments that incorporate 

the blocks-based modality, prior to this dissertation study, there did not exist an assessment that 

could be used to comparatively evaluate student understanding across blocks-based and text-

based modalities. In response to this, the Commutative Assessment was developed.  

 The central feature of the Commutative Assessment is that every question can be asked 

using one of three isomorphic programs. One version of the question presents the program in a 

textual form, the second uses the Pencil Code blocks representation, and the third is how the 

program would be written in Snap! (Harvey & Mönig, 2010), a widely used blocks-based 

programming environment that includes a larger set of visual cues in rending its programs. 

Figure 3.1 shows the three different forms that a single question’s program may take on the 

assessment. The assessment is called The Commutative Assessment to reflect the fact that the 

modality of the program included in each question can be swapped between administrations of 

the assessment. Details of the assessment are provided later in this section, after a discussion of 

the content areas covered by the Commutative Assessment. 
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Snap! Pencil Code Blocks Pencil Code Text 

Figure 3.1. The three forms programs may take in the Commutative Assessment. 

 While a standard concept inventory for introductory computer science has yet to be 

established (Taylor et al., 2014), there are a set of concepts that are recognized as being central 

for such courses. The content assessments primarily draw on two resources in deciding what 

concepts to include in the assessments. The first is the recently released 2013 CS Curriculum 

(ACM/IEEE-CS Joint Task Force on Computing Curricula, 2013) that is meant to provide 

guidelines for university computer science departments. This curriculum breaks down the field 

of computer science into broad categories and recommends how much time should be committed 

to each category and at what point the material should be covered. The assessment focuses on 

concepts that were emphasized as being foundational early in a students’ career. The second 

resource the assessment draws on is the work of Tew and Guzdial (2010, 2011) and their effort 

to create a validated CS 1 assessment. As part of this effort, they reviewed the contents of 12 

introductory computer science textbooks along with other published curricula to establish a list 

of core CS1 concepts. Their final list consists of:  

• Fundamentals (variables, assignment, etc.)  
• Logical Operators 
• Selection Statements (if/else) 
• Definite Loops (for) 
• Indefinite Loops (while) 
• Arrays 
• Function/method parameters 
• Function/method return values 
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• Recursion 
• Object-oriented Basics (class definition, method calls) 
 

Informed by these two resources, the Commutative Assessment focuses on the subset of these 

concepts that could fit within our five week curriculum. This included the following five 

categories from Tew and Guzdial’s work: fundamentals, selection statements, definite loops, 

indefinite loops6, and function/method parameters. Based on the review of the CS2013 

Curriculum and what it emphasizes for introductory courses, as well as the desire to broaden the 

assessment beyond programming specifics, the Commutative Assessment also includes two 

additional content categories: program comprehension (interpreting the behavior of short 

programs), and algorithms (natural language descriptions of steps to be followed to solve a 

problem). Table 3.3 shows the final list of concepts included in the newly designed assessment 

and how it maps on to Tew & Guzdial (2010) and the CS2013 curriculum. 

Table 3.3. The computer science concepts covered in our content assessment. 

Commutative Assessment Mapping to Tew & Guzdial 
(2010) Categorization 

Mapping to CS 2013 
Curriculum Category 

Variables Fundamentals Fundamental 
Programming Concepts 

Conditional Logic Selection Statements Fundamental 
Programming Concepts 

Iterative Logic Definite Loops;  
Indefinite Loops 

Fundamental 
Programming Concepts 

Functions Function/method parameters; 
Function/method return values 

Fundamental 
Programming Concepts 

Program Comprehension - Development Methods  
Algorithms - Algorithms and Design 

 

 
6 Definite and indefinite loops were collapsed and taught together in our curriculum and at times 
grouped together in our analysis. In this document, references to iterative logic refer to both of 
these forms of looping structures.  



 79 
The Commutative Assessment includes 30 questions, five in each content area. All of the 

questions are multiple choice or true/false and, with the exception of the algorithm questions, 

which take the form of a short piece of code that students are asked to interpret. The algorithm 

questions have plain text descriptions of a problem then ask the students questions about steps 

that need to be taken to solve that problem. Each question on the assessment has three possible 

programs that could be displayed. For each administration of the content assessment, there is 

roughly an equal number of questions asked in each modality, additionally, within each 

conceptual category, every modality is present at least once. As the assessment was given three 

times during the study, it ensured that every student answered every question in every modality. 

This means the questions in the second administration of the Commutative Assessment included 

the same set of questions, but used different modality than the version the student saw in the first 

administration. Likewise, the final time the learner took the assessment, each question was 

presented in the format he or she had not yet seen. Figure 3.2shows a sample variable question 

from the assessment. When taking the assessment, students see only one version of the program. 

What will be the value of x and y after this script is run? 

 

(or) 

 

(or) 

 

A) x is equal to 15 and y is equal to 15 
B) x is equal to 5 and y is equal to 10 
C) x is equal to 15 and y is equal to 10 
D) x is equal to “x + 5” and y is equal to “x” 
E) x is equal to 10, 15 and y is equal to 10 

Figure 3.2. A question from the Commutative Assessment. 
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The multiple choice answers were informed by misconceptions that have been identified in 

the literature (see appendix A of (Sorva, 2012) for a summary of misconceptions). The set of 

available choices includes the correct answer as well as responses drawn from the literature on 

misconceptions around variable assignment. Option A would be chosen by a student that holds 

the misconception that when one variable is assigned to another, the two values are linked and 

that whatever happens to one, happens to the other (du Boulay, 1986). If a student incorrectly 

thinks that a value gets passed from one variable to another (i.e. the variable does not retain its 

value if another variable is set to it), then the student would choose option B. Option D would be 

chosen by a student who thinks expressions do not get evaluated during assignment (Bayman & 

Mayer, 1983; Sorva, 2008). Finally, option E would be chosen by students who think that 

variables “remember” prior values (Doukakis, Grigoriadou, & Tsaganou, 2007; du Boulay, 

1986). We also choose to write out “is equal to” instead of using an equals sign to be explicit 

about the meaning of the choices. Throughout the assessment we tried to follow this approach as 

much as possible to shed light on potential misconceptions conveyed or supported by the 

different modalities. Including responses drawn from the misconceptions literature is intended to 

help provide evidence for linking certain modalities with misconceptions about the concepts that 

are being demonstrated. The full Commutative Assessment can be found in Appendix C. Basic 

validity measures were run on the responses collected in the second year of the study and showed 

the assessment to have an acceptable reliability score across all items (Cronbach’s α = .80). 

 It is important to note that while the goal of this assessment is to understand the effect of 

programming modality on learning, there are other factors complicating the issue, most notably, 

differences in the language itself. For example, in Figure 3.2, the syntax and keywords used in 

variable declaration and assignment are different between the two modalities, making the 
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difference between the two forms of the question more than just a shift in modality. This is a 

constant challenge with this work as a feature of the blocks-based modality is the ability to 

support more conversational and readable commands (Weintrop & Wilensky, 2015a, 2015c).  

 The design of the Commutative Assessments makes it possible to group the responses 

along a number of dimensions that can yield insight into the relationship between modality, 

tools, and emerging understanding. The dimensions include grouping responses by: condition 

(what tools the students used), representation used in the question (graphical vs. textual), concept 

(conditional logic, iterative logic, etc.), prior computer science experience), and various 

combinations of those groupings. The details of this analysis are presented later in the Findings 

chapters. 

Qualitative Data Sources 

 A number of qualitative data sources were gathered as part of this study to compliment 

the quantitative data just discussed. These data sources included: classroom observations, semi-

structured student and teacher interviews outside of class, and the collection of non-

computational student generated artifacts. 

 The major qualitative data source for this study is semi-structured clinical interviews with 

students and the teacher. These interviews occurred outside of class time throughout the fifteen 

weeks of the study. For the student interviews, the researcher sat alongside the student either 

asking the student questions about their experiences in the class or having them think-aloud as 

they work activities designed to illicit specific types of thinking around computer science 

concepts. The goal of these interviews was to more deeply probe students’ emerging 

understandings and identify if and how understandings are bound up with the representations 

they are using in the classroom. Three rounds of interviews with students were conducted. Each 
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set of interviews included students from all three conditions of the study. Three protocols and 

sets of activities were designed, one for each wave of the interviews. The interview protocols can 

be found in Appendix D The first wave of interviews began at the start of the course, the second 

at the conclusion of the introductory tools portion of the study (weeks 5 and 6), and the third and 

final wave occur during the last two weeks of the study, after students have been programming in 

Java for 10 weeks. The interviews were recorded with screen capture software and the 

computer’s on-board camera and microphone and serve as the primary data source for 

understanding the relationship between the representation used and students’ emerging 

understandings. A total of 35 interviews were conducted. Table 3.4 provides information on the 

students that were interviewed. 

Table 3.4. The 35 student interviews conducted during the study. 

 Pre Interviews Mid Interviews Post Interviews 
Blocks Condition 4 Interviews (2M, 2F) 4 Interviews (3M, 1F) 4 Interviews (3M, 1F) 
Hybrid Condition 4 Interviews (4M) 3 Interviews (3M) 4 Interviews (4M) 
Text Condition 4 Interviews (3M, 1F) 3 Interviews (2M, 1F) 5 Interviews (5M) 

 

 Two teacher interviews were also conducted: once after the conclusion of the first phase, 

and again at the end of the study. The teacher who taught all three sections of the class also 

participated in the pilot study, so an additional three interviews were conducted the previous 

year, which covered topics including background and personal pedagogy beliefs. The two 

teacher interviews were conducted outside of class during the teachers’ preparation period. The 

interviews asked the teacher to reflect on the tools being used in her classes and to compare these 

classes to each other and to prior years when other introductory tools were used. We also 

discussed specific assignments and students in each of the classes. The goal of these interviews 
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was to draw on the teacher’s expertise to gain insight into how she perceived the students 

were reacting to the different tools.  

 Over the course of the study, the classrooms were regularly observed. Each observation 

included field notes capturing what was happening during the course of the period. These 

observations were focused on student questions, teacher strategies, and characteristics of the 

class dynamic that are influenced by the programming environment. The final form of qualitative 

data we collected was non-computational student created artifacts. In particular, the teacher has 

students keep a journal over the course of the school year. In these journals the teacher has 

students write pseudo-code, respond to class prompts about different computer science concepts, 

and reflect on in-class activities. We gathered and recorded the content of these journals to serve 

as a further data source for understanding the relationship between how students understand 

concepts and how they compose solutions (in the form of pseudo-code) and the programming 

modality they have used in class. 

Computational Data Sources 

 The third component of the data collection plan involved collecting snapshots of the 

programs students wrote throughout their time participating in the 15-week study. In taking this 

approach we developed computational data collection strategies and employed various 

computational methods to identify trends in how students developed programs and the unique 

characteristics of the programs they produced, looking for patterns across the three conditions.  

 Conducting this analysis was dependent on the ability to record every iteration of every 

program written by students participating in this study. Over the course of the 15-weeks, we 

recorded a snapshot of a student’s program each time they compiled and/or ran it. As two 

different environments (and thus languages) were used during the study (Pencil.cc and Java), two 
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different sets of data collection tools were deployed. Both tools were built on top of the same 

data collection infrastructure. We will begin with a brief description of our data collection and 

storage backend before discussing our two unique logging instruments. 

 To gather and store information on student authored programs, we instrumented both the 

way learners compiled their Java programs as well as the Pencil.cc programming environment to 

push data about student actions and student programs to a remote web-server. In both Java and 

Pencil.cc, each logged event produced a call to a RESTful webservice that would handle the 

inbound request and parse and store the data it received in a server-side database. The data 

logging web service is build using the django framework and hosted on the Heroku platform. 

The service has a number of endpoints that our learning environments push data to depending on 

the learner-triggered event, which we will discuss in more detail in the next section. The 

collected data was then exported from the databases using custom actions written for django’s 

administrative interface, which makes it easy to manipulate, organize, and selectively export data 

based on custom defined goals. To date, over 220,000 programming events have been logged 

using this system. In our analysis section, we will provide more specifics about the frequency 

and content of these logged events. 

Pencil.cc Data Collection  

 All three versions of our introductory tools were built on top of the Pencil Code 

programming environment use the same data collection system. The customized version of 

Pencil Code used for this study (called Pencil.cc) was instrumented to log data about the state of 

the learners program at various times during the learners use of the tool. This was achieved by 

issuing an asynchronous HTTP request in the background of the programming environment (the 

browser) that posts the contents of the composed program along with other pertinent information 



 85 
to a server that we control. Table 3.5 describes the different events that trigged a log message 

to be sent to our server. The last three events in Table 3.5 (all starting with the Block-drop 

prefix) were not logged in all conditions; Block-drop-addition was logged for Blocks and Hybrid 

while the last two were only logged in the Blocks condition. These provide additional insight 

into programming patterns but were not included in the text condition of the study as there are no 

blocks provided and thus, the events could not be triggered. 

Table 3.5. The events that trigger a log event to be captured in Pencil.cc 

Event Type How the Event is Triggered 
New A new program is created 
Load An existing program is opened 
Save A program was saved by the user 
Logout The user exits Pencil.cc 
Run The user ran a program 
Block-drop-addition A block is added to the program 
Block-drop-deletion A block is removed from the program 
Block-drop-floating A block is dropped outside of the current program 

 
 Each log event included information about the user, the state of the environment and the 

contents of the program. Table 3.6 describes the content of each entry in our Pencil.cc log event 

table. 

Table 3.6. The values stored for each logged event in the Pencil.cc environment. 

Column Name Description of data being stored 
StudentID A unique identifier for the author of the program 
Assignment The assignment the student is working on 
Hostname The url where the assignment can be found 
ProjectName The student defined name of the current project 
TimeStamp The time (to the millisecond) that the logging request was recorded 
Condition The condition of the student the student is in (blocks, text, hybrid) 
EditorMode If the program is rendered in blocks or text 
PaletteVisi
ble If the blocks palette is visible to the user 

EventType The cause of the event to be logged (see Table 3.5 for possible values) 
Program The full contents of the program at the time of the log event 
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FloatingBlo
cks The value of any floating blocks7 if any are present 

ProjectHTML Any user defined HTML in the program  
ProjectCSS Any user defined CSS in the program  

Java Data Collection  

 As with Pencil.cc, the learners’ Java programming environment was instrumented to log 

the contents of each program the learner wrote, along with additional environmental and learner 

data. Like with the introductory tools, this logging happens in the background of the environment 

and is transparent to the learner and thus does not interfere with classroom practice or the 

programming experience. Student programs are stored on the same remote web server as the 

Pencil.cc logs, although in a different table as a slightly different set of data is collected. For the 

Java portion of the study, students compile their programs using the command line javac call. 

To record these compilation events we developed a tool called JavaSeer that replaces the 

students’ javac command with a script that wraps the compilation call with additional logic to 

capture the student program and compiler feedback. JavaSeer accomplishes this by creating an 

alias to the javac command line call within the terminal on the computers the students use. 

When students run javac, JavaSeer reads in the arguments the student passed to javac, which 

includes the list of files the student intends on compiling. Inside JavaSeer, javac is called with 

the same commands the student passed in, then records the output from javac and passes it 

back to the user as output. Additionally, JavaSeer reads in the contents of the files being 

compiled and sends them, along with the compilation output and other information to the 

JavaSeer server via an HTTP request. This whole process is invisible to the student. This 

 
7 Floating blocks are blocks that have been added to the canvas but are not connected to any part 
of the program. This is the blocks-based equivalent to commenting out lines of a program, so 
they are present but not executed. 
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approach to logging student programs was informed by the Git Data Collection project and 

the work built as part of that effort (Danielak, 2014). Table 3.7 describes the data that we collect 

for each program via JavaSeer.  

Table 3.7. Data recorded via JavaSeer, our automated data collection tool for command line 
compilation. 

Column Name Description of data being stored 
StudentID A unique identifier for the author of the program 

JavacCall The argument(s) passed to javac (which will be the list of 
file names) 

TimeStamp The time (to the millisecond) that the logging request was 
recorded 

JavaProgram The contents of the java files that are being complied 
JavaCompilerOutput The compiler output from the call to javac 

Data Analysis Approach 

 A central component of this dissertation is the use of a mixed-methodological approach, 

which uses findings from one methodology to support and validate the findings of another. 

Having described the various types of data that were collected and the larger shape of the study, 

this chapter continues with a high level description of the analytic approach for each type of data 

collected. All of the methods pursued will be further discussed in more detail later in the findings 

chapter. 

Quantitative 

 The design of the Commutative Assessment and the attitudinal surveys provide the ability 

to speak to a number of the research questions posed in this dissertation. By looking at student 

performance on different conceptual questions based on the modality they were answered in, we 

advance our understanding of the relationship between modality and conceptual understanding. 

By looking at differential performance on the assessment based on the introductory tool used by 

the participant, we can start to understand how those modality support learning and 
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understanding of different concepts. Additionally, because the surveys were given at three 

distinct points, we can look for learning gains over the introductory tool period, as well as, over 

the first ten weeks in Java. These content assessment findings are complemented by the 

attitudinal surveys, which allow for shifts in perceptions, confidence, and attitudes towards 

programming and computer science to be tracked. By looking across these two quantitative 

sources, we can see correlations across the various dimensions of the study, including attitudes, 

learning, and tool use.  

 When calculating differences across conditions or modalities, an analysis of variance 

(ANOVA) test is run, revealing if there is a statically significant difference among the groups. 

When significance is identified by the ANOVA test, a Tukey HSD post-hoc test is run, which 

reports the differences between each pair of groups that were included in the initial ANOVA test. 

In cases where the test is looking within a group across time periods on Likert scale questions 

(i.e. differences in a responses to a specific questions between the Pre and Mid surveys), a 

Wilcoxon Signed Rank test is used. This test is appropriate given the ordinal nature of the Likert 

responses and because it is a non-parametric test used to compare paired samples. As these data 

are within the same population over time and there is no guarantee of an underlying normal 

distribution, this test is a better fit than alternatives like a t-test (which is parametric) or a Mann-

Whitney U-test (which is appropriate but does not take advantage of the paired nature of the data 

being analyzed). When comparing across time periods on continuous data sets (i.e. student 

performances on the Commutative Assessment), paired t-tests are used given the structure of the 

data and the fact that the same students participated at each point in time. Similarly, on the 

content assessments, when looking for changes over time, an ANCOVA calculation is used, 

which allows for the comparison across the three groups while also adding the ability to control 
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from covariates. On these analyses, the covariate is students Pre scores when looking at Mid 

differences and Mid scores when looking at Post outcomes. The reason for this is to better 

attribute changes in outcomes to the tools, as opposed to prior differences.  

Qualitative 

 The primary qualitative data source of the study are the pre, mid, and post interviews 

conducted with students from all three conditions and the free-response questions asked on the 

attitudinal surveys. The analysis of these data follows an iterative approach, beginning with 

content coding to understand the breadth of what is present and describe the various aspects of 

the topic being discussed that are attended to. Once this is complete, we then do a second pass 

over the interviews taking a grounded theory approach, employing both open and axial coding 

(Strauss & Corbin, 1994). The goal of open coding is to gain a sense of the overall features of the 

phenomenon under study, while axial coding is a more focused approach to coding qualitative 

data as it is informed by theory and previous findings, trying to evaluate if expected patterns or 

concepts are encountered. Given the relatively small number of interviews conducted (35) and 

responses to interview questions (~80), codes that emerged from these analyses were applied by 

a second coder to the complete dataset to calculate inter-rater reliability (IRR) measures. The 

procedure for calculating IRR was to calculate the Cohen’s Kappa for each individual code then 

average those values across the given dataset. If you read this, send me an email and I will buy 

you a beer if/when we meet. You have earned it for making it this far into my too-long 

dissertation! This approach was necessary as many of the codes applied where not mutually 

exclusive, so Kappa could not be calculated for the full set of codes together. IRR scores are 

reported in the text when the data is presented. After the data had been coded by the secondary 

coder, the two researchers met to resolve any differences found and the coding manuals were 
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updated to reflect the agreed upon resolutions. The coding manuals for every systematic 

qualitative analysis conducted can be found in Appendix E. 

Computational 

 A growing body of research is looking at the use of big data for studying student learning 

in increasingly nuanced and sophisticated ways (Baker & Yacef, 2009). In particular, this 

approach is productive for open-ended, constructionist, learning experiences (Berland, Baker, & 

Blikstein, 2014). Computational data analysis has been especially active in the domain of 

computer science education as the incremental building of programs by students lends itself well 

to the gathering of time series data and the imposing a relative uniformity to data making it 

possible to computationally compare across large data sets (Jadud & Henriksen, 2009). Recent 

work has looked at trends in how students write programs (specifically looking at frequency and 

size of incremental updates), intermediate program states the students visit as they work toward 

the final project, and the predictive nature of programming features on students’ final course 

grades (Berland, Martin, Benton, Petrick Smith, & Davis, 2013; P Blikstein et al., 2014; Werner, 

McDowell, & Denner, 2013). The strategy for collecting and analyzing student projects in this 

dissertation follows this line of work.  

 One of the questions this dissertation seeks to answer is how programming differs 

between different modalities and if and how practices developed in one modality persist or fade 

when moving to another. As the dissertation will collect data on students programming in 

introductory graphical, hybrid, and textual introductory environments along with data from those 

same students programming in a conventional text-based programming environment, the data set 

will allow us to begin to answer these questions. The analytic approach that used in this work is 

similar to the approach used in Blikstein et al. (2014). The contribution to this approach is the 



 91 
inclusion of three different modalities and two programming languages that grant the ability 

to look across modality and language to compare various aspects of resulting programs.  In 

particular, analyses of the content of programs, the nature of how they were composed, and 

meta-information about the programs (like frequency complications) will all be included in our 

computational analysis. A more detailed account of the computational methodologies employed 

will be discussed in the findings section. 

Setting and Participants 

 In this section we present information about the setting of the study and information 

about the various participants involved.  

School information 

 This study was conducted at a large, urban, public high school in a Midwestern city, 

serving almost 4,000 students. The school is a selective enrollment institution, meaning students 

have to take an exam and qualify to attend. In this school district, students are selected based on 

their performance on the admissions test relative to other students from their school (as opposed 

to all other applicants). As a result, students attend this school from across the city and there is an 

equal representation of students from under-resourced middle schools and from schools in more 

affluent parts of the city. The student body is relatively diverse 44% Hispanic students, 33% 

White, 10% Asian, 9% Black, and 4% multiracial/other8. A majority of the students in the school 

(58.6%) come from economically disadvantaged households, with the student body also 

 
8 These numbers are reported annually by the district. Similar breakdowns for the study 
participants are given later in this section. 



 92 
including a small number of second language learners (0.6%) and diverse learners9 (4.5%). 

Being a selective enrollment school, students are academically high achieving; reporting an 

average growth in student performance on the ACT in the 66th percentile national and a average 

ACT scores that was in the 95th percentile nationally. Ninety-five percent of freshmen at the 

school are on track to graduate at the end of their first year and reports 86.1% of graduates 

continued on to college. 

 The school was selected for a number of reasons. First and foremost is the fact that 

school has a well established and well supported computer science department. This had a 

number of beneficial aspects with respect to the study including the existence of three sections of 

the same class for the three-condition experimental design, sufficient technological capabilities 

to conduct the study, exceptional teachers willing to take on the challenges the accompanied 

teaching a class in the study, and a faculty and administration invested in this work and thus 

willing to commit class time and teacher resources to the project. The administration in this 

school has shown a great deal of support both for computer science education and for pursuing 

innovative educational programs making it especially well suited as a research site for this work.  

Second, an important aspect of the project was working with a diverse student population, 

including students from backgrounds that have not historically excelled in computer science, 

which meant working in a diverse, urban setting. Finally, the faculty of the computer science 

department at the school are active in the local computer science teachers association (CSTA) 

chapter and national educator-oriented computer science education research communities, thus 

providing an easy way to develop a relationship with the researchers as well as being well 

 
9 The diverse learners designation is often referred to as special education students or 
differentially-abled students. 
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connected and well informed with respect to the latest trends, technologies, and curricula in 

the computer science education space.  

Class and Classroom Information  

 The experiment was conducted in an existing Introduction to Programming course. 

Historically, the class spent the entire year teaching students the Java programming language. 

The course did not follow a specific published curriculum, but instead was a combination of 

materials designed by the teachers and following the structure provided by the course textbook, 

Java Concept, Early Objects (Horstmann, 2012). In participating in the study, the class schedule 

was shifted back five weeks to allow the classes to go through the five-week introductory 

curriculum before moving to Java. The class is an elective and open to students from all four 

years of high school. 

 The classroom the study was conducted in was a recently renovated space designed to 

have an open flooring plan and a collaborative studio feel. Each class had around 30 students and 

each student was assigned a laptop computer which they used everyday for the duration of the 

study. Students sat in individual desks that were on wheels, that allowing them to move their 

desks around the room. As such, there were no assigned seats, no fixed seating arrangement, and 

students were given freedom to sit where they wanted. Most instruction was project based, with 

the teacher doing some lecturing from the front of the class using an interactive white board to 

display programs and lead instruction. Figure 3.3 is a picture of the classroom in which the study 

was conducted. 
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Figure 3.3. The classroom in which the study was conducted. 

Teacher Participant Information 

 The design of the study put the researcher in an observer role and relied on the course 

teacher to lead all instruction, including during the experimental portion of the course. The same 

teacher taught all three sections of the course, allowing us to control for teacher effects. The 

teacher holds an undergraduate degree in technical education and corporate training. The year 

she participated in the study was her eighth year of teaching (third at this school). Along with the 

Introduction to Programming course, she has also taught Exploring Computer Science, AP 

Computer Science, Android Application Development, and Web Development. She was also one 

of two teachers that participated in the pilot study for this work, so was familiar with both the 

goals of the project as well as the high level course and tool design before agreeing to participate. 

The curriculum taught in the class was largely designed by the lead researcher but the lead 

teacher did contribute ideas, lessons, and customize the activities while teaching them. 
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Student Participant Information 

 The computer science course used for the study is an elective class but historically has 

attracted students from a variety of racial background and been taken by both male and female 

students. A total of 90 students participated in the study. The self reported racial breakdown of 

the participants was: 41% White, 27% Hispanic, 11% Asian, 11% Multiracial, and 10% Black. 

Relative to the larger student body, White students were overrepresented and Hispanic students 

were slightly underrepresented, with the other racial groups roughly matching the larger school 

demographics. The three classes in the study were comprised of 15 female students and 75 male 

students. This gender disparity is problematic, but as recruitment for the courses was out of the 

control of the researchers, there was little that could be done to address this10. Of the students 

participating in the study, almost half (47%) speak a language other than English in their 

households. Throughout this dissertation, where vignettes are presented, details about the 

participants will be shared, otherwise, all data reflects the full set of participants in this study. 

 At the outset of the study a pre survey was given to understand students existing 

computer science knowledge, their prior computing experience, and to gain insight into the 

motivations and goals of the students and why they chose to enroll in an introductory 

programming class. An analysis of early responses shows the large role the computing plays in 

the lives of learners. Figure 3.4 shows student responses to the prompt: How much time do you 

spend on a computer at home each day? The fact that this chart skews towards students spending 

more time versus less on computers outside of school (only 10 of the 87 respondents use a 

 
10 It is important to note that this gender disparity is an issue the computer science department 
and the school administration are working to address through a number of initiatives. 
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computer for less than 1 hours a day outside of school), speaks the relatively large role of 

computation in their lives and their comfort with computers. 

 
Figure 3.4. Time spent on a computer outside of school. 

 A similar predisposition and prior experience with programming can also be seen in the 

set of participants. Of the 88 students that filled out the pre attitudinal survey, just under half of 

the students (40) responded saying they had some prior computer science experience, ranging 

from taking a non-programming oriented introductory computer science class (30 students), to 

spending their free time over the summer learning a trendy web application framework (1 

student), with only 17 of the 89 respondents saying they had never used any programming 

language before (including languages like HTML and Scratch). Thirty-two students reported 

some experience with a text-based programming language, with that number growing to 63 by 

including HTML, CSS and JavaScript (which was a single category). Students were also asked if 

they knew any professional programmers, of the 88 respondents, just under one-third of the 

students (29) knew a programmer personally, often a member of their family. This speaks to the 

number of first generation programmers in this learning community. 
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To get a sense of students initial motivations for taking the course, students were 

asked the following open-ended question on the pre-survey: Why are you taking this course? A 

coding scheme was developed based on student responses to form a larger categorization to 

accurately describe students’ motivations for taking the course. Five major reasons were 

identified from the data, which are described in Table 3.8.  

Table 3.8. Student responses to why they decided to enroll in the class. 

Code Description 
Personal & 
Enjoyment 

Response alludes to enjoyment (I want to take it), specific creative or 
personal goals (I want to make video games) or enjoyment (It seems 
fun/I like computer science) 

Learn to 
Program 

Response speaks specifically to learning to program being the goal 
itself (I want to learn to program) 

Future 
Job/Major 

Response specifically refers to getting a job or being able to pursue a 
specific career or major in university 

Broadly Useful Response alludes to the broad applicability of computer science 
(Computer science opens a lot of doors) 

General 
Interest 

Responses suggest a general interest in computers - but not a specific 
reference to wanting to learn to program 

 

As students could write as much or little as they wanted, responses could be coded for 

multiple reasons. For example, one student responded: “I am taking the course because it is a 

good skill to learn and I may want to get a job involving programming in the future.” This 

response was coded for both Future Job/Major and Broadly Useful. Figure 3.5 shows the result 

from coding the full set of student responses. Unsurprisingly, given the course is called 

Introduction to Programming, the desire to learn to program was the most frequently cited reason 

for taking the class. Slightly more surprising is the fact that more students saw computer science 

as broadly useful than saw the course as a stepping-stone towards a specific job or pursuing a 

degree in computer science. The final thing important to point out in this data is the prevalence 

of student taking the course because of their enjoyment of programming or desire to learn to 
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program for personal reasons (like making video games, which was cited by four students). 

Other reasons students gave for enrolling in the class include things like them wanting a 

challenge, their needed to add one more class in their schedule, or to try something new. 

 
Figure 3.5. Student responses for why they enrolled in the course. 

 These free-response reactions given were echoed in the pre-interviews conducted at the 

outset of the study. For example, when asked why they were taking the course, students said 

things like: "I think it will be helpful for college and some things I was looking into said that, to 

get in, it'd be helpful to get some CS background" and “I like learning things that could help me 

later, like maybe with a job that would use some of this stuff”. The responses weren’t always so 

grounded in specifics, for example, another students made the general comment “Computers are 

becoming the future, I wanted to take at least one computer course before going to college and I 

figured programming was a decent one.” The opening of this quote nicely captures how many 

students viewed this course and the importance of computers, and technology more broadly, in 

their futures. 
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 This chapter presented the various dimensions of the design of the study, including 

the settings in which it took place, the materials used, the data sources and assessment 

instruments, and details about the participants of the study. The one component of the study that 

was not given adequate description is the focus of the next chapter: the introductory 

programming environments that are at the heart of this dissertation. 
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4. Design 

 At the heart of this dissertation lies the design of introductory programming environments 

and an investigation into the impact of modality on novice programmers. The two iterations of 

this study relied on two different programming environments, with the second being informed by 

the design of, and findings from, the first. This chapter presents the two programming 

environments: Snappier! and Pencil.cc. Each environment is discussed with respect to the 

environment upon which it was based (Snap! in the case of Snappier! and Pencil Code for 

Pencil.cc), as well as the various features that were added to it in order to create the three 

conditions used for the studies. As Snappier! was used in the first year of the study, findings 

from that year are briefly reported with a focus on aspects of the environment that informed 

designed aspects of Pencil.cc. Limitations and potential future extensions for each environment 

are also discussed. But first, the chapter begins by laying the theoretical groundwork for our 

conceptualization of modality upon which this dissertation is built. 

Modality 

 Before diving into the environments and their designs, it is important to be explicit about 

what is meant by the term modality. Given a semantics, a modality is a way of composing within 

that semantics. In this way, modality is not a characteristic of the representation alone, but also 

captures the relationship between the representation and how one uses it. In this way, a modality 

can be thought of as similar to the notion of affordance (Gibson, 1986; D. A Norman, 1990) in 

that it captures a characteristic of the interaction between an actor and the thing being acted 

upon. A named modality (like text-based or blocks-based) is a label given to the set of 

affordances provided by a given representation. Thus, it is possible for different representations 
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to be of the same modality (like Java and C++ both being text-based modality) or the same 

representation to support different modalities (like Pencil Code providing both a text-based and 

blocks-based modalities). While modalities are characteristics of representational systems, the 

environment in which the representation is situated also shapes the modality. For example, 

writing a Java program in a basic text editor is different than writing a Java program in an 

Integrated Development Environment designed for Java, which can also include code completion 

features, predefined code templates, code refactoring tools, and code navigation options. While 

the underlying representation is shared (both text-based Java code), the way the user interacts 

with the representation and the set of possible operations that can be executed differ. 

Colloquially, the term modality is often used to describe the representation itself (i.e. “the 

blocks-based modality”). This usage is consistent with the previous definition in so much as it 

serves as a proxy for the more nuanced and robust articulation of what modality means given 

above.   

 This dissertation is primarily concerned with two programming modalities, blocks-based 

programming and basic text-based programming11. The basic text-based modality allows 

character-by-character interactions through the use of a keyboard, while the blocks-based 

modality provides a drag-and-drop form of composition. These two modalities can be seen in 

Figure 1.1 and will be discussed in much greater detail throughout this chapter. While text-based 

programming is most common programming modality and blocks-based programming is 

becoming increasingly popular, they are but two of a larger set of programming modalities. 

 
11 The qualifier “basic” is added here to refer to a text-based modality that does not include 
advanced coding interactions like autocomplete or code refactoring. The text-based modality 
referred to throughout this manuscript requires that every character be manually entered. 



 102 
Looking across the history of computer science we can see a diversity of other programming 

modalities. Early programming with punch cards provides one example of a different modality 

(Figure 4.1a). In this form of programming, the author wrote instructions by using tools to 

physically punch holes in paper cards for the computer to read. The programming-by-

demonstration paradigm is another alternative modality (D. C. Smith, Cypher, & Tesler, 2001). 

In environments that use this approach, such as KidSim (later renamed Cocoa then Creator) (D. 

C. Smith et al., 1994) and Agentsheets (Repenning et al., 2000), users program instructions by 

defining rules that are created by acting out the desired behavior, in this way programs are 

authored without interacting with an underlying textual grammar (Figure 4.1b). There are also 

more recent examples of new programming modalities. For example, Horn et al.’s (2013) 

computational literacy sticker books allow children to write programs by placing stickers in a 

specific order (Figure 4.1c). A second example of a recently emerging programming modality is 

the Ozobot (http://ozobot.com), which is a robot that can be programmed by drawing colored 

lines on a sheet of paper. The robot can either follow the pen-trails defined, or can roll over a 

sequence of different colored pen trails and interpret the colors as a set of instructions (Figure 

4.1d). 

 

    
(a) (b) (c) (d) 

Figure 4.1. Four examples of programming modalities beyond blocks-based and text-based: (a) 
punch cards, (b) programming by demonstration, (c) computational literacy sticker books, and 
(d) path-following. 

Year One – Snappier! 
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 Having laid the theoretical groundwork for thinking about modality, we move on to 

presenting the two sets of programming environments used in this dissertation. The three 

environments for the first year of the study were all derived from the Snap! programming 

environment (Harvey & Mönig, 2010). Snap! is a JavaScript-based implementation of a blocks-

based programming language that can run in any modern web browser. Programs in Snap!, like 

other graphical blocks-based programming environments (such as Scratch and Alice), center 

around controlling on-screen avatars, called sprites, as they move around a stage. Programming 

in these environments largely entails giving behavior to sets of interacting sprites to create 

animations, games, and stories.  The Snap! user interface (Figure 4.2) is broken down into five 

main sections: the Palette where language commands are organized, the Scripting Area where 

programs are composed, the Stage where programs are visually carried out, the Sprite Corral 

where the available set of sprites are displayed, and the Tool Bar which provides menus for 

additional capabilities (like saving and loading programs).  

 
Figure 4.2. The Snap! interface with sections labeled. 

The Three Versions of Snappier! 
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 The Snappier! environment was built on top of the base Snap! functionality, thus has 

the same visual execution environment and, as much as possible, shares language semantics, 

behavioral properties, and design aesthetics with Snap!. This means in Snappier! programs were 

visually executed on the Stage and largely centered around defining behaviors for sprites. 

Snappier! was designed to introduce text-based programming aspects into an otherwise 

completely blocks-based interface. To accomplish this, Snappier! added a mapping from each 

block in the Snap! palette to an equivalent and valid JavaScript call. This mapping was 

accomplished using Snap!’s Code Mapping capability, which allows the user to 

programmatically associate a block with a piece of code. For Snappier!, a full set of JavaScript 

mappings were defined and the user interface was restricted to prevent the user from overwriting 

these mappings. To make the mapping more linguistically direct, a series of helper functions 

were written to introduce more legible commands. Table 4.1 shows a subset of the mappings 

between the Snap! blocks and the functional JavaScript equivalent. 

Table 4.1. A subset of the mappings between Snap! blocks and the JavaScript equivalent12. 

Snap! Block JavaScript Equivalent 

  

  

  

  

  

  

 
12 In both columns, the images shown are taken directly from the Snappier! environment. 
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 This mapping served as the main addition to the Snap! codebase, along with supporting 

functionality that enabled learners to view, edit, and run code written in JavaScript. Using this 

newly added functionality, three versions of Snappier! were created. The first version of 

Snappier! did not expose any of the new text-based functionality, making it equivalent to the 

Snap! environment; this version constituted the graphical condition of Snappier!. The second 

version of Snappier! gave the user the ability to right click on any blocks or script and see the 

JavaScript equivalent of the blocks-based program that had been written. This was called the 

Read-Only version of Snappier!. Figure 4.3 shows the interface for the Read-Only condition as 

well as a short program that can be viewed by the user. It is important to note that, in this version 

of Snappier!, it was not possible for the user to write any JavaScript. 

 

  
(a) (b) 

Figure 4.3. The context menu that users could use to open the JavaScript Viewer (a) and a 
picture showing the Snappier! environment with the JavaScript Viewer open (b). 

 The third version of Snappier! included the ability for the user to right-click and view the 

JavaScript behind any block or script and added the ability for the user to write their own 

JavaScript into new blocks. This was called the Read-Write version of Snappier! To support the 

user in writing new JavaScript, the environment was modified so that when a user defined a new 
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block (akin to creating a new function in a conventional programming language), Snappier! 

presents the user with a code editing window (called the JavaScript Editor) for writing their own 

JavaScript. This is in contrast to defining the new block’s behavior using blocks, as would 

normally be the case. The JavaScript Editor and Viewer is an embedded instance of the 

CodeMirror library, which provides is a JavaScript-based code editor that supports various code 

editing features including basic error detection, syntax highlighting, and auto-formatting. Once 

the user was done writing the new JavaScript code, the block was saved and could then be 

incorporated into a script alongside any other block. When the execution thread came across a 

custom defined JavaScript block, the JavaScript inside the block would execute. In this way, 

users would write JavaScript code inside the blocks-based environment. Inside the JavaScript 

editor, users would have access to arguments that were passed in as well as globally scoped 

objects in the execution space. Figure 4.4 showing a picture of what it looks like to define your 

own custom block in Snappier!  

 

  
(a) (b) 

Figure 4.4. The Block Editor that allows the user to define the name and arguments of the new 
blocks (a) and the JavaScript Editor where the behavior of the block is defined (b). 

 These two modes of Snappier! (Read-Only and Read-Write), along with the default 

Graphical mode, constituted the three conditions used in the first iteration of the study. The next 

section of this chapter briefly reports on some of the findings from the pilot study, focusing 
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specifically on the findings that informed the design of the programming tools in the second 

iteration of the study. 

Findings from Year One with Snappier! 

 One of the analyses conducted on the data collected in the first year sought to understand 

how students perceived the blocks-based programming modality. Do they find it easy to use? If 

so, what do they attributed that ease-of-use to? What, if any, drawbacks do they see with respect 

to using blocks-based programming tools in a high school computer science class? These 

findings have been published elsewhere (Weintrop & Wilensky, 2015b), but are recounted below 

as the outcomes from this analysis informed the design of the hybrid environment used in the 

second year of the study. For an extended discussion of these findings and methodological 

details, please refer to the previously published paper. 

Ease-of-Use 

 The first research question pursued was to understand if students thought blocks-based 

programming was easier than text-based programming, and if so why. To answer this question, 

data from the surveys administered at the midpoint and conclusion were analyzed. The surveys 

asked students to compare Snappier! with Java (either based on experience or expectation), with 

questions specifically asking what they viewed as the major difference between the two. The 

responses were then analyzed, identifying which answers attended to ease-of-use as contributing 

to the difference between Snappier! and Java. Of the 84 responses collected, more than half of 

students (58%) included ease-of-use as a major difference between the graphical and text-based 

environments. Table 4.2 shows the outcome of the coding of the responses that attended to ease-
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of-use as a difference. The subscript numbers in Table 4.2 show the breakdown by the three 

Snappier! conditions (Graphical, Read-Only, Read-Write).  

Table 4.2. Student responses comparing Java to Snappier! - coded for ease-of-use of the 
environment. 

Perception Count (Graph/Read-only/Read-write) 
Text-based Programming is Easier 4 (0/1/3) 
Blocks-based Programming is Easier 42 (14/15/13) 
Comparable Difficulty 2 (0/1/1) 
Did not attend to Difficulty 41 (13/13/14) 

 
 In this analysis, care was taken to only include responses that clearly attended to a 

difference in difficulty between the two environments. For example, the response “[In Java] 

there are no blocks to help out, it is basically done from scratch” was coded as attending to ease-

of-use, since the blocks “help out”, while the response: “Java is more writing as if it was a 

language, while Snap! you use logic to put blocks together” was not coded as attending to ease-

of-use because the student did not make it clear that this difference made one environment easier 

than the other. While many responses required some interpretation, others were very clear on 

which environment they found easier, giving responses like: “Learning Java is more complicated 

than Snap!” and “Java is much easier for me than Snap!” Additionally, two students attended to 

ease-of-use, but specifically said the two modalities were comparable: “one is hard and the other 

is equally as hard.” These data show that students found the blocks-based programming 

approach of Snappier! to be easier than Java, thus supporting the general view of blocks-based 

tools being easier for novice programmers.  

Reasons for Ease-of-Use 

 Having established that students perceive blocks-based interfaces as easier than text-

based programming tools, the follow-up analysis sought to understand what features of blocks-
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based tools contribute to this perception. The reason for pursuing this question was to distill 

design principles for future hybrid tools. To answer this question, a first analysis was conducted 

using the pre and mid interviews to see what students initial impressions were of blocks-based 

interfaces compared to text-based alternatives. A secondary analysis to supplement these first 

findings was conducted using the short answer responses from the post survey. The emphasis of 

this analysis was on how and when students attended to features of the blocks-based modality 

contributing to its ease-of-use. 

 The first aspect of the blocks-based tools that students identified as helpful was the 

descriptive, easy-to-read labels on the blocks. “Well, I mean, if you can read it…for humans this 

looks better, it's easier to understand.” Despite its looking less like a text editor when compared 

with the text-based code, a number of students viewed the blocks-based representation as closer 

to English than its text-based counterpart. “With blocks, it's in English, it's like pretty, like, more 

easier to understand and read,” a second student highlighted this difference, saying: “Java is not 

in English it's in Java language, and the blocks are in English, it's easier to understand.” A third 

student explained: “[the blocks] are basically a translation of what [the JavaScript] is doing, in, I 

guess, English for lack of better words.  It is describing what [the JavaScript] is doing, but it's 

describing it in an English form...like a conversion.” 

 The second feature students identified that makes blocks-based programming easy is the 

visual nature of the blocks and the graphical cues that each block provides for how and where 

they can be used. Four of the nine students interviewed explicitly mentioned the shape of the 

blocks as being useful. For example, when an eighth grade student was asked why some blocks 

have rounded edges and others have diamond shaped edges, she explained that it was so “the 

user knows that…they have a limited choice so that you don't make the mistake, because if all of 
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[the blocks] were the same, it might not work. If [the block is] rounded or diagonal, they'll 

know the difference; they'll know that you can't put [a diamond block] in [an oval slot], it's like a 

puzzle.” A second student echoed this fact when asked how he knew that Boolean blocks could 

be used with control structure blocks and numbers and that mathematical operators worked with 

motion blocks he explained: “it’s because of their outline; [the Boolean blocks shape] is the 

same as [the control blocks inputs] and then in motion, the [oval input] is the same as [the 

mathematical blocks].” The shape was identified as being useful to see how blocks fit inside each 

other, as well as how sequences of blocks could be built, which was helpful for making sense of 

the resulting behavior. “When [the blocks] are attached to each other, you know that the first one 

is going to affect the ones underneath it…everything is connected and it's easier to understand 

what is going on…I guess it's more intuitive too, because you can see how they all connect.” 

Students said that these shape cues helped not only to see where blocks could be used, but also 

the larger idea of the importance of the sequence of commands, “[the environment] teaches you 

that order is important.”  

 A third advantage identified by students was how the act of composing a program was 

easier with blocks. This is in part due to the shape of the blocks discussed above, but also a 

product of a number of other features of the blocks-based modality. The first is that the act of 

dragging-and-dropping commands is easier and less error prone than having to type in 

commands character-by-character: “If you type it, with like one word or one period or one 

something that's wrong it's going to mess everything up…it’s just harder to write with the 

codes.” Another student put it slightly differently saying: “I like visualizing things more so with 

Snap!; it's a lot easier than having to type everything in,” The student continued by saying how 

with text-based programing “you have to be pretty precise with your punctuation, you have to 
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type everything in.” A third student succinctly put it, with blocks “you don’t end up making 

as much mistakes.” Along with the ease of composing valid programs, a number of students 

highlight how blocks make it easier to tinker with a program. “You get to play around with 

[blocks]…because if you do it with writing, you like, have to erase everything or like start all 

over. It's not as easy to change and make new things. With blocks, you can just drag them and 

change what it's going to do.” This benefit can be seen when watching students compose 

programs, often taking a block or sets of blocks and putting them off to the side while trying new 

blocks in their script, only to ultimately reintroduce the removed blocks back into the script. 

 The final feature of blocks-based programming that emerged from the interviews was 

identified by four of the nine students and stems from the ease of finding blocks and 

understanding what they do through their organization within the programming environment. 

More specifically, how the blocks themselves alleviate the memorization that is required in text-

based programming. “[The blocks] kind of jog your memory, so you can see something and be 

like 'oh, I remember how to do that now', but with [text-based programming] you don't really 

have anything there to help you remember how to code something.” As a second student put it: 

“[In JavaScript] you need to like, know all the code words to draw something. Let's say you want 

to draw something, you need to type in a certain word to do that when in scratch you could just 

like, find the pen down block13 or something.” This last point is critical; blocks-based 

environments provide an easy and organized way to browse all the available blocks, making it 

possible to use the blocks themselves as a source of ideas, as one student put it: “everything is 

here that you can do.” Another student focused on how easy it was to browse the available set of 

 
13 The pen down block is a block that asks the sprite to leave a trail behind it as it moves. 
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blocks as being a key reason blocks-based programming was easier, saying “it's just because 

of the blocks and how they're separated into categories…so it's just much simpler to find the 

blocks and put them in to the pane.” The utility of the organization and ease of browsing of the 

blocks was evident throughout the interviews. For example, during an interview with a grade ten 

student, when asked if he could draw a square on the screen, he successfully did so, but relied on 

the forever block in his program. When asked how he would change his program so it would 

be possible to draw a second square next to the first, he opened, the Control category where 

looping blocks were stored, read through the blocks, and said “I’m not really sure, I think it's in 

the tab somewhere though,” showing how the organization of the blocks within the environment 

can support novices in constructing programs. 

 After analyzing the interviews, two questions from the mid and post survey were coded 

for additional sources of ease-of-use. On the mid-study survey the question: “The thing that will 

be the most different about programming in Java compared to programming in Snap! is” was 

analyzed. Students answered this question after using Snap! for five weeks but before they had 

started working in Java. Five weeks later, after students had been working in Java, the same 

question was asked, shifting from the future tense to the present tense. A total of 85 students took 

the mid-study survey with one fewer student taking the final survey, resulting in a total of 169 

responses. These two sets of responses were coded and categorized by what students chose to 

identify as the largest difference between the two modalities. Figure 4.5 shows student responses 

to these questions grouped by the difference identified, the point-in-time, and the version of 

Snappier! the respondents used. 
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Figure 4.5. Student reported differences between Snappier! and Java given on the mid and post 
surveys. 
 This analysis revealed three new categories on top of the four themes that emerged during 

the interviews about what makes blocks-based programming easier. The new categories include 

the presence of prefabricated commands, the ease of trial-and-error programming in Snappier!, 

and the different types of programs authored in Snappier! versus Java. Table 4.3 provides 

examples of student responses for each category identified. 

Table 4.3. Sample responses to the question having students compare Snappier! and Java 

Category Example Responses 

Ease of 
Readability 

“The programming language will no longer be translated to English 
completely for a user to easily understand what is going on.” 
“Snap! was easy to read.” 

Visual 
Layout 

“There aren't going to be anymore colorful blocks.” 
“I will have to code without having help from blocks.” 

Ease of 
Composition 

“Actually having to type everything out instead of dragging and 
dropping.” 
“Java is all hand typed while in Snap! you grab and drop blocks.” 

Browsability 
“You will not have the blocks to aid you anymore and you will have to 
memorize and learn the Java script for everything you are trying to do.” 
“Not feeling as restricted and having to think more because you don't 
have all the options in front of you.” 

Support for 
Trial & Error 

“Java is not a trial-and-error program. If I make a mistake, then I must 
fix it on my own. There is no guessing involved, and I think I will have a 
really difficult time adapting to this process.” 
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“In Java, I will not be able to test out blocks and incorporate them and 
see if they work.” 

Prefabricated 
Commands 

“There will be no set blocks that will provide you with pre made 
functions.” 
“You do everything on your own without the help of preset blocks for 
the code, and you have to compile the file.” 

Visual 
Outcomes 

“Java is more about having things such as text be displayed while Snap! 
was more about making sprites do things such as move or complete a 
goal etc.” 

 
 The first new category identified was how Java was not as conducive to the use of trial-

and-error programming. This is particularly interesting as the trial-and-error approach is as 

valuable in text-based programming as in blocks-based, and nothing about text-based 

programming prevents the programmer from using the strategy. There are also potential 

consequences to thinking trial-and-error is not possible or not acceptable in text-based 

programming. Papert (1980) addresses this in his discussion of the difference between learners 

perceiving errors as wrong versus errors as fixable and how the errors-as-fixable orientation is a 

much more productive learning strategy. If the shift from blocks-based to text-based 

programming also carries with it a shift from the trial-and-error strategy being supported to it 

being viewed as impractical or even not possible, it is important that we as designers and 

educators be aware of this misconception and try and address it. 

 The second new category to emerge was the lack of pre-fabricated commands in text-

based programming. Whereas a single block can do something in Snappier!, like move a sprite 

or ask a question, students thought that with text-based programming, the individual commands 

were more fine-grained, requiring more commands to be used to accomplish comparable 

behavior. While this is not necessarily true when calling APIs or other pre-defined functions, this 

reported difference highlights the perceived contrast in the size of atomic block commands and 

text-based language primitives. The final new category captures students identifying the visual 
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enactment of programs as being a major difference between Java and Snappier! This 

difference speaks less to the blocks versus textual nature of the languages themselves and more 

to the larger environments in which the programming is occurring. Interestingly, this was only 

identified by one student as a difference before the Java portion of the course, but was 

highlighted by eight students at the end of the study.  

Drawbacks to Blocks-based Tools 

 Over the course of the ten-week pilot study, students identified a number of drawbacks to 

blocks-based programming. The data presented below were drawn from the same data sources as 

the previous section. Across this dataset, three drawbacks to programming in a block-based 

environment were raised. The first drawback to blocks-based programming students cited was 

that block-based programming was viewed as a less powerful programming technique compared 

to the text-based alternative. Power in this case refers to the set of things that are possible with 

the language. As one student said, with text-based programming “you can do a lot more.” A 

second student reiterated this point, saying: “blocks are limiting, like you can't do everything you 

can with Java, I guess. There is not a block for everything.” This comment is interesting as one 

could rebut that there is not a command for everything in Java either. The student who made this 

comment did not know how to program in Java, but nonetheless held the belief that the two 

representations were not equally powerful or expressive. Another student made these same 

points saying: “In Java you can make it more complex than something you make in Snap! or 

Scratch.” She then continued: “I'm pretty sure there are going to be some things that are too big 

to put in blocks...too complex.” This student viewed the blocks-based interface as a simplified 

version of Java, saying: “I think what Snap! does it just takes the simpler things in Java and then 

turns them into blocks.” This last statement is particularly interesting given that the available set 
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of primitives provided by Snappier! is largely a superset of the keywords reserved in Java, 

not the other way around. When asked why we chose to start the course with Snappier! before 

moving to Java, a grade ten student responded: “to increase understanding of programming. I 

mean like, Snap! is an awesome program, but there is only so much you can learn in it. But in 

Java, you can like figure out how to do like, all the other stuff.” When pressed, the student was 

unable to articulate what “other stuff” consisted of, but still, this reveals a perceived limitation of 

what can be accomplished with blocks-based programming environments. In the post survey, one 

student summed up the difference between Java and Snap! succinctly by saying of Java: “there 

are more possibilities.”  

 The second drawback brought up by a number of students was the time and number of 

blocks it takes to compose a program in the blocks-based interface compared to the text-based 

alternative. For example, when comparing Snap! to her previous experience making web pages, a 

9th grade interviewee said: “I know you have the variables [in Snap!] that you can edit and mess 

around with but sometimes that takes a lot of time, but HTML and CSS you can kind of get 

creative and quickly just type something in to do something different”. This was reiterated by a 

second student who said: “if you want a specific block and it's not there, you're going to have to 

put a lot of blocks together to make it do what you want it to do, and I think with JavaScript, it's 

just, like, one sentence I guess.” While it is unclear what is mean by a “sentence” in JavaScript, 

this comment provides insight into how the student perceived text-based programming to be 

advantageous. Text being more concise was identified as not only useful for composing 

programs, but students also thought that the resulting shorter text-based programs could be easier 

to understand. “It seems like when there is more blocks it's more confusing…when we did the 

games, we did a lot of, like a whole bunch of blocks, it was really hard to find where mistakes 
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were. [Text-based programming] seems easier when there is like a lot.” During the five-week 

study, programs rarely exceeded the size of the screen the students were working on, but in this 

case, the students experience with longer blocks-based programs lead to the recognition that 

longer blocks-based programs can be difficult to manage. 

 The third and final drawback identified about the use of blocks-based tools is potentially 

the most damaging with respect to the effectiveness of their effectiveness when used in 

introductory programming courses for older learners. Some of the students we interviewed 

expressed concerns over the authenticity of blocks-based programming. Authenticity here refers 

to how closely the programming tool and practices adhere to conventional, non-educational 

programming contexts. As one student said: “Java is actual code, while Snap! is something 

nobody will let you code in.” This same point was made by another student who said: “if we 

actually want to program something, we wouldn't have blocks.” It is important to note that this 

view was not universally held. As part of the interview protocol, students were asked if they 

thought what they were doing in Snappier! constituted programming, to which every student 

answered in the affirmative. A number of students recognized blocks-based programming as 

being an introductory tool, giving responses like “I think [blocks-based programming] is the 

same thing, just easier” and “I would say [blocks-based programming] is like beginners 

programming”. This suggests that even when perceived as potentially inauthentic, students still 

recognize the pedagogical utility of blocks-based tools. This drawback in particular seems like it 

is more likely to affect older learners who are eager to develop skills that can be used beyond the 

classroom, be it for a job or further computer science coursework. 

Limitations of Snappier! 
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 While Snappier! served as an informative first iteration, there are some limitations of 

the environment with respect to answering the stated research questions. First and foremost being 

that Snappier! lacked a full text condition. Even in the read-write condition, students did most of 

their program authoring using a drag-and-drop interaction, with the text-programming being 

limited to defining custom block behavior. Additionally, when students were doing the text-

based programming, they could (and often did) first write the script with the blocks, before 

viewing the text version of that script and then copy/pasting that code into the custom block text-

editor. This further limited the amount of text-based programming and supported an approach to 

text-based programming quite different than conventional text-based programming (defining the 

program in blocks then copy/pasting versus writing in text from scratch). 

 A second limitation of Snappier was that by restricting the text-based programming to be 

inside new block definitions, there are some programming activities that rarely, or never 

happened. For example, students in the text condition would never define new functions, since 

they were already inside a new function definition. Similarly, the act of defining new event-

driven actions conceptually wouldn’t make sense inside of a function as the event definition 

itself was already playing the role of defining how/when the code would be executed. 

 A third limitation of the Snappier! condition is that the hybrid form of programming that 

was supported still kept the two modalities separate. Yes, students were writing text programs in 

a blocks-based environment, but the act of composing the text instructions was essentially no 

different than using a normal text editor. This approach situates text-programming in a blocks-

based world, but is a very limited exploration of the potential hybrid space.  

 A final limitation of Snappier! as an environment for answering the stated research 

question is the nature of the types of programs that are best supported by the environment. 
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Snappier!, following the lead set by Scratch and Alice, primarily supports writing programs 

with graphical outcomes in the form of on-screen sprites moving around and interacting with 

each other. This is quite different than the types of outputs normally supporting by textual 

languages, which often have outputs that are textual or numerical (like printing words to the 

screen or doing mathematical calculations). The lack of these types of outcomes is important as 

students often blur the lines between the language, the modality, and the larger programming 

environment in which the programing is situated (Weintrop & Wilensky, 2015b). This means 

that comparing the textual programming of sprites moving around in the world to the textual 

programming of number and text manipulations results in a larger gap than just the specifics of 

the programming language. Despite this set of limitations, the Snappier! pilot study proved to be 

a fruitful first iteration and lessons learned from the study helped inform he design of the 

programming environment used in the second iteration of the study. 

Year Two – Pencil.cc 

 For the second year of the study, a new programming environment was developed. 

Starting with the Pencil Code environment (Bau et al., 2015), Pencil.cc was created. Pencil.cc 

defined three distinct modes of interaction: text only, blocks-only, and a hybrid blocks-text 

interface. The three distinct versions of Pencil.cc will be discussed below, but first is a 

description of Pencil Code. All of the aspects of the environment discussed in this section were 

present for all three versions of Pencil.cc unless otherwise stated. 

 Pencil Code is an online tool for learning to program. Its interface (Figure 4.6) is split 

into two panes: on the left is a dual-modality programming editor that supports both visual 

blocks and textual code, while the right side is a webpage that can visually run the program the 
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learner creates. The dual modality feature was the primary reason Pencil Code was chosen as 

the base environment for this study.  

 

 
Figure 4.6. Pencil Code’s Interface with the coding area on the left and program output on the 
right. 
 Students can click a button (Figure 4.7b) and see their programs transition between the 

blocks-based (Figure 4.7a) and text-based modality (Figure 4.7c). The two modalities are 

completely isomorphic, meaning any program written in one modality can be rendered in the 

other, and the user can freely move back and forth between the two modalities as they choose. 

The ability for the user to shift between the two modalities was suppressed in Pencil.cc as part of 

the study design (this will be further described in the sections that follow). 

   
(a) (b) (c) 

Figure 4.7. Pencil Code’s two modalities: (a) Blocks and (c) Text, with a button presented to the 
user (b) that allows her to move back and forth between the two. 
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 Pencil Code embeds all student work in the Web: every student project is actually 

JavaScript on an HTML page, with an accessible URL that can be linked to, run, and embedded 

on all modern browsers. Pencil Code is a "high ceiling" learning environment that it is careful to 

avoid placing artificial barriers around the learner. 

 Pencil Code as an environment supports a number of programming languages. For this 

study, the basic language of choice was CoffeeScript. This was chosen as it is syntactically 

lightweight and also sufficiently different from Java; thus students in the text condition will still 

experience some transition difficulty when moving from Pencil.cc to Java in the sixth week of 

the study. Pencil Code was designed to encourage two main types of programming activities. In 

the spirit of the Logo language, traditional coding concepts such as loops, conditionals and 

functions can be exercised by creating turtle graphics drawing programs starting from a single 

line of code such as fd 100. At the same time, real-world applications can be created by 

building webpages with HTML images, buttons, animation and music, that will appear no 

different to a visitor to the page than any other website online. This means programs can be 

written that output text or numbers onto the screen in a form that is akin to writing programs that 

output characters in a terminal.  

 Pencil Code differs from similar introductory coding environments in three main ways. 

First, unlike offline programming tools such as Python, Java, C, or Alice, it is a fully cloud-based 

online environment that does not tie the student to a specific device. The editor runs in a 

browser, and students save edit, share, and publish their work online, incorporating the Web as a 

resource. Second, unlike traditional learn-to-code online courses such as those offered by 

Codecademy, it is designed to be welcoming to the timid beginner. Pencil Code draws design 
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lessons from block-based environments and provides visual primitives that give concrete and 

immediate feedback. Finally, unlike limited sandboxes such as Scratch, Snap! or code.org, it is 

an open-ended high-ceiling environment that allows unrestricted use of CoffeeScript, jQuery, 

and web resources. Collectively, these characteristics create a compelling introductory 

programming environment while also supporting key features at the heart of this dissertation, 

namely the ability to support both a fully textual and a fully graphical programming interface. 

Pencil.cc adds a few additional features to the Pencil Code interface. The first, and most 

prominent to the user, is the addition of the Quick Reference menu. When a user hovers over the 

Quick Reference menu (Figure 4.8a), they are shown a series of topics related to programming in 

Pencil Code, grouped in the same high level categories as the blocks (i.e. Move has Curves and 

Speed options, Art has Colors and Pens). When a learner clicks on a menu option, an overlay 

appears (Figure 4.8b) giving instructions on how to use that aspect of Pencil Code, including 

examples that can be run. The Quick Reference was added specifically to provide embedded 

scaffolds for the text-only condition, so those students wouldn’t be fully reliant on the teacher for 

guidance. 

  
(a) (b) 

Figure 4.8. Pencil.cc’s Quick Reference feature. 
 



 123 
 Other added features to Pencil.cc include added instrumentation in support of data 

collection as the learner interacts with the environment and the removal of the buttons that allow 

the users to switch between modalities. This was added as part of the experimental design as 

participants are only able to see and use one modality. The hybrid version of pencil code, which 

is discussed in more detail in the next section, was also a new addition, although much of the 

implementation work for that feature was done by developers at Code.org as part of their App 

Lab environment. The final new feature to Pencil.cc was a login page (Figure 4.9) that was used 

to ensure learners saw the correct version of the environment, as well as to serve as a place to put 

other study-related materials like surveys and consent materials. 

 
Figure 4.9. The Pencil.cc login page. 

The Three Versions of Pencil.cc 
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 The previous chapter laid out the three-condition experimental design used in this 

study. These three conditions are based on the three versions of Pencil.cc used across the three 

classes: blocks-only, text-only, and hybrid blocks/text. 

Blocks-Only Pencil.cc 

 As the name suggests, in the blocks-only version of Pencil.cc, students were only able to 

view and compose programs in the blocks-based modality (Figure 4.7a). It is still possible to 

click on a block and type commands into the editor (either as arguments, like how far you want 

you turtle to move for a forward command, or by hitting return and starting to type, which 

upon completion of your typing, the editor will parse into blocks). The blocks-only version of 

Pencil.cc includes many of the features identified by learners in year one of the study, such as the 

browsability of blocks in the palette and the ease of composition through the drag-and-drop 

interface. It is also important to mention that, in the blocks-interface, users can hover over the 

blocks to get a short description of their behavior thus providing additional in-editor scaffolds to 

go along with the previously mentioned Quick Reference feature. 

Text-Only Pencil.cc 

 The text-only version of Pencil.cc had students exclusively use the text interface (Figure 

4.7c) and, thus, never saw the blocks-based feature of the programming environment. In this 

condition, students had to type all of their commands in manually and had to rely on the Quick 

Reference for any embedded help with respect to the command available and the syntax for 

them. The text editor does include syntax highlighting as well as basic compile-time error 

checking (this took the form of a red X to the left of the line number when students typed invalid 

commands). There has been some research on how novices parse compiler warning and error 
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messages (Hartmann, MacDougall, Brandt, & Klemmer, 2010; Nienaltowski, Pedroni, & 

Meyer, 2008), but Pencil Code does not follow these recommendation, instead using a relatively 

standard approach to displaying error messages taken by many editors. While such additions 

could be useful for Pencil Code’s text editor, it is beyond the scope of the proposed study. 

Hybrid Blocks-Text Pencil.cc 

 The third condition is a hybrid blocks/text interface that is a first attempt to answer the 

third stated research question on the design space between blocks-based and text-based 

introductory programming environments. The approach is to have learners still program using 

the text editor while providing the blocks-palette. Figure 4.10 shows Pencil.cc’s hybrid interface. 

  
(a) (b) 

Figure 4.10. Pencil.cc’s hybrid blocks/text interface. The left image (a) shows how learners can 
drag-drop blocks into the text editor; the right image (b) shows the results. 
 
 This hybrid approach was informed by findings from the first year of the study. In asking 

students to reflect on why Snappier! was easier-to-use than Java, high school students attended to 

a number of aspects of the blocks-based interface that are preserved in this hybrid approach. This 
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includes features such as browsability, drag-and-drop composition, and pre-fabricated 

commands. Similarly, the conceptual grouping of commands and the ability to hover-over blocks 

to see how there are used are other supports that have been identified as helping novice users. At 

the same time, the text-editor interface tries to address some of the drawbacks identified by 

learners in blocks-based tools, such as perceived inauthenticity and issues with blocks-based 

environment being less powerful or slower than text-based alternatives. As will be discussed in 

the findings chapters, users took advantage of the hybrid interface in a various ways, sometime 

relying on the drag-and-drop approach, other times typing in instructions with the keyboard. 

Limitations of Pencil.cc 

 While the intention of the design of the three versions of Pencil.cc was to understand the 

various affordances and drawbacks associated with blocks-based and text-based programming, 

each of the three interfaces has limitations that narrow the scope of the claims that can be made 

from this study. 

Blocks-Only Pencil.cc Limitations 

 A challenge of studying the affordances of blocks-based languages is the fact that there 

are so many features of blocks-based tools that contribute to users successful interactions with 

the tool (Weintrop & Wilensky, 2015a). While Pencil.cc captures many of those aspects (like the 

drag-and-drop composition mechanism, and the visual representation of blocks), there are some 

common features of blocks-based environments not captures by Pencil.cc. Figure 4.11 shows the 

same script implemented in Snap! and Pencil.cc, demonstrating a number of these differences. 
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(a) (b) 

Figure 4.11. Renderings of the same script in Snap! and Pencil.cc. 
 
 One difference between Pencil.cc and other blocks-based environments is that Pencil.cc 

does not provide the same level of visual cues that other blocks-based tools do. For example, in 

Snap!, predicates have a diamond shape and slots that expect predicates to match that shape, 

while in Pencil.cc predicates have the same shape as numerical or string blocks. This same 

difference exists with defining new functions and the shape the function call takes, and is 

potentially problematic as this feature has been linked to supporting conceptual understanding of 

function calls (Weintrop & Wilensky, 2015b). Snap! and Scratch also use a more diverse color 

palette and take better advantage of the natural language capabilities of blocks. Due to the 

isomorphic text-to-block relationship, Pencil.cc is constrained by the compiler in terms of how it 

presents commands. 

 A second difference between Pencil.cc and other tools is that in Pencil.cc, only a single 

script executes while other tools offer the ability to execute scripts placed anywhere on the two 

dimensional canvas, a feature found to be productive for learners (Weintrop & Wilensky, 

2016b). This constrains the user to programming in a single, vertical dimensions, which is true of 

text-based programming and some blocks-based tools (like Alice), but not true in other blocks-

based tools like Scratch or Snap!. This feature is a central mechanism in the event-based model 

used by tools like Scratch, where “hat” blocks can be used to link up scripts with various events 

like user inputs, sprite events, or broadcast messages. 
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 A final limitation of the blocks interface is that it is still possible to compose 

commands in text. If a user presses the return key when the cursor is inside one of the text slots, 

a new blank block will appear where the user can type in a command that is parsed into a block 

afterwards. While this is a powerful feature of the environment, it starts to blur the lines between 

the fully blocks-based condition the study had intended and the hybrid block/text condition. 

Hybrid Blocks/Text Pencil.cc Limitations 

 While the hybrid mode of Pencil.cc brings together a number of productive aspects of the 

blocks-based interface with the text-editor, there are some limitations to this mode that leave 

room for improvement. One major drawback is that, once a command has been added to the 

program (either by drag-and-drop or by typing), from that point forward it loses its blocks-based 

affordances, and thus is seen as text and can no longer be drag-and-dropped the way blocks can 

in fully blocks-based environments. This is a general feature of text-based editors and only 

recently have new approaches been introduced to address this, with BlueJ 3’s frame-based editor 

being a prominent example of this approach (Kölling et al., 2015). 

 A second limitation of this hybrid implementation is that there are some design issues 

that have yet to be completely ironed out. Notably, when a block is dragged out that does not 

have an obvious default value (like the terms being compared in an if statement or the body of a 

while loop), it is unclear how the editor should depict these empty ‘slots’. Pencil.cc’s solution 

was to display two tic marks (``) in place of the empty slot, but this introduced confusion around 

where arguments should go inside of these tic marks or if they should be replaced (which is the 

correct behavior). This was a source of confusion for many learners and will be revisited in 

future versions of this hybrid editor.  
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 The final limitation of the hybrid interface is that there are many possible design 

directions that can be pursued, with this design being but one of those. Other directions include 

frame-based editing (Kölling et al., 2015), editors that allow users to move between different 

modalities (Bau et al., 2015; Matsuzawa et al., 2015), or provide text-based inputs for blocks-

based editors (Mönig, Ohshima, & Maloney, 2015). 

Text-Only Pencil.cc Limitations 

 Just like with the blocks and hybrid interfaces, there are also limitations to the text-only 

condition of this study. The first is that, while there are some basic complication and runtime 

error supports in the form of red Xs in the margins and some user-friendly messages in the case 

of runtime errors, the error handling left much to be desired relative to other more fully-featured 

development environments. This is left as a possible direction for future improvements in the 

text mode. A second drawback of the text condition is that the Quick Reference menu, which 

provides the in-editor scaffolds for helping users learn what is possible and provides syntax 

supports, did not have the exact same coverage as did the blocks palette. For example, the blocks 

palette includes a Snippets category that provides short scripts to do basic things like have the 

turtle follow the mouse, or are a keyboard listener to respond to user input. While all these things 

can be implemented in the text mode, they were not included in the Quick Reference menu as a 

block of code that could easily be copied and pasted into the editor in the same way that could be 

done in the blocks or hybrid conditions.  

 This chapter presented the various design aspects of the environments used in this 

dissertation. Having laid out the research questions, reviewed relevant literature, and presented 

the study and environments designs, the next chapter finally gets to the good stuff: the findings. 
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5. Attitudes and Perceptions 

 The first research question this dissertation is investigating is the comparative 

affordances and drawbacks of the different programming modalities: Blocks, Text, and the 

Hybrid blocks/text interface. This chapter focuses explicitly on the attitudinal and perceptual 

differences across the three conditions (blocks-based, text-based, and hybrid blocks/text) in this 

dissertation study. It begins with an analysis of students’ initial perceptions of the introductory 

programming environment and the modalities used. The goal of this portion of the chapter is to 

understand high school learners’ perceptions of the three modalities before and after they use 

them. This includes a discussion of perceived design affordances and drawbacks of the three 

modalities. An analysis of students’ perceptions of the different programming interfaces with 

respect to authenticity, enjoyment, and usefulness is presented next, followed by an analysis of 

the Pre, Mid, and Post attitudinal survey responses given. This section includes an analysis of 

within-student shifts over time on Likert questions, trying to understand how confidence, 

enjoyment, perceptions of programming, and interest in computer science change based on 

modality. It also looks at comparative change between the three modalities. The chapter 

concludes with a discussion of the attitudinal and perceptual findings presented. As a reminder 

the three classes were taught by the same teacher, followed the same curriculum, spent the same 

time-on-task, and had roughly the same number of students (30 students in the Blocks class, 31 

in the Hybrid section, and 32 in Text condition). 

Incoming Perceptions and Initial Reactions to Introductory Environments 

This section looks at students’ incoming perceptions of modalities and what it means to 

program. It begins by exploring students’ initial expectations for the class and the assumption of 
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a text-based programming experience. It then reports findings into why students think the 

classes chose to use the various modalities it did. In asking this question, we fill in another aspect 

of student perceptions of different modalities as it relates to learning and pedagogy. Finally, this 

section presents students reactions to learning to programming in a given modality; looking 

across the three conditions to understand what students attend to based on different modalities.  

During the first week of the study, four students from each condition were interviewed. 

As part of this interview, students were shown the version of Pencil.cc they were going to be 

using for the next five weeks. This sections presents data from these pre-interviews, revealing 

students’ incoming perceptions of programming as well as their initial reactions to the modality 

they would be using for the next five weeks of class.  

Assumption of a Text-Driven Experience 

 One thing that became clear early in the interviews was that students entered the study 

perceiving programming as a text-based activity -- and that Pencil.cc was not exactly what they 

had expected. This was true of students across all three conditions. For example, one student 

from the Text condition said: “I watch a lot of CSI and Criminal Minds and I thought it would be 

more characters and underscores and very intense coding, instead of just like making the turtle 

move. But this is cool.” This gap between the initial perception of what the course would be like 

and CoffeeScript, the language used in Pencil.cc, could also be seen from students in the Hybrid 

condition: “[Pencil.cc] is a little different, I thought we'd mess more with brackets but I do like it 

because it's helping me.” This comment is interesting because the Hybrid condition uses a text-

based editor, so this perceived difference is not due to any environmental factors, but instead due 

to the choice of using the syntactically light CoffeeScript programming language, which does not 

have brackets. Students in the Blocks condition picked up on this difference, and unsurprisingly 
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cited the drag-and-drop feature as part of what contributed to the gap between what they 

expected in the class and what they were doing: “I wasn't really thinking about dragging things 

to make something”, when this student was asked what she did expect, she continued: “like 

typing something to do something, but not having set things already there.” 

It is important to note that not all students were surprised to see a non-text-only first 

programming environment. As one student from the Hybrid condition said: “I knew we’d 

probably start with something simple, like this or Scratch, because, from what I hear, we'd 

probably start with one of these to get into the language first, so yeah, I figured it'd be something 

relatively simple like this.” It is not too surprising that at least some students knew to expect an 

introductory environment that incorporated visual component, in part due to the frequency of 

prior computer science experience across the classes, and also due to the growth in popularity 

and awareness of blocks-based programming environments like Scratch and Code.org’s Hour of 

Code activities. From these quotes we see that students at the beginning of the school year 

already have some set of expectations about what programming looks like and what to expect 

with respect to language features (like brackets) and visual presentation/modality. 

Why Use Non-Professional, Introductory Programming Environments 

 In open coding students’ initial reactions to the use of Pencil.cc in an Introductory 

programming course that teaches Java, two main themes emerged: that they thought that 

introductory tools can lay the foundation upon which Java can build and that introductory 

environments are easier and friendlier than their fully-featured professional counterparts. This 

analysis includes students attending to features specific to modality as well as other, more 

general, aspects of Pencil.cc and it’s use as a programming environment designed for beginners. 

This broader lens is included to help gain a fuller understanding of the how modality is situated 
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within the larger webbing (Noss & Hoyles, 1996) of the programming environment. 

Additionally, this discussion is included in response to the challenges of isolating modality from 

the larger programming context, which at times is possible, but in the eyes of the learner is often 

blurred with the larger programming environment. 

Laying a Foundation for Future Learning 

One of the more frequently cited reasons for starting with an introductory environment 

like Pencil.cc given by students across the three conditions was the ability for the environments 

to lay an effective foundation for future learning. Numerous students verbalized this view, for 

example, one student said: “it's a good foundation for us rookies to start. This is a beginners 

class and this helps teach me the very basics.” In this view, students also cited how Pencil.cc 

would prepare them for shifting to Java, for example students also said things like: "I think it’s 

because it's easier to learn on something that is a little less advanced and more like, it's a good 

start, then once we know the commands and everything, we can move on to Java” and 

“[Pencil.cc] is kind of like practice, it gets you ready for [Java], because I'm pretty sure this is 

way easier than what we're going to be doing later in the year, just getting us ready for what 

we're going to be doing.” Another student said that Pencil.cc has the “basic structure to help you 

learn other codes in the future, like c++.” With these quotes we see students recognizing the 

temporary nature of the introductory environment and its use as laying a foundation for future 

learning. In viewing introductory programming environments in this way, some students also 

distinguished them as something different from the tools and languages they would later be 

using. For example, another student said: “[Pencil.cc] could form the basis of programming, but 

it's just basic stuff, not like professional or anything.” So even in praising the environment, this 
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student saw a potential drawback with it in the form of its inauthenticity with respect to what 

was viewed as “professional” programming. 

The recognition of Pencil.cc serving as a launch pad for future learning shows some 

sophistication on the part of the students in that they recognized similarities across languages and 

that some concepts and practices are universal across programming languages. Likewise, the 

different modalities did not interfere with students making this connection. This can be seen in 

one student’s response from the Hybrid condition who responded to the question of why the 

class was starting with this specific programming interface by saying “probably just to build up 

those fundamental things, you got to know, like variables, that's always going to be in any 

language or like, algorithms, you need that no matter what language you transition to. Just like 

basic stuff, even though each language probably has it's own pros and cons, these are just stuff 

that are always going to be a constant.”  

There is also some evidence that the Hybrid condition further supported this perception 

of laying the foundation but in a more accessible way. For example, one student, while looking 

at the hybrid interface, responded to the question of why the class started with Pencil.cc by 

saying “possibly so that kids can get a feel of the syntax and understand like how to put things 

together, [it] helps me understand like how specific I should be, or how exactly what I want to 

type.” The expression “get a feel for” and “put things together”, suggests that the learner sees the 

relationship between the dragging-and-dropping that can happen in the hybrid interface and the 

long-term goal of programming in an all text environment. 

Ease and Friendliness 

The second reason cited for the use of programming environments designed for novices 

at the start of the year was due to the perception that it would provide an easier entry into the 
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world of programming. When a student in the Blocks condition was asked if Pencil.cc was 

what he expected, he responded: “I had no idea what to expect. This is definitely more, I'd say 

this is friendlier, than what I expected it to be.” A number of factors are cited for this perceived 

friendliness and ease-of-use. For example, one student in the Text condition attended to the 

visual outcomes of Pencil.cc, saying “[Pencil.cc] is easier…it's more clear what is 

happening…you get to see the immediate action of your code on the screen.” Another students in 

the text condition echoed the importance of the immediate visual outcome: “you can see the 

results immediately by pressing the play button.” As will be shown later in this chapter, visual 

outcomes was a salient feature of the three versions of Pencil.cc used, but was cited far less 

frequently than other features, including those related to modality. 

Students in the graphical conditions keyed in on different features of the introductory 

environment. For example, when a student in the Blocks condition was asked why we chose to 

start with Pencil.cc, she responded:“[Pencil.cc] is easier, if you want to go forward, that's 

already there for you, so you don't have to type it out. Everything is kind of already there, so you 

just, guess and check sort of, so if something doesn't work out, you need to try something else, so 

like if the number 100 doesn't work how you want it to, you could do like, 200.” When asked if 

this same approach could be used in Java, she responded “yes, but maybe not as easy though.” 

Here a number of aspects of the blocks modality she was looking at are cited as contributing to 

the ease of use, including the pre-fabricated blocks and the ease of guess-and-check, two features 

identified in year-one of the study that were intentionally retained in the Hybrid condition. 

Students in conditions where the blocks palette was present also cited the visual and 

graphical aspects of the blocks-based modality as contributing to the ease of getting started, 

saying things like “it’s simple, easier to understand, maybe to get people engaged because it's 
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colorful, and got the game aspect” and “You can just mouse over and it'll tell you what you 

can do. You know the commands 'cause it's right there, for the most part.” Collectively, these 

aspects echo the previous analysis in year one, where a variety of reasons were given for the use 

of specially designed introductory environments. 

Perceived Affordances and Limitations of Pencil.cc and the Three Modalities 

 In the first year of the study, students were asked to compare the three versions of the 

introductory programming environment used with the Java language. This question was asked at 

the midpoint and conclusion of the study. The results of this analysis were presented in the 

Chapter 4 and summarized in Figure 4.5. In the first year of the study, little attention in the 

analysis was paid to differences between the three conditions (Graphical, Read-only, and Read-

write) due to the overall similarity between the three environments. 

In the second iteration of the study, there was significantly more difference between the 

Blocks, Text, and Hybrid conditions, making a side-by-side comparison by condition more 

fruitful and relevant for the research questions being pursued in this dissertation. For the second 

iteration of this analysis, student responses to open-ended survey questions were open coded 

looking for students attending to various features of Penicl.cc. Figure 5.1 shows a summary of 

student responses to the question: “The thing that will be the most different about programming 

in Java compared to programming in Pencil.cc is.” It is important to remember that when 

students were asked this question, the students will envision either the blocks-based, text-based, 

or hybrid version of Pencil.cc based on the version they used for the first five weeks of the 

school year. This was asked on the mid-survey, after students had spent five weeks working in 

Pencil.cc, but had not yet used Java. The finalized coding manual used to code these responses, 

along with an example of a response from each category can be found in Appendix E. The 
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responses in this and the next figure were coded by two researchers. Cohen’s κ was run to 

determine agreement and consistency of the application of these codes, and found there to be 

agreement between the coders, κ = .80, all differences were resolved through discussion 14. 

 
Figure 5.1. Student reported differences between Pencil.cc and Java at the midpoint of the study. 
 
 There are a few interesting things that stand out in this chart. First is the difference in 

features identified by the Blocks condition (blue columns) compared to the Text condition (red 

columns), and how the Hybrid condition (purple columns) frequencies often landing between 

them. Students in the Blocks condition identified the Visual Layout and the Ease of Composition 

as the two most salient differences, with Browsability and Syntax sharing the position of third 

most frequently cited differences. Students in the Text condition, on the other hand, 

overwhelming identified Syntax as the most distinct difference, with In-editor Help being the 

 
14 Note some of the Cohen’s κ’s that are reported in this dissertation are below the conventional 
.80 threshold. This is due to the relative infrequency of some of the codes and the fact that not all 
codes are mutually exclusive, thus providing smaller distribution of codes, which were then 
aggregated together. Cohen’s κ is known to not handle skewed and sparse datasets particularly 
well (Feinstein & Cicchetti, 1990), so the relatively low values are not viewed as problematic. 
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second most oft-cited difference. The focus on syntax was particularly common among more 

advanced students, as one student said in a later interview: “In my personal agenda i was 

focusing on syntax, Making sure everything would work well and then I got to see how each code 

works.” The fact that a student came in with a personal agenda to learn syntax speaks to where 

his attention lay early in the course. No students in the Text condition cited either of the two 

most popular differences from the Blocks condition. This serves as evidence for the salience of 

modality in learners’ perceptions of introductory environments. The Hybrid condition, seeing 

both the blocks palette and the text editor, cited both blocks-centric features (like the Ease of 

Composition) and more text-centric differences (Syntax) in their responses, never identifying a 

feature more frequently than either the Blocks or Text groups. Interestingly, no students in the 

Hybrid condition cited Browsability as a major difference between Pencil.cc and Java, this is 

surprising given that part of the motivation for the specific form of hybrid interface chosen was 

based on the utility of the blocks palette to support browsing and relax the need for the user to 

memorize the set of available commands. This does not mean that students did not use this 

feature, as we can see some evidence of its utility in responses coded for other categories like In-

editor Help, but that the blocks palette provided other supports or was just not the most salient 

difference. An example of non-Browsability support provided by the blocks palette can be seen 

in this student response: “[Java] will not have blocks and captions that can help me identify my 

codes and what errors I made in my program.” In this response, the student is attending to the 

fact that she can hover the cursor over a block in the palette and get a brief description of what 

the command does. In this way, she is highlighting an affordance of the blocks-palette that is not 

related to the ability to browse the full set of commands available in the language.  
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Returning to Figure 4.5 and comparing it to Figure 5.1, it is also interesting to note 

the disappearance of two categories that were identified in the first year of the study: Ease of 

Readability and Support for Trial & Error. The disappearance of the Readability category is not 

that surprising given the semantics of Pencil.cc are taken from CoffeeScript, so do not have the 

natural language feel that Snappier! had (e.g., the set x to 10 Snappier! command becomes 

var x = 10 in Penci.cc). The fact that Support for Trial & Error was not cited is a little more 

surprising and not as easily explained. One possible explanation could be that unlike Snappier!, 

in Pencil.cc, the user cannot click on a block or a subscript to run it independently from the main 

program. This ability to run smaller scripts or commands directly from the blocks palette 

contributed to the larger trial-and-error approach and was not supported in Pencil.cc. It is 

important to note that this explanation draws not on a feature of the modality, but instead a 

characteristics of the environment in which the blocks were situated.  

The second year also saw the emergence of two new categories, Syntax, which 

dominated responses from students in the Text condition, and In-editor Help, which was used to 

capture student responses that attended to the Quick Reference menu or the ability to hover over 

a block to get information about a block’s behavior (two features that were not present in 

Snappier!). The inclusion of features of the editor is interesting as it blurs the line between a 

language (like Java) and a larger programming environment (like Pencil.cc), disentangling these 

two and how students conceptualize this relationship was a challenge throughout this analysis 

and is a planned avenue of future research. 

 At the conclusion of the 15-week study, after students had worked in Java for 10 weeks, 

they were again asked to reflect on the differences between Java and Pencil.cc, this time, the 

open response question that the students responded to was: “The thing that is the most different 
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between Pencil.cc and Java is:”, the results of which are presented in Figure 5.2 below. 

Again, the responses were coded by two researchers and Cohen’s κ was run to determine 

agreement and consistency of the application of the codes. There was found to be moderate 

agreement between the coders, κ = .68, all differences were resolved through discussion. 

 
Figure 5.2. Student reported differences between Pencil.cc and Java at the conclusion of the 
study.  
 
 There are a few things to note about these results relative to the responses from the 

midpoint survey shown in Figure 5.1. First, is that the pattern is largely the same across the three 

condition, with Blocks responses trending toward features of the Blocks themselves (the left-

most categories) while the Text condition mainly cited syntactic differences between the 

environments, with the Hybrid student responses again living between the two. A second shift to 

note is the significant decrease in the number of students that cited In-editor Help as being the 

most salient difference between Java and the their experiences in Pencil.cc. On the Mid survey, 

10% of responses referenced this difference, on the Post, that number fell to only two students. 
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There are a number of potential explanations for this including: the increased salience of 

other differences between the environments, the fact that ten-weeks had elapsed since using 

Pencil.cc so students may have forgotten these features of the environment, or a growing 

recognition of the difference between a programming language (like Java) and the larger 

programming environment in which the language is used (Pencil.cc in this case). In responding 

to this question, learners no longer attended to features peripheral to the language itself. The 

comparison between Mid and Post responses also shows a shift for students in the Hybrid 

condition away from visual features as being the salient difference towards Syntax, the 

difference most frequently cited by students in the Text condition. In other words, after students 

spent time working in Java the salience of Syntax as a difference grew among learners from the 

Hybrid condition. One thing that is important to mention is that in some cases, when students are 

referring to syntax, they mean more than just semicolons and keywords (i.e. what is 

conventionally covered by the term syntax). In a Mid interview, one student explained the 

importance of syntax by saying: “So it's not just knowing how to make the syntax correct, but 

knowing what your syntax is.” This prompted the interviewer to ask the student what he meant 

when he said syntax, to which he responded: “knowing when to use an if/else condition, using a 

for loop, a while loop.” This lead the interviewer to respond: “oh, so by syntax you mean more 

than just semi colons and curly braces” to which the student responded with a nod of his head. 

This is important to note as it introduces a layer of complexity to the notion of syntax and that it 

cannot be assumed that the learner is talking only about punctuation. A final thing to note in this 

analysis is the appearance of responses from the Text condition in the Prefabricated Commands 

category. It is only two responses, but it is interesting given that none of the 30 respondents cited 

this difference on the Mid survey. 
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 In the first year of the study, there were a number of students who cited drawbacks 

and limitations of the Snappier! environment. These critiques fell into three broad categories: 

Inauthenticity, Less Powerful, and Slower Authoring. In conducting the same analysis in year 

two, we found less evidence of students taking issue with Pencil.cc. In analyzing the responses to 

the differences between the environments (which was part of the data corpus for the year one 

analysis), we find only three students who attended to drawbacks of Pencil.cc. Two of these 

responses came from students in the hybrid condition with one coming from the Text condition, 

which means no students in the Blocks conditions raised concerns. Two of the three responses 

talk about how Java is more authentic, saying “There will be more actual coding involved as 

opposed to using predetermined blocks of code.” The other limitation cited for Pencil.cc is that 

the environment is only used for drawing, saying: “for Pencil.cc, all you can really do is draw.” 

This limited list is in stark contrast to the longer, and more elaborated drawbacks identified in 

year one. There are a number of possible explanations for this, including the Pencil.cc interface 

being seen as more authentic and having a higher ceiling, the fact that all of the Pencil.cc 

commands are valid CoffeeScript, so have the feel of more conventional programming languages 

(i.e. are not natural language), or that the activity of writing programs that produce actual 

websites that can be linked to and shared engendered a sense of authenticity that was lacking in 

Snappier! A more careful analysis of these perceptions of Pencil.cc is explored in the next 

section. 

Perceptions of Introductory Programming Environments by Modality 

 Trying to understand students’ perceptions of the three versions of Pencil.cc used in the 

study requires looking to a number of data sources as there are many facets to how the tool can 

be perceived. For example, students had perceptions of Pencil.cc with respect to utility, 
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enjoyment, authenticity, and effectiveness. As this dissertation is trying to broadly 

understand the impact of the modality used to introduce learners to programming, the analysis 

looks across these different dimensions. This section looks specifically at students’ perceptions 

of the introductory programming environment as it relates to their own learning and if and how 

programming in the modality they used matches their view of authentic programming practices. 

In later chapters, a similar analysis will be presented looking at whether or not students viewed 

their time with the introductory environment as productive with respect to the goal of learning to 

program in Java. After looking at perceptions of the introductory environment by modality 

specifically, the next section will investigate students’ perceptions towards programming and 

computer science more broadly. 

Authenticity of the Activity by Modality 

 One drawback identified in using blocks-based programming environments with high-

school aged learners is the perceived lack of authenticity and a recognized difference between 

what it looks like to program in blocks-based languages versus text-based professional languages 

(Weintrop & Wilensky, 2015b). In the first year of this study, the analysis of this question found 

that students did raise concerns over the authenticity of the Snappier! environment, but it was 

unclear where the source of that inauthenticity lay. A number of factors could have contributed 

to this view, including the blocks themselves, the drag-and-drop programming mechanism, or the 

larger context of giving instructions to an on-screen sprite being a very different type of program 

output than what typically accompanies programming. In the second iteration of the design, 

questions were designed to tease apart the role of the modality specifically in contributing to this 

perception. On the Mid and Post attitudinal surveys, students were asked if what they did in the 

first five weeks of the course was similar to what “real programmers” do. Responses were given 
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on a ten-point Likert scale, with a higher score meaning students agreed more strongly. 

Figure 5.3 shows student responses by condition to this prompt given on the Mid and Post 

surveys15. 

 
Figure 5.3. Student responses to the prompt: Pencil.cc is similar to what real programmers do. 
 
 Overall, the mean student response on the Mid survey was 6.22 (SD = 2.15), while on the 

post survey, the mean was 5.9 (SD = 2.22). This means that overall, students tended to agree 

with the statement that what they did in the introductory environment was similar to what real 

programmers do. A Wilcoxon signed rank test comparing the aggregated Mid to Post scores 

shows the two time points to be different from each other at a p = .05 level (Z = 1143, p = .05), 

meaning an overall shift did occur, although with the statistical power these data provide, the 

change was only just reached the conventional statistical significance threshold of p = .0516. 

 
15 Note: the y-axis scale for this and all figures in this chapter do not start at zero, but all are on 
the same scale so can be compared relatively 
16 An alternative test that could be used here is a pair-wise t-test, which gives a comparable result 
of t(76) = 1.89, p = .06. The Wilcoxon signed rank test is preferred due to the ordinal nature of 
the underlying Likert data, so will be used throughout the dissertation. 
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Running an ANOVA test on normalized Z-scores for the two time points shows there is not a 

statistically significant difference between the three conditions at the Mid point F(2, 78) = 1.15, p 

= .32, or at the conclusion of the study F(2, 80) = .32, p = .76. The convergence of scores on the 

Post survey relative to the Mid suggests differences may exist at the Mid point, but that the data 

in this study does not have the statistical power to make that claim. To understand whether there 

was a significant shift in perceived authenticity between the two surveys for each of the 

conditions a Wilcoxon signed ranks test was run. The test shows a significant change in the 

perceived authenticity of the introductory environment for students who were in Text condition 

(Z = 166.5, p = .02) in the negative direction. This means that students in the Text condition 

found Pencil.cc to be less similar to “real programming” after ten weeks of working in Java. 

Non-significant shifts in the positive direction for the Hybrid condition (Z = 64.0, p = .35) and a 

negative direction for the Blocks condition (Z = 135.5, p = .49) were observed but neither were 

significant.  

 To understand if the changes between the Mid and Post surveys were significant across 

the three conditions, normalized Z-scores were calculated for each condition, then an ANOVA 

was run on the deltas of students’ reported responses across the three conditions. In other words, 

this test is looking to see if the slopes of the three conditions are different from each other, and if 

so, where the statistical significance lies. The ANOVA calculation on the changes in perception 

of authenticity across the three conditions was F (2, 74) = 3.5, p = .03, thus a statistically 

significant difference does exist across these groups. A post hoc Tukey HSD test shows the 

change in attitudes between the Text and Hybrid conditions was significant, p = .03, and that no 

statistical significance was found for the other pairings (Text/Blocks, p = .24, Hybrid/Blocks p = 

.54) 
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 Taken together, this analysis reveals a few conclusions about how modality affects 

students’ perceptions of the authenticity of a given programming environment. Students in the 

Text condition initially saw Pencil.cc as the most similar to what real programmers do, but this 

perception shifted downward after working in Java for 10 weeks, suggesting that in gaining 

experience with Java, that initial perception changed.  As can be seen from Figure 5.1 and Figure 

5.2, a lot of this difference is driven by syntax, which is an immediately visible difference 

between the Pencil.cc and Java experiences. As one student put it in his interview after starting 

Java, “I just like Java, the syntax makes me feel more complete. I’m actually coding.” This 

perception can be seen across the data in various places, and will be explored more deeply in the 

chapter looking at the transition from Pencil.cc to Java. The issue of long-term utility was also 

raised in interviews with students after working with Pencil.cc. For example, one student, in 

reflecting back on his time with the introductory environment said: “I feel like Java will be more 

useful in the long run than what [Pencil.cc] could offer me”. This view was echoed by another 

student, who in his post-Pencil.cc interview said “[Pencil.cc] is a bit too limiting for someone 

who goes into this class thinking I’m going to make something that is going go be used in 

industry.” In these quotes, the students long terms plans with programming can be seen and how 

Pencil.cc does not fit into them. Like in other places, the cause of these views include features of 

modality along with other aspects of the programming environment, but as is shown in Figure 

5.1 and Figure 5.2, a number of aspects of modality play a significant role in shaping students 

perceptions of the differences. 

Looking across the three conditions, students who worked in the Blocks condition had the 

lowest average response on the perceived similarity of Pencil.cc to professional programming 

after the introductory portion of the study, and, like Text, saw their perceptions drop over the 10 
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weeks working in Java. In contrast to the other two conditions, the Hybrid condition saw the 

authenticity of their experience during the first five weeks increase after working in Java for 10 

weeks (although not significantly). In comparison to the other two conditions, this shift was 

statistically significant. There are a number of possible explanations for these collective 

outcomes. One theory is that students in the Text condition had an easier time doing a direct 

comparison between Pencil.cc and Java, since they were in the same modality, and thus, the 

shared modality made the differences more salient. The Blocks condition had the opposite 

problem, from the beginning, students perceived the blocks interface to be different and unlike 

what real programmers do, and the shift to Java reinforced this. The Hybrid condition however, 

potentially benefitted from a best of both worlds effect. The underlying text editor makes clear 

that what they are doing is the same type of activity (i.e. manipulating text) but was different 

enough, thanks to the presence of the blocks, to not provoke a direct comparison with Java. Java 

and the Hybrid form of Pencil.cc are both programming (i.e. both manipulating text to give 

instructions to a computer), but are also different from each other, but not in a way that 

necessarily delegitimizes Pencil.cc, which is recognized as being a useful introductory approach 

(a finding that will discussed below). Another possible explanation for the Hybrid condition’s 

different outcome stems from the fact that only in that Condition do students interact with more 

than one modality (graphical blocks and text side-by-side), thus possibly showing students that 

programming is not a uniform activity, but instead, that the act of programming and 

programming languages and environments can take many shapes and rely on many modalities, 

interfaces, and technologies. 

Learning to Program by Modalities 
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 A second dimension of students’ perceptions of different programming modalities 

that is of interest in this dissertation is whether or not they felt that using a given modality made 

them better at programming. This analysis looks at the three modalities used in Pencil.cc in 

isolation to see if they were viewed as a productive with respect to the goal of learning to 

program, not whether it was effective for preparing them for something else (i.e. Java). Figure 

5.4 shows students’ responses to the following prompt: Pencil.cc made me a better programmer. 

Like with the last question, students experience of Pencil.cc will refer to different modalities 

depending on which condition they were in. This question was asked on the same Mid and Post 

surveys and on the same 10-point Likert scale as the question in the previous section. The mean 

score on the Mid survey was 7.5 (SD = 2.1) and the mean on the Post survey was 7.0 (SD = 2.2). 

This suggests that overall, students felt that all three modalities improved their programming, but 

did not hold particularly strong feelings about this statement. 

 
Figure 5.4. Student responses to the prompt: Pencil.cc made me a better programmer. 
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The first thing to notice from this chart is the negative slope for all three conditions, 

meaning overall, students’ view of how helpful the introductory environment was with respect to 

learning to programming decreased after spending 10 weeks learning Java, regardless of 

modality used. The mean response on the Mid survey was 7.5 (SD = 2.14), while the mean Post 

response was 7.01 (SD = 2.21). Running a Wilcoxon signed rank test on for the whole set of 

responses shows a significant difference between student responses on the Mid survey and the 

Post survey Z = 1100, p = .01. This provides evidence that there was in fact a significant decline 

in students’ perceptions of whether or not Pencil.cc made the students better programmers. 

Running this same test on each condition individually shows a significant effect for the Text 

condition (Z = 163, p = .03), and smaller, non-significant effects for the Blocks (Z = 121.5, p = 

.12) and Hybrid (Z = 95, p = .38) conditions. An analysis looking across the three conditions 

found no signification differences between the three conditions either on the mid survey (F(2, 

78) = .14, p = .87), the post survey (F(2, 80) = .07, p = .93), or on the difference in performance 

by condition (i.e. the slopes) (F(2, 74) = .949, p = .39). 

These quantitative findings are supported by data from the student interviews conducted 

after students finished the introductory portion of the course, which reveal that students found 

Pencil.cc productive for learning to program. For example, when asked about this topic, students 

gave responses like “It has definitely given me the basis of like, a computer follows everything, 

with like, total logic. Like if you say, write something in quotes and then don't end that quote, it's 

not going to work. You have to be very specific with your code. [Pencil.cc] just kind of taught me 

how much syntax and semantics matters” and “It was good to learn basic concepts.” Students 

also had similar constructive comments about the introductory environments across modality 

when talking about it preparing them to learn Java, a topic that will be explored in further detail 
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in chapter 7. It is important to note that not all students felt this way. Some students, 

especially students with prior programming experience did not find Pencil.cc to be as productive. 

“Pencil.cc helped a little bit, it helped other people too, it didn't help me too much because I 

knew some of these things already.”  

These findings begin to show one of the features of this study design. The data reveal that 

students’ perceived utility of working with Pencil.cc dropped after spending 10 weeks learning to 

program Java, independent of the modality used. However, there is no difference in students’ 

perceptions across the different conditions. This can be interpreted to mean that modality was not 

a significant factor contributing to this perceptual shift. This leads to the explanation that other 

aspects of the Pencil.cc environment or the larger intervention are potential causes of this 

decline. This may include the CoffeeScript language, the setting of creating interactive drawings 

and webpages, or the curriculum that the students followed during the five weeks spent working 

in Pencil.cc. It is also important to mention that with a larger dataset and thus more statistical 

power, significant differences may emerge. For example, the fact that the Hybrid condition was 

initial seen as the least effective modality for learning programming, but after 10 weeks in Java 

became the most effective with respect to students’ perceptions suggests there may in fact be 

some interaction between modality (or rather mixed-modalities) and perceived utility. 

Changes in Attitudes and Perception over Time 

 Along with perceptions of the three modalities used in the study, this dissertation seeks to 

understand how modality affects students’ attitudes toward programming and computer science 

more broadly. This includes questions of how much they like the field, if they think they will be 

successful in their programming endeavors, and whether or not they plan to enroll in future 

computer science learning opportunities. This section looks specifically at attitudinal and 
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perceptual changes between the start of the school year and the midpoint of the study, after 

students completed the introductory portion of the course but had not yet begun working in Java. 

Shifts after the transition to Java, and how they relate to changes that occurred during the first 

five weeks of the study, are discussed later in the chapter looking at the transition from Pencil.cc 

to Java. Four attitudinal dimensions are investigated: confidence, enjoyment, perceived 

difficulty, and interest in continuing with more computer science learning opportunities.  

Confidence in Programming Ability 

 The first attitudinal dimension discussed is students’ perceived confidence in their own 

programming ability. To calculate a reliable measure of confidence, student responses to the 

following two Likert scale statements were averaged together: I will be good at programming (or 

I am good at programming on the Post test) and I will do well in this course. These questions 

show an acceptable level of correlation, having Cronbach’s α scores of .79 on the PRE survey, 

.80 on the Mid survey, and .88 on the Post survey, which are all near or surpass the .8 threshold 

commonly used to define an acceptable level of reliability. The aggregated confidence measure 

at the Pre, Mid and Post points in time are shown in Figure 5.5. In this section, the figures show 

all three time points even though only the Pre and Mid values are discussed here, the Post scores 

and the Mid to Post differences are discussed in a chapter 8 which looks at the transition to Java. 

Also note that all figures in this section are on the same scale, but do not cover the same range, 

so can be compared relatively, but not absolutely, and like the previous sections, the y-axis in 

these figures do not start at zero in order to make the trends more clear. 
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Figure 5.5. Calculated levels of students’ confidence in programing at three points in the study. 
 
 The mean confidence scores at the outset of the study was 8.11 (SD = 1.47) on a 10-point 

Likert scale, which is rather high. After spending the first five weeks of school working in 

Pencil.cc, students’ confidence scores inched up to 8.19 (SD = 1.67), a change that is not 

statistically significant (Z = 3296, p = .48) after running a Wilcoxon signed rank test. This lack 

of change is possibly explained by the fact that the students came in extremely confident (this is 

a selective enrollment school, so the students have historically been successful in academic 

contexts), so there is a possible ceiling effect on this measure. An alternative explanation is that 

five weeks in the introductory environments did not have any effect on students’ confidence, 

possibly because they did not get any better at programming or that what the students were doing 

was found to be too easy or different from the type of activity that would increase their 

confidence with respect to programming. 

The next step in this analysis is to look at differences by modality. In calculating the 

ANOVA on the Pre scores, the results show that there is a slightly significant difference between 

the three starting data points, F(2, 84) = 2.46, p = .09, meaning that the three samples were not 
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the same with respect to their initial confidence levels. A Tukey HSD post hoc calculation 

shows there to be a difference between the Blocks and Hybrid conditions (p = .08), but no 

difference between the other two conditions (p = .33 and p = .71). This difference in confidence 

cannot be explained by other factors of the class that were collected (like grade, gender, or prior 

computer science experience), suggesting that a prior difference does exist. For analytical 

purposes, this leads us to be less interested in absolute comparisons of values at the mid points or 

the changes across conditions (since they are not the same initially), but does allow us to look at 

within-group differences. 

 Running a Wilcoxon signed ranks test on the three conditions and their changes between 

the Pre and Mid surveys shows a significant change for the Blocks condition (Z = 46, p = .05), 

but not a significant change for either Hybrid (Z = 108, p = .61) or the Text condition (Z = 98.5, 

p = .82). Given the positive slope of the change in the Blocks condition, this difference can be 

interpreted as showing that students in the Blocks condition saw a significant increase in their 

confidence in their own programming abilities. This finding correlates with how useful students 

found the blocks-based modality to be in preparing them for Java, which found that students in 

the Blocks condition found Pencil.cc to be the most useful at the five-week point of the study. 

This data will be presented and discussed in a later chapter. This outcome is consistent with other 

less quantitative studies suggesting that the blocks-based programming interface is effective at 

increasing students confidence in their own programming ability (Maloney et al., 2008; N. 

Smith, Sutcliffe, & Sandvik, 2014). Further, this positive increase in confidence supports one of 

the arguments made in favor of blocks-based language and their affective strengths, although, as 

will be discussed in the next section, not all such claims are supported by this study. The lack of 

positive trends for the Hybrid and Text conditions can be interpreted in a few ways. One 
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explanation is that these modalities do not improve students’ confidence in programming, for 

which a number of possible explanations could be given (e.g. they find it difficult or did not feel 

successful in their time with it). A second plausible explanation for these data is that there was a 

ceiling effect, meaning the students started with a high level of confidence, so there was little 

room for them to become more confidence, which was not the case in the Blocks condition. 

Enjoyment of Programming 

 The second attitudinal dimension is whether or not students’ enjoyment of programming 

differed based on the modality they used. To calculate a measure of enjoyment, responses to the 

following three Likert statements from the Pre, Mid, and Post surveys were combined: I like 

programming, Programming is Fun, and I am excited about this course. These three questions 

were found to reliably report the same underlying disposition at all three time points (Pre 

Cronbach’s α = .79, Mid Cronbach’s α = .84, Post Cronbach’s α = .89). Figure 5.6 shows the 

aggregated enjoyment scores for students across the three conditions at all three time points, 

although, again, in this section only the Pre and Mid scores will be discussed. 
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Figure 5.6. Calculated levels of students’ enjoyment of programming by condition at three 
points in the study. 
 
 At the outset of the study, the overall average mean enjoyment response 8.31 (SD = 1.39) 

on the 10-point Likert scale. After five weeks in the course, the mean enjoyment response 

increased slightly to 8.42 (SD = 1.60). A Wilcoxon signed rank test shows that these two scores 

are not statistically significant from each other (Z = 3227, p = .34), meaning on average, students 

did not like programming any more or less after using Pencil.cc than they did before. Unlike the 

responses for initial confidence, there is no difference between the three condition at the outset of 

the study (F(2, 84) = .047, p = .95). After working in either the blocks, text, or hybrid interface 

of Pencil.cc for five weeks, the survey did not reveal a difference in enjoyment across the three 

conditions (F(2, 78) = .08, p = .93). Given these two results, it is not surprising to find that there 

was no difference in the changes between the three groups (F(2, 75) = .14, p = .87). Looking 

within each condition, a Wilcoxon signed ranks test did not show any significant changes for the 

three conditions (Blocks: Z = 70.5, p = .20, Hybrid: Z = 72, p = .22, Text: Z = 93.5, p = .68). 

This lack of significant finding by condition suggests that modality plays a relative small role 

8.29	

8.52	

8.18	8.28	
8.38	 8.40	8.38	

8.36	

8.56	

6.50	

7.00	

7.50	

8.00	

8.50	

9.00	

9.50	

Pre	Survey	 Mid	Survey	 Post	Survey	

M
ea
n	
Ag

gr
eg
at
e	
Li
ke
rt
	S
co
re
s	

Aggregate	Enjoyment	Scores	

Blocks	

Hybrid	

Text	



 156 
with respect to perceived enjoyment of programming. Also, the high scores for all three 

conditions at all three points speaks to a potential limitation due to the fact that this is an elective 

course which students have self-selected into. Qualitatively, this graph does show a positive 

slope for both the Blocks and Hybrid conditions and a slightly negative slope for the Text 

condition, which suggests there may be differences here, but these data do not have the statistical 

significance to support such claims.  

Digging in a little deeper, looking at the three underlying questions individually does 

reveal a significant finding, on the question “I like programming”, the Hybrid group saw a 

statistically significant increase (Z = 36, p = .05). This provides a little piece of evidence that in 

fact that there may be a difference based on modality that a larger study with more statistical 

power might be able to reveal. It is interesting to note that the only significant gain for any of 

these questions between the Pre and Mid time points came from the Hybrid condition, as 

opposed to the Blocks condition, which suggests that the Hybrid condition may be tapping into 

the enjoyment that comes from blocks, but that the authenticity of the hybrid condition reported 

earlier in the chapter may also contribute to the sense of enjoyment, meaning that the Hybrid 

condition may be benefiting from the best-of-both-worlds. 

Programming is Hard  

 The attitudinal survey included the Likert statement: Programming is Hard. Initially this 

was intended by be part of the Confidence aggregate score, but ended up not correlating with the 

other two confidence questions (Pre Cronbach’s α = 0.48, Mid Cronbach’s α = 0.57, Post 

Cronbach’s α = 0.67), as all three time periods fall well below the .8 level generally agreed to be 

threshold for adequate correlation. As such, this question is treated independently. Figure 5.7 

shows the Pre, Mid, and Post scores for students grouped by Condition for this question. 
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Figure 5.7. Average responses to the Likert statement: Programming is Hard. 
 
 The average response to this statement across the three classes during the first week of 

school was 5.72 (SD = 2.29). By the end of the fifth week, the mean response had shifted to 6.36 

(SD = 2.28), resulting in a moderately significant increase (Z = 3009.5, p = .10), meaning 

students thought programming was harder as a subject after spending five weeks using one of the 

modalities of Pencil.cc. This shift is largely driven by the steep increase in the responses among 

students in the Blocks condition. An analysis of variance (ANOVA) calculation on the Pre 

survey responses shows no significant difference between the three conditions (F(2, 84) = 1.28, p 

= .28) at the outset of the study and a significant difference emerging by the Mid survey F(2, 78) 

= 4.36, p = .02. A Tukey HSD post hoc analysis shows a significant difference between the 

Blocks and the Hybrid condition (p = .03) and the Blocks and Text condition (p = .04), while the 

Text and Hybrid conditions were comparable (p = .96). This means the Blocks condition was a 

significant outlier with respect to perceived difficulty of programming. As will be shown in the 

next chapter, the Blocks condition did not perform significantly differently than the other two 
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conditions on the content assessments. In fact, on the total score, the Blocks condition 

performed the best. This means that this perceived difficulty of programming does not match the 

Blocks students’ performance on the assessments. One possible explanation for this outcome is 

that it serves as another data point suggesting that students did not view what they were doing in 

the Blocks-based interface as being the same as “real” programming. Comparing the Pre to Mid 

changes across the three groups shows that while there are different levels of change (i.e. 

different slopes), those differences are not significantly different from each other (F(2, 74) =  .76, 

p = .47). 

 Looking within the three conditions, only the Blocks group saw a significant change in 

responses. A Wilcoxon signed ranks test returned Z = 42, p = .02 for the Blocks condition, but 

nothing significant for the Hybrid condition (Z = 72.5, p = .57) or the Text condition (Z = 96, p = 

.51). 

Interest in Future CS 

The last attitudinal category is looking at whether or not the modality used in the 

introductory programming environment affected students’ interested in enrolling in future 

computer science courses. More specifically, students were asked, on a ten-point scale, how 

much they agreed (10) or disagreed (1) with the following statement: I plan to take more 

computer science courses after this one. Figure 5.8 shows the average response for students 

grouped by condition. 
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Figure 5.8. Average responses to the Likert statement: I plan to take more computer science 
courses after this one, grouped by condition.  
 
 The mean scores of the Pre (8.14, SD = 2.40) and Mid (7.80, SD = 2.57) surveys show a 

slight decrease in overall interest in wanting to take future computer science courses, however 

not at a significant level (Z = 442, p = .28). Although there was no overall trend between Pre and 

Mid when all students scores were aggregated together, Figure 5.8 shows a rather different story. 

The survey administered at the start of the school year showed no significant difference between 

the three conditions (F(2, 84) = .37, p = .69). After five weeks working in the three modalities, a 

numerical difference emerged, although in this case did not reach a level of statistical 

significance (F(2, 78)=2.22, p = .12). At the Mid point, the students who were using the blocks-

based version of Pencil.cc had moved from being the least interested in future computer science 

classes to the most interested, while both the Hybrid and Text conditions saw their level of 

interest decline. The differing slopes approach statistical significance (F(2, 75) = 2.88, p = .06).  

 While there was a slight difference in the changes across the three groups, only the 

Hybrid condition’s Pre to Mid change showed moderate levels of significance. A Wilcoxon 
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signed ranks test for the Pre to Mid scores for the Hybrid condition returns Z = 91.5, p = .07, 

while the Blocks condition and Text condition failed to reach any level of significant (Z = 25, p 

= .15 and Z = 110, p = .29 respectively). This finding is interesting, as it does not entirely fit with 

the previous sections, which showed that students working in the Blocks condition viewed 

programming to be the most difficult and were not outliers with respect to enjoyment or 

confidence. Despite this similarity on the other measures, students in the Blocks condition were 

more interested in pursuing future computer science learning opportunities. In the next section, 

which concludes this chapter, the results from this section are brought together with the other 

findings from this chapter and are synthesized in order to try and answer the stated research 

question being addressed in this chapter: how does modality affect students’ attitudes towards 

and perception of computer science.  

Discussion 

 This chapter presented data towards answering how modality affects students’ attitudes 

and perceptions of programming and computer science more broadly. The data drew from the 

initial student interviews as well as from the Pre, Mid, and Post attitudinal surveys (Appendix B). 

Two sets of analyses of student perceptions were performed in this chapter. The first set 

investigated students’ perceptions of the use of different modalities in Pencil.cc while the second 

was on their emerging relationship with programming. As is often the case, the answer is not as 

simple “the Blocks condition improved attitudes” but instead a more complicated, nuanced 

answer that reveals along which dimensions attitudes shifted and when modality is the reason for 

that shift. This discussion provides a short summary of the findings presented above and situates 

them relative to the other data presented.  
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Students’ Perceptions of Pencil.cc 

 The first finding from this chapter is that the use of an environment like Pencil.cc, which 

includes a graphical output and editor with various scaffolds differs from what high school 

students expect to see in an introductory programming class. Despite encountering this 

unexpected environment, students were able to recognize its utility, citing the environment’s 

friendly interface, ease of writing successful programs, and ability to lay the foundation for 

future programming instruction as reasons for its usefulness. This shows that high school aged 

students are sophisticated enough about programming, computer science, their own learning to 

recognize the utility of the environments they are working with.  

 The sophistication of the learners’ understanding of the learning environments and the 

modalities used within them emerged in analysis of student responses to an open-ended survey 

question asking them about what they found to be most useful about the Pencil.cc environment. 

In these responses we start to see stratification by modality. Blocks students were more likely to 

attend to blocks-related futures of the environment, citing the ease of the drag-and-drop 

mechanism and the visual layout of the set of possible commands as being useful, while the Text 

condition students attended more to features tied to the text modality, like syntax and the 

available in-editor scaffolds like real-time compilation warning and the Quick Reference feature. 

 Following this thread of investigation into students’ perceptions of the utility of the 

Pencil.cc environment, an analysis of Likert survey questions pertaining to the authenticity and 

utility of the environment was presented. In looking at students’ perceptions of Pencil.cc with 

respect to its authenticity, on the Mid survey, students on average reported that the version of 

Pencil.cc they used was similar to what “real programmers” did and that the environment helped 

them in learning to program. This paints a generally positive picture of students perceptions of 
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the Pencil.cc environment, however, other data suggests it is not so simple. For example, 

after working in Java for 10 weeks, a majority of students (79%) across all three conditions 

found Pencil.cc to be less useful than they had initially reported, and almost half of the students 

(42%) thought Pencil.cc was less like real programming after working in Java. At a condition 

level, only the Hybrid condition on the authenticity question showed a positive change after 

learning in Java. This suggests a shift occurred in students’ perception of what programming is 

between the Mid and Post surveys. This suggests that the conceptualization of what 

programming is after working in Pencil.cc is different than what programming means to learners 

after 10 weeks of working in Java. How students’ experiences with the introductory tools shaped 

their experience in Java will be explored in greater detail in Chapter 8. 

Students’ Attitudes Toward Programming 

 The second set of analyses presented in this chapter looked at students’ attitudes towards 

programming grouped into four categories: confidence, enjoyment, difficulty, and interest in 

pursuing computer science. For each of these categories, the analysis looked both across and 

within conditions to try and understand the role of modality in shaping student attitudes. Across 

these aspects of attitudes categories, the data show student’s confidence and enjoyment growing 

slightly, their interest dropping slightly, and a significant increase in students’ perception of the 

difficulty of programming. That gives the highest-level overview. Breaking these aggregate 

trends down we see a more nuanced story emerged, finding that modality does seem to effect 

some of these attitudinal dimensions but not others.  

 When looking at perceived difficulty, plans to take future computer science courses, and 

students’ overall confidence levels, we find differences by condition. In these three cases, it was 

the Blocks condition that differed from the Text and Hybrid conditions. Students in the Blocks 
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condition found programming to be more difficult but also experienced the greatest gains in 

confidence as well as the largest increase in terms of wanting to pursue future computer science 

courses. One possible way to explain this would be to say that students in that condition enjoyed 

programming more than the other two, but our analysis of enjoyment found that, while the 

Blocks group did report improved enjoyment, so did the Text and Hybrid conditions. Another 

possible explanation alluded to above is that students in the Blocks condition saw what they were 

doing as a simplified version of programming. Thus, the fact they were doing well in the Blocks 

condition (a fact that will become more clear in the next chapter) could explain their confidence 

and desire to take more computer science classes in the future, while also explaining how they 

view programming to be difficult, because what they are doing is not the same as programming, 

but a simplified version of it. This explanation partially holds up to the findings of the 

authenticity question, which shows why Blocks students saw their condition as the least 

authentic, but the gap between Blocks and Hybrid is small enough that, if this were the whole 

story, we’d expect to see a similar pattern in the Hybrid responses. 

 In the same way that finding differences between the conditions is an interesting result, a 

lack of differences also tells us something about the modalities. The lack of difference between 

the Blocks, Hybrid, and Text conditions with respect to the enjoyment of programming suggests 

that modality is not the driving characteristic behind students finding Pencil.cc-style 

environments engaging, at least among high school aged learners. Looking specifically at the 

Hybrid and Text conditions, we see little significant differences between them, but for the most 

part, the Hybrid condition shows more desirable numbers (more confident, slightly higher levels 

of enjoyment, and more likely to take another computer science course). This suggests that the 
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drag-and-drop ability to add commands to programs and the browsability of commands do 

not significantly contribute to differences on attitudinal measures. 

How Did the Hybrid Condition Fare? 

 The Hybrid condition was designed to blend features of blocks-based and textual 

programming interfaces. The goal for the design is that it would be able to leverage the 

attitudinal strengths of the blocks-based modality while also easing the difficulty observed when 

students move from graphical, drag-and-drop interfaces to more professional languages. This 

chapter starts to shed light on whether or not this came to be with this specific hybrid approach.  

 First, the analysis of the perceived affordances of the three conditions found a bimodal 

set of responses, with relatively little overlap between the Blocks and Text responses. The 

responses from the Hybrid group spanned both ends of our categorical spectrum. This means that 

the chosen Hybrid interface was successful in drawing on features of both modalities to support 

learners, and that the learners themselves were aware of and attuned to those supporting features. 

Among the four attitudinal dimensions analyzed, the Hybrid condition largely followed 

the same pattern as the Text condition, at times living between Blocks and Text (as in the case of 

the future computer science question), while also sometimes coming out with the highest score at 

the mid point (confidence) or the lowest (difficulty). Following similar trajectories as the Text 

condition suggests the Hybrid interface used in this study was too similar to the Text condition to 

gain the positive attitudinal benefits we found in the Blocks condition. Given the expanse of the 

design space of Hybrid environments, this suggests that more design work might be needed to 

bring the text editor portion of this hybrid interface closer to the Blocks interface that yielded the 

positive attitudinal outcomes. 
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 Finally, in looking at how students perceived the Hybrid condition, while there was 

little difference across the three conditions, in both measures (authenticity and utility for learning 

programming), the Hybrid condition had the best outcome of the three conditions at the end of 

study. On the authenticity question, the Hybrid condition was the only one that saw an increase 

after learning Java, and on the question about if Pencil.cc helped the students learn, the Hybrid 

condition went from the least useful to most useful after Java was introduced. These outcomes 

suggest that the real value of the hybrid condition emerges only after Java is introduced, so that a 

Hybrid condition might not be best for learning contexts where a hybrid tool is the end goal, but 

instead, serves as a successful stepping-stone to text-based languages when that is in fact the 

goal. This question is further explored in Chapter 8. 

Conclusion  

 This chapter presented data answering the first part of the first research question on how 

modality affects learners’ attitudes towards and perceptions of programming and computer 

science more broadly. With the findings presented above, part of the larger picture of the role of 

modality on the learner is starting to come into view, although there is much that remains to be 

filled in. For example, some of these analyses only told half of the story, focusing on students 

shifting attitudes over the course of the first five weeks of the study when students were working 

in the introductory tools. Data was also collected to understand if these attitudinal shifts persisted 

or changed after working in Java. Likewise, little has yet been said about the nature of student 

programs, the practices they develop or their conceptual understanding of the ideas encountered 

over the first 15 weeks of the study. It is this last topic, conceptual understanding, that constitutes 

the second half of the first set of research questions and the focus of the next chapter.  
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6. Conceptual Learning Outcomes 

 This chapter presents findings on student’s conceptual understanding of central 

programming concepts looking for differences and similarities across the three conditions of the 

study (Blocks-based, Text-based, and Hybrid Blocks/Text). The chapter is broken down into two 

sections. First is a presentation of students’ emerging conceptualizations of core computer 

science ideas. This section draws on qualitative data sources (interviews and open-ended 

responses) to characterize how students are coming to understand the programming ideas 

covered in the opening five-week curriculum. The second section presents a quantitative analysis 

conducted with data from the three administrations of the Commutative Assessment: one given 

at the beginning of the study (Pre), one five weeks into the study after students had finished 

working in the Pencil.cc environment but before they had started working in Java (Mid), and one 

at the conclusion of the study after students had spent 10 weeks learning Java (Post). The 

quantitative analysis section begins with a brief review of the Commutative Assessment and a 

description of how it was administered. The first analysis investigates the relationship between 

modality (graphical blocks vs. textual) and specific programming concepts, revealing that 

modality does indeed matter, which helps to motivate the analysis conducted in the remainder of 

the chapter. The second half of the section looks at how conceptual understanding differs by the 

version of Pencil.cc used during the first five weeks of the study. Results from the Pre 

assessment, which serves as a baseline for the analysis that follows, is presented first.  It shows a 

lack of differences across the three conditions. From there the analysis looks at learning 

outcomes by condition, answering the question: were there differences in performance on the 

content assessment across the three conditions of the study? The next portion of the chapter asks 

a similar question, but now looking at differences by modality by condition, extending an 
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analysis conducted on data collected during the first year of the dissertation. After analyzing 

the responses by modality, the next section looks at differences by the concepts included on the 

assessment, asking: Do learning outcomes for specific concepts differ by condition or modality? 

The chapter concludes with a discussion and summary of the various findings presented. Before 

presenting the findings, it is important to reiterate that when comparing across conditions 

(Blocks v. Hybrid v. Text) the only difference was the modality in the programming 

environment, all other class-related factors were held constant17. 

Emerging Conceptual Understandings 

 After students concluded the five-week introductory portion of the study, they were asked 

short answer questions about the four central programming concepts covered in the curriculum: 

variables, conditional logic, iterative logic, and functions. This section presents the results of 

open coding these responses and grouping them by condition. The goal of this analysis is to 

understand if students’ conceptual understanding of concepts is informed by the modality they 

used to first interact with and use the concepts, and if so, how. For each concept, students 

responded to the following open-ended prompt: What do ___ do? And how are they used in 

programs? Where the ___ in each questions was replaced with “variables”, “for loops and while 

loops”, “if and if/else statements”, and “functions”. This direct questioning approach admittedly 

does not yield a nuanced understanding of learners’ conceptualizations, but is nonetheless useful 

for beginning to understand how students are thinking about these concepts. Student responses to 

these questions were open coded using a grounded theory approach (Strauss & Corbin, 1994), in 

 
17 One other factor that is not constant is that the classes were held at different times in the 
school day: 4th period, 7th period and 8th period, but given that all classes were taught by the same 
teacher in the same classroom at the same time in the school year, this was unavoidable. 
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which the data themselves were used to identify emerging themes and codes. Due to this 

emergent analytic approach, it is important to note the ontological inconsistencies that exist both 

within and across conceptual groups. For example, the analysis of variables focuses on 

conceptual metaphors used by the learners while the conditional logic analysis included codes 

for characteristics of if/else statements as well as attention to features of conditional statements. 

This diversity of types of codes is an artifact of the emergent analytic approach taken. 

Variables 

 The first question students responded to from this group was: What do variables do? And 

how are they used in programs? In analyzing the responses given, a variety of answers were 

given, more specifically, students talked about variables and their uses in a number of different 

ways employing different metaphors in their descriptions. The first type of response identified 

was to use the metaphor of a variable being like a container that stores things. For example, 

students gave response like “Variables are used to store a value18” and “Variables are values 

that store information, they are used to store information in.” The idea of a variable being a 

container that holds things is commonly used in computer science classrooms. The second 

metaphor found in student responses is similar to the container idea, but instead of holding the 

value, variables serve as placeholders for that value. In other words, the value is stored 

somewhere else and the variable serves as a representation used to get access to that value. This 

view can be seen in responses such as “Variables are placeholders for something such as a 

string, boolean, or integer.” and “[Variables] are something that stands in or represents 

something else”. A third metaphor that is similar to the first two is that of a variable as a pointer. 

 
18 Note: italicized text in this section denote direct quotes from the students’ typed-in responses. 
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While the idea of a variable as a pointer to a value could arguably be collapsed with the prior 

group because it shared the feel of a placeholder, it is left separate here because the notion of a 

pointer carries specific meaning in computer science and is explicit about the idea that the value 

itself is stored elsewhere, which is only implicit in the placeholder responses. Fewer students 

described variables in this way relative to the first two categories (four in total), one of these 

responses reads: “Variables are values that programs use to reference pieces of information in 

the code.” The last type of response given by students was to not describe the variables in terms 

of the values they represent, but instead, to define the variable as an object in its own right, 

independent of what its value is. Sample responses from this category include: “Variables are 

things that change inside a function and are not things set in stone”, “Variables are changeable 

values. They are used to make stuff happen pretty much. Without them, pretty much nothing can 

occur in a program”, and “Variables are anything you want them to be. They're used to tell the 

computer that another thing equals something else and so on”. All student responses were coded 

as one of these four categories, with a few responses being coded as more than one when 

students drew on more than one metaphor within their response, as in the case where a student 

responded “Variables are symbols that can represent or hold information to be used, or a place 

holder for unknown values”, which was coded for both container and placeholder metaphors. 

Only five of the 82 responses did not fit into any of these four categories, an example of one of 

these outliers is “Variables are used to keep a clean and concise code in your program”, which 

does not attend to what a variable is, but instead describes how they are used. Figure 6.1 shows 

the distribution of student responses grouped by condition. 
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Figure 6.1. How students described variables, grouped by the form of Pencil.cc they used. 
 
 After coding all student responses, the data show that learners in the Text condition 

preferred the variables-as-containers metaphor, followed closely by the place holders metaphor, 

and were least likely to describe variables as pointers or as their own thing. Conversely, students 

in the block condition were most likely to use the placeholder metaphor or see variables as their 

own thing, and were much less likely to invoke the containers metaphor relative to their text-

based peers. Throughout the various analyses of outcomes from this study, when grouping 

responses by condition, the Hybrid condition usually falls between the Blocks and Text 

conditions, sometimes falling more closely to one than the other. When looking at student 

responses to this conceptual question about the nature of variables, the Hybrid group aligns more 

closely with the Blocks condition, showing a higher frequency of treating variables as their own 

entity compared to text, and less likely to utilize the container metaphor favored by students in 

the Text condition. 
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 One possible explanation for the higher frequency of the Blocks and Hybrid condition 

treating variables as their own distinct entity is in how they are presented to the user in the blocks 

palette. In blocks-based programming environments, variables are blocks in the same way loops 

are things, conditionals are things, and, in the case of Pencil.cc, visual and movement commands 

are things. This presentation seems to lend itself to treating variables as objects in their own 

right. Alternatively, the container metaphor is less intuitive from the graphical layout of the 

commands given the fact that variables are not visually depicted as encapsulating, holding, or in 

any other way containing the value. Instead, in Pencil.cc’s blocks interface, the variable 

identified lives on one side of an = with the value on the other. A possible explanation for the 

Text condition’s more frequent use of this explanation is that the variable-as-container metaphor 

is used explicitly in other courses taught by the teacher in these classrooms so, when students ask 

for help with variables, it seems plausible that her response would utilize this metaphor. The 

placeholder metaphor appears frequently across all three groups and is a perspective that aligns 

with how the Quick Reference page on variables describes their use. Students who sought help 

from the Quick Reference may have developed this intuition from the environment itself. It is 

important to note that none of these responses are necessarily incorrect, or more correct than the 

other, but instead, the differences are highlighted here to show how modality both directly (in the 

case of Blocks and Hybrid describing variables as their own thing) and indirectly (in the case of 

Text students using the container metaphor) inform emerging understandings of programming 

concepts.  

Conditional Logic 

The second question on this portion of the survey asked students about conditional logic 

statements, specifically asking about if and if/else statements in case students were not 
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familiar with the term “conditional logic”. In open coding student responses, a number of 

categories emerged, including students attending to how conditional statements are used to make 

decisions and how if/else blocks can introduce branching logic to a program. Codes were also 

added for students mentioning the need for a condition to be met, the mention of the words true 

or false being a component of a conditional statement, and cases where students discussed if 

and if/else separately or in relation to each other. There was also a code for misconceptions. 

All of the codes are discussed in greater detail below. Figure 6.2 shows the result of coding 

student responses grouped by condition. 

 
Figure 6.2. Coded student responses to the conditional logic question grouped by condition. 
 
 The first two codes in Figure 6.2 capture high level behavior of if and if/else 

statements. Sixty-three of the 81 responses stated that conditional logic was used to decide what 

code to run, and there was little difference by condition on the frequency of this response. An 

example of this code is the student response: “If/else statements are used for telling a program to 

do something if something else is happening”. The Branching Logic code relates to the first code, 

but includes responses that attend to the fact that a conditional statements can result in one thing 
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or another being run, i.e. that the a program’s execution can branch. An example of a typical 

response that was coded for both of the first two codes is “If statements are basically conditions 

where if a condition is met, a certain task will be done. If/else statements is almost the same 

thing, but if the condition is not met, then a different task will be done”. The distribution of 

responses across the Branching Logic question sees fewer Text condition students attend to this 

feature of conditional statements, a possible explanation for this will be given in the discussion 

of the If and If/else findings later in this section.  

 The next two codes, Condition to Meet and Boolean Statements, are a mutually exclusive 

pair that attend to how the student defines how the decision making process happens. The first 

code captures learners’ responses that use general language suggesting that a condition needs to 

be met, like the response: “If/else statements run code depending on whether a condition is met 

or not”. Explicitly stating that expressions are evaluated that are either true or false is the 

defining feature of the section code, like in the response: “if and else statements are conditional 

statements. If something is true then it will do something, if something is false it will do 

something else”. While these two codes are conceptually similar, they are split out, as Condition 

to be Met is a more colloquial explanation whereas Boolean explanation is closer to textbook 

descriptions of conditional logic. In terms of the distribution of responses, Blocks students were 

much more likely to use the broader Conditions to be Met explanation, while Text students more 

frequently spoke about Boolean values. This distribution suggests that Text students seem to 

carry a more formal view of conditional logic, whereas students in the Blocks condition were 

more likely to use a broader, less formal description. This potentially speaks to the comfort, 

familiarity, and intuitiveness the modality provides to the learner. Where the Blocks conditions 

understand what the construct does and can thus speak about it in their own works, whereas 
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students from the text condition are more reliant on formal, textbook definitions to describe 

the behavior of the construct. For both codes, the Hybrid condition count fell between the other 

two.  

 The next code captures when learner responses discussed the role of if statements and 

if/else statements separately. A sample response of this variety reads “If/else statements 

execute one action if a condition is true. This would be under the 'if' statement. If not, then under 

the 'else' statement, there would be a different set of actions”. What is interesting about the 

pattern of these codes is that no students in the Text condition treated if and if/else 

statements as distinct things. This treatment of the two as separate may stem from the fact that, in 

the Blocks palette used by both the Blocks and Hybrid conditions, there are separate if and 

if/else blocks, whereas the Text condition never saw these two forms presented separately. 

While this analysis does not have the power to claim that treating if and if/else statements 

separately means students hold different conceptions of the construct, it does show how the 

environment can inform students categorization of ideas. It is important to note that across all 

three classes, the two forms of conditional logic were taught at the same time (i.e. they were not 

taught separately). 

 The final column captures responses that were incorrect or contained statements about if 

and if/else statements that were not entirely correct. These responses were equally 

distributed across the three conditions. A few student responses gave the impression that 

if/else statements are event-based, meaning they are always running and wait for something 

to happen, for example, one response reads “If / if/else statements are used to create instances 

where they are to trigger once something happens. They are used to trigger when a specific time 

or code arrives, like if a number instance is defined, and it applies to the statement, the if/else 



 175 
statement triggers, either doing it or doing something else depending.” A second example of 

a response of this type reads: “If/else statements are used for telling a program to do something 

if something else is happening.” Both of these responses suggest a reactive aspect of conditional 

logic that implies they wait for something to happen. It is worth noting some introductory 

programming environments such as Scratch, have an event-based blocks that demonstrates this 

behavior called wait until, which has been identified as the source of unproductive 

programming habits in students (Meerbaum-Salant et al., 2011). A number of students gave 

similar responses suggesting that if/else statement execute when something happens (as 

opposed to when a condition is true), this seemingly slight difference in language suggests a 

larger conceptual difference with respect to how conditional logic actually behaves.  

 A final aspect of the conditional logic responses that is worth highlighting is the diversity 

of ways students described if/else statements. Across the 84 responses, there are a number of 

different metaphors used by the students to describe conditional logic. Two students described 

conditional logic as a “cause and effect” mechanism. Other students called if/else statements 

“Plan A and Plan B.” A number of students described conditional logic using a navigation 

metaphor, “In programs they are used to create two paths that the code can take.” One student 

described conditional logic as a set of “guidelines” for the program, while another called them 

“constraints” for the program. This richness of metaphors highlights the diversity of resources 

learners have and do draw on to make sense of computational ideas as all of these metaphors can 

productively be leveraged to effectively reason through a conditional statement in the context of 

a program. A final interesting characteristic to mention from this dataset is that introduction of 

anthropomorphism in responses. Three students used language of this kind, saying things like 

“...It's like the way a computer can be prepared” and “They are like a computers logical 
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thinking.” There is literature showing this type of language being used by younger learners in 

talking about computers and robots (Sharona T. Levy & Mioduser, 2007; Rücker & Pinkwart, 

2015), but little prior evidence of it being used at the high school level. 

Iterative Logic 

 Student responses to the question of what for loops and while loops do and what they 

are used for, were generally clear and accurate. For example, a typical response was: “For loops 

makes things happen for a certain number of times. A while loop makes things happen while a 

condition is true. They can repeat things”. This response attends to the repeating nature of loops 

and identifies for loops as being definite (i.e. run a fixed number of times) and while loops 

being indefinite (i.e. repeat until a condition is met). In open coding the responses, a few types of 

codes emerged. The first two capture whether or not a given response correctly specifies how 

for loops behave and how while loops behave. The next code that emerged was students 

mentioning that loops saved the user from having to type commands over and over again. For 

example, one student wrote: “Loops repeat code so you do not have to write it multiple times.” 

The last three codes capture errors or misconceptions students held, which are discussed in more 

detail below. Figure 6.3 shows the distribution of these codes grouped by condition. 
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Figure 6.3. Coding of student responses to the purpose of iterative logic question. 
 
 The first two groups of columns show correct student responses describing for loops 

and while loops. The distribution of these columns matches the larger trend found in this study 

of students in the Blocks condition performing the best, while the Text condition performed the 

worst, with the Hybrid group being between the two. The third cluster of columns shows the 

number of students from each group that mentioned how looping is useful as it saves the user 

from having to type commands over and over again. There are two interesting things to note 

about this. First, is that, surprisingly, this issue came up roughly the same number of times for 

each condition. Given that typing is generally considered to be more cumbersome than dragging-

and-dropping commands, one would expect this feature to be cited more often by the Text group. 

The second interesting thing to note is that only in some cases does a loop actually save typing. 

For example, a for loop that is defined to repeat five times can be replaced by copy and pasting 

the commands inside the loop five times, producing the same result. However, if the loop is 

indefinite and should repeat until a given condition is met, then it is not possible to implement 
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that logic without a looping construct. In this case, the loop is not saving typing but 

accomplishing a behavior that otherwise would not be possible. 

 The three remaining codes capture incorrect responses that contain some misconception. 

The first group, coded as “Temporal Explanations” capture responses where the students say a 

loop causes commands to run for a set amount of time (as opposed to a fixed number of times). 

For example, one student’s response starts: “Loops make something repeat for a given amount of 

time…” This misconception about repetitions being tied to time passing is interesting and not a 

misconception we have encountered previously in the literature. It’s possible that this is an 

artifact of having students learn in a turtle graphics environment where loops execute at a slow 

enough pace that the user can see the result of each step. In other words, when drawing a line 10 

units long by asking the turtle to for [1…10] forward 1, the student could interpret this as 

run for 10 seconds, as opposed to run the forward 1 command 10 times. It is also possible 

that this type of response is a result of imprecise language usage by the students. I suspect that if 

you were to further question the students who gave this type of response to further explain their 

thinking, they would not hold fast to the temporal explanation, but it is mentioned it here as it is 

an interesting pattern that may warrant future investigation. 

 There were also responses that revealed other misconceptions around looping but did not 

show up often enough to rise to their own category. For example, one student responded “Loops 

make a program run without having to separately make the code, ” while a second student’s 

response was “For and while loops are exactly what they sound like they make everything loop 

over and repeat. They are used in programs to restart a program for example you get a wrong 

answer the program will pop up once again.” Both of these responses seem to view loops as part 

of the engine that drives the program, i.e. the thing that makes the program go. This is interesting 
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as this perception has been reported on studies of student understanding of concepts in 

Scratch, where it is a common practice to wrap the main logic of a program in a forever loop 

(Meerbaum-Salant et al., 2011). This is often done to make games or other programs that run 

continuously until manually stopped. This perspective seems less coupled to a specific modality 

and more to the interactive turtle graphics environment that was used, and speaks to the 

challenge of separating modality from the larger programming environment in which it is 

situated and the set of capabilities it provides. The final code is in this section captures students 

that gave responses that did not mention repetition, meaning they did not know what for or 

while loops were used for (or, more sympathetically, that they just failed to mention this 

defining feature of the constructs). A sample from this group reads: “Loops are ways to simplify 

a programs function and can be used in several different ways”. Only four students from the 

group of 81 responses fell into this category, meaning that 95% of students who went through the 

introductory activity were able to give correct responses to the role of looping logic in writing 

programs. 

Functions 

 The final conceptual category students were asked to define on the Mid survey was 

functions. Two sets of codes were devised to organize the responses given by the students, but in 

neither case did a pattern emerge across the three conditions. The first analysis is similar to the 

approach presented for the responses about variables, looking at the metaphors students use to 

describe functions. The second analysis looks at features or characteristics that students 

highlighted about functions. 

 Across the full set of responses, a number of different metaphors were used by students to 

describe functions, including: functions as storage, functions as actions, functions as collections 
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of commands, and functions as equations. Table 6.1 includes an example response for each 

metaphor identified.  

Table 6.1. Sample responses for different function metaphors identified. 

Functions are… Sample Response 
Instruction Sets Functions are set of instructions that create things. You can change 

them to meet certain criteria 
Equations A function is an equation using two or more variables to solve another 

variable. 
Variables Functions are similar to variables where they store something, but 

they store a command that uses parameters, or inputs, to determine 
the output of the function. 

A Way to Do 
Things 

Functions are a way to make it easier to write large amounts of code. 

Storage A function is like a storage for things that need to be referenced back. 
 
 Only metaphors that were used by more than 2 students are included in this analysis, so 

metaphors used by only a single student, such as functions are like systems and functions are like 

shortcuts, are not shown. Also, it is important to note that not all responses included metaphors, 

for example, a response like “Functions are things with parameters that execute lines of code 

and reference the parameters” are not included in this coding. Figure 6.4 shows the results for 

coding all student responses, grouped by condition.  
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Figure 6.4. Student metaphors used to describe functions, grouped by condition. 
 
 As previously mentioned, no clear pattern emerges from this coding. There are some 

small patterns, but the counts are so low, that little can be gleaned from them. Instead, this 

analysis is presented to highlight the diversity of metaphors used and as a possible direction for 

future work. 

 The second analysis that used this data coded student responses for other aspects of 

functions that were attended to, such as why functions are used, characteristics of functions, and 

concepts related to functions. Figure 6.5 shows the results of this analysis. 
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Figure 6.5. Responses to the short answer function questions coded for features of responses, 
grouped by condition. 
 
 Like the previous analysis on the functions responses, a clear pattern based on the version 

of Pencil.cc used by the student does not emerge from the data. Instead, this analysis gives 

insight into students’ conceptions of functions more broadly. The first code, Modularization & 

Convenience captures responses that attend to functions being able to be called multiple times 

with different inputs to create different results, like the response “[Functions are] used when you 

want to have many different outputs so you create a function and enter in different inputs to 

come up with different outputs.” This ode also captures responses that attended to how functions 

save the user from having to re-type a set of instructions every time they want to use it, as said 

by one student: “[Functions are] used to reuse a set of instructions without retyping it”. The 

second category that emerged from the open coding process was students mentioning the fact 

that functions are things that can be called, as one student succinctly defined a function as “a set 

action that can be called upon.”  Students also attended to the fact that functions take inputs and 

sometimes have outputs. The previous quote used as a demonstration of functions being called 

multiple times was also coded for both the Inputs and Outputs categories. Many students cited 
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parameters as being a key feature of functions, like the student who said “A function is a set 

of commands that requires parameters to perform a certain task”. These responses were also 

coded in the Take Inputs category.  

 Interestingly, the concept of the variable was closely tied to the function concept. For 

example, one student wrote “[A function] is essentially a variable but in the form of a larger 

equation” while another responded “Functions are a variable or variables you can make and call 

at a later time.” and a third said “A function is a special kind of variable, as it stores a list of 

actions to be done when the code is incorporated within the program”. While at a certain level of 

abstraction the equating of variables and functions is both accurate and productive (such as when 

using functional languages), but functions were not used in this capacity during the five-week 

curriculum students followed. Instead, we suspect this relationship emerged out of the syntax for 

function definition used by CoffeeScript, where the function name is on the left side of an equals 

sign, with the parameters and definition on the right, which is quite similar to how variables are 

defined. Figure 6.6 shows function and variable definitions in Pencil.cc in both the blocks 

interface (Figure 6.6a) and text interface (Figure 6.6b). 

 

 

 

(a) (b) 

Figure 6.6. The syntax for defining functions in Pencil.cc in the blocks modality (a) and text 
modality (b). 
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 While there is not a clear pattern that emerged in terms of how the three conditions 

informed students emerging conceptualization of functions, this association of functions with 

variables is a compelling piece of evidence showing how representational infrastructure and 

interface design can inform and shape students’ emerging conceptualizations of content.  

 The final category that emerged from this open coding is the prevalence of students 

equating functions with mathematical equations. For example, the entirety of one student’s 

response to the question was “A function is an equation”. The linking of functions to equations 

seems sensible given the overlapping terminology with math classrooms. Whereas the overlap 

with variables emerged for representational reasons, the overlap with mathematics seems to 

come from terminological sources. These two differing factors, that both influence students’ 

emerging understandings of core computer science concepts (representational and 

terminological), speaks to the challenge for the learner in making sense of the concepts as well as 

the challenge faced by educators and researchers in trying to education and interpret learning that 

happens in the complex world of the learner. 

 Having concluded our analysis of students’ open-responses to prompts on the concepts 

covered in the five-week introductory portion of the course, the analysis now shifts to a 

quantitative analysis of the content assessments. This analysis begins with a brief review of the 

Commutative Assessment before diving into various analyses looking at differences across 

concept, condition, and modality. The chapter concludes with a larger discussion linking the 

analysis just presented with the analysis below, painting a larger picture of students’ emerging 

conceptual understanding and the role that modality plays in this learning process. 

The Commutative Assessment 
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 The Commutative assessment is discussed in detail in the Methods chapter of this 

dissertation (Chapter 3), but the design of the assessment, as well as the strategy for 

administration during the study, are briefly reviewed here. The Commutative Assessment 

consists of 30 questions spread over 6 conceptual categories: conditional logic, iterative logic, 

variables, functions, comprehension, and algorithms. Each question on the assessment is 

multiple-choice and includes a short piece of code followed by a question asking students to 

identify the behavior of the script. The unique aspect of the Commutative Assessment is the fact 

that the code snippet in the question can be presented in one of three modalities: Snap! blocks 

(Figure 6.7a), Pencil Code blocks (Figure 6.7b), or Pencil Code text (Figure 6.7c). These three 

modalities are isomorphic and have the same behavior if run in their respective environments. 

The final important feature of the Commutative Assessment worth mentioning in this brief 

review is the design choice to use the existing literature on misconceptions to create the incorrect 

multiple-choice options. Figure 6.7 from Chapter 3 shows a sample question. 

 
 

 

Snap! Pencil Code Blocks Pencil Code Text 
(a) (b) (c) 

Figure 6.7. The three forms programs may take in the Commutative Assessment. 
 
 Three versions of the Commutative Assessment were created for this study. All three 

versions ask the same questions in the same order; the only difference is the modality of each 

question. Over the three administrations of the assessment (Pre, Mid and Post) students see all 

three modalities for every question. So if a question is asked in the Snap! modality on the first 
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version of the assessment, it will be in the Pencil Code blocks on the second, and the Pencil 

Code text on the third. Care was taken to ensure that within each conceptual category, questions 

in all three modality are included. So students answer questions for every concept in all three 

modalities on every test. Over the course of the study, students take each of the three versions of 

the assessment once. This means that ever student answers every question in every modality. All 

three versions of the survey were given at each administration, with roughly one third of the 

students taking each version of the assessment at each administration. Collectively, this design is 

meant to ensure that the results of the assessments are not skewed by having students from 

different conditions or at different points in time disproportionately answer a given question in a 

given modality.  

 Basic validity measures were run on the responses collected in the second year of the 

study and showed the assessment to have an acceptable reliability score across all items 

(Cronbach’s α = .80). In this section, the scores presented are calculated by averaging together 

every student’s score for every question that fell into the grouping being presented. Grouping 

this way helps control for features of specific questions, and gives a more accurate within-

participant score for conceptual understanding. These scores are then aggregated across the full 

set of participants. 

Year One Concept by Modality Findings 

The first analysis presented investigates if performance on conceptual questions differed by the 

modality the question was asked in. For this analysis, data from the first year of the study was 

used because the three conditions in year one were more similar, allowing the analysis to group 

all responses together giving more statistical power and a larger set of responses from which to 

investigate outcomes. Figure 6.8 shows the results of grouping student response by concept and 
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modality from the first year of the study. It is important to note the while the questions on the 

first year of the Commutative Assessment were largely the same19, the text questions were 

presented in JavaScript, as opposed to CoffeeScript, so there is a slight difference between the 

administrations across the years. Also, in this section, the blocks-based questions were rendered 

with the Snap! notation, as the learning environment students used in the first year (Snappier!) 

was based on Snap! 

 
Figure 6.8. Student performance on the Commutative Assessment grouped by modality and 
concept. 
 
 Looking across the five conceptual categories covered in the Commutative Assessment 

using paired-samples t-tests, the results show that students perform significantly better with the 

blocks-based modality on questions related to iterative logic t(178) = 10.40, p < .001, d = 1.57, 

conditional logic t(178) = 2.82, p < .01, d = .41 and functions t(178) = 2.89, p < .01, d = .41. 

Students also performed better in the graphical condition on variable questions, but not 

significantly so, t(178) = 1.66, p = .10, d = .25. Interestingly, there was almost no difference in 

 
19 A few minor revisions were made between the two years, often in the form of new incorrect 
responses being added to try and tease out further misconceptions, although a few code snippets 
were modified and a small number of questions were added. 
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how students performed on the comprehension questions between the two modalities t(178) 

= .094, p = .92, d = .01. These data provide evidence showing that yes, modality does affect 

novice programmers’ understanding of basic programming concepts. Further, these data show 

that the effect is not uniform across concepts and does not seem to influence comprehension of 

programs in the same way it effects basic understanding of what a construct does within a 

program. Seeing that a difference does exist, the analysis continues by investigating each 

category more carefully, looking at how specific concepts are differentially influenced by 

modality and if they can be explained by misconceptions from the literature.  

Iterative Logic  

 While iterative logic showed the largest difference in scores between blocks-based and 

text-based questions, a closer analysis of the questions shows that a majority of this difference 

can be attributed to the difficulty students have with the structure of for loops (du Boulay, 

1986). Two of our five iterative logic questions compared a graphical repeat block to a text-

based for loop (Figure 6.9).  

 
Figure 6.9. A sample iterative logic question from the Year 1 version of the assessment. 
 
 On these two questions, students performed significantly better in the graphical condition 

(83% correct) versus the text-based for loop version of the question (16.1% correct). This 
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provides compelling evidence for the finding that students find the repeat command 

common to blocks-based languages easier to understand than text-based for loops, a finding 

already documented in the literature (Stefik & Gellenbeck, 2011; Stefik & Siebert, 2013). By 

examining the incorrect responses given by students, we can glean additional information about 

how students understand the concepts with respect to the way they are presented. For example, 

on the text-based for loop questions, almost half of the students (49.3%) chose an answer that 

had each command inside the for loop run once and only once – suggesting it was not clear that 

any looping was going to occur. When answering the same questions with the graphical repeat 

blocks, only 1.5% of students chose those options. Second, in the text-based conditions, 20.7% 

of students chose the answer that suggested the number of times a given for loop would run 

was variable, and would be different each time it was executed. In the graphical repeat 

versions of the questions, only one student chose this option. The Commutative Assessment 

includes one looping question that compared a blocks-based version of a for loop to a text-

based version (Figure 6.10). 

 
Figure 6.10. Comparing blocks-based and text-based for loops. 

 
 On this question, students performed comparably, answering the question correctly 

19.6% percent of the time in the graphical condition and 18.0% of the time in the text-based 

condition. Two reasons may explain the lack of a difference on this question compared to what 

we saw on the two questions that use repeat: the confusion around the use of the term “for” to 
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capture the concept of looping and the lack of transparency in how for loops behave based on 

this conventional representation (du Boulay, 1986; Stefik & Gellenbeck, 2011). This outcome, 

along with the other for loop questions adds to the evidence that students find the word “for” 

unintuitive, and that “repeat” better describes the looping behavior. As there are languages that 

utilize the keyword “repeat” (Logo in particular comes to mind), this finding speaks more to 

language design than features of the modality.  

 The two indefinite loop questions use the while construct. There was little difference in 

performance between the blocks-based and text-based versions of these questions. For both 

questions, students’ performance was very similar (a difference of .6% and 2.3% for the two 

questions). A closer investigation of the answers given (including incorrect answers) does not 

show a systematic difference between the types of representations used. This suggests that, on 

indefinite loops, the blocks-based representation does not seem to provide any distinct advantage 

over a comparable text-based implementation. The lack of a difference between the two 

modalities when using comparable syntax/keywords, both with while loops and for loops, 

matches the finding from Lewis (2010), who found no significant difference in accuracy between 

questions asked using the repeat block in Scratch and the repeat command in Logo. This suggests 

that for iterative logic, the blocks-based representation does not provide additional conceptual 

support; meaning the nested scoping and visual syntactic information did not better support 

student comprehension. A closer analysis of the five iterative logic questions only reinforces 

what we already know about the difficulty learners have with for loop syntax.  

Conditional Logic questions 

 Students performed significantly better in the blocks-based modality on three of the five 

conditional logic questions. On one question the students performed comparably (.34% better on 
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the blocks-based form), and on the last question students performed slightly better on text, 

scoring only 2.72% higher. On this final question, students were asked about the overall behavior 

of the script rather than just about the output.  This brought it closer to our comprehension 

questions than the others, which may in part explain the better performance for the text-based 

representation - this issue is revisited later in the section. On the three questions where students 

performed better in the graphical condition, two patterns emerged in analyzing the incorrect 

responses, revealing a slight systematic bias. First, on the two questions where the test of an 

if/else statement evaluated to true, students in the text condition were more likely to think 

both the if and the else branches would execute  (11.5% for text versus 7.1% in the graphical 

case). This misconception has been identified in the literature (D. Sleeman, Putnam, Baxter, & 

Kuspa, 1986) and is part of the work showing the if/else construct to be challenging for 

learners. Second, we found that students in the text condition were more likely to think the last 

statement is the one that is evaluated regardless of the outcome of the conditional logic 

surrounding it. On all three questions where this was a possible incorrect answer, students were 

more likely to choose it in the text-based condition (10.7% for text, versus 3.5% in blocks). This 

could be explained a number of ways including: students thinking that the body of a conditional 

statement gets executed regardless of the outcome of the conditional test, thinking the else 

outcome is always evaluated (which matches the first misconception identified and could explain 

two of the three questions we saw this error in), or not know how or when conditions evaluate to 

true so defaulting to falling through to the last statement. Overall, the finding that students 

performed better on blocks-based conditional logic questions matches Lewis’ pervious work 

(2010).  

Variables Questions 
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 Like with the two previous conceptual categories, students performed better (although 

not at a statistically significant level) on the variable questions when they were presented in the 

blocks-based form. A more detailed look reveals that students only performed better on the 

graphical case on three of the four questions in this category. On the one question where students 

performed better in the textual modality (Figure 6.11), one difference stands out from the others: 

variables are set then used, but never re-assigned, making it the simplest of the four questions.  

 
Figure 6.11. The variable question that students performed better in the text condition than the 
blocks-based condition. 
 
 This suggests that the text-based representation is comparable to the blocks-based version 

for simple variable assignment and usage, but that as statements and programs get more 

sophisticated (i.e. variables are assigned to other variables or variable values are set then reset), 

that the blocks-based modality is more intuitive for learners. 

 Looking at the incorrect responses given by students across the four variable questions 

reveals three findings that link modality to the existing misconceptions in literature on variables. 

First, all four questions included an option that would be chosen by students who mistakenly 

thought expressions do not get evaluated as part of assignment (option D in Figure 3.2 of 

Chapter 3) and for all four questions, this incorrect option was chosen slightly more often in text 

form (7.3% of text responses, 5.3% of graphical). A possible explanation is that the text form 

does not provide visual hints about how to parse the statement. Second, we found that on text-
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based questions, students were more likely to incorrectly choose the answer that would result 

if variables held their initial values, meaning the values do not get overwritten (30.6% in text, 

14.5% in graphical). This misconception has not been previously discussed in the literature. The 

hypothesis is that, in the case where students do not know what is supposed to happen when a 

variable that already contains a value has a new value set to it, the assumed behavior is for 

nothing to happen, i.e. the new value is ignored and the original value retained. Finally, students 

were also slightly more likely to choose answers that fit with the linked variables misconception 

(option A in Figure 3.2 of Chapter 3) in the text questions (23.4% of text responses, 17.4% of 

graphical).  

Function Questions 

 The fourth category of questions asked students about the outcome of running programs 

that contained function calls (Figure 6.12). On these questions, students performed better on the 

blocks-based version on four of the five questions we asked. Looking at the errors students 

made, there were a few cases where students showed signs of displaying documented 

misconceptions and other patterns that seem systematic, but are new to this work and can, at least 

partially, be explained by features of the modality.  
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(a) (b) 

Figure 6.12. Two sample function questions. 
 
 First, one of the questions intentionally included a program that output the same word 

twice in a row, meaning the correct answer include the duplicated word while other choices 

included what students might assume was intended. Over half of the students (57%) in the text 

version of the question incorrectly chose the non-duplicated responses, compared to 38.6% of 

responses in the blocks-based version of the question. This suggests students found it easier to 

trace the flow in the blocks-based modality and were less likely to fall victim to what Pea (1986) 

calls an “intentionality bug”, where the learner assumes the computer knows the programmer’s 

intention. A second systematic finding from analyzing these questions reinforces a trend, 

observed in the variables questions, that students answering text-based questions were more 

likely to think that expressions do not get evaluated but instead retain the expanded form (44% 

for text versus 31% of graphical responses). A third trend we found is that students were twice as 

likely (50% compared to 22%) to think that an unbounded recursive function stopped after a 

fixed number of calls in the text-based form than the blocks-based modality. Finally, two of the 

questions included functions that return values (report is the keyword used in the graphical 

form). Figure 6.12b provides an example of this type of question. Across these two questions, 

students were almost twice as likely to think the return command would cause an error in the 

text-based form (24.5% of responses) than the blocks-based alternative (13.2% of responses). In 

this case, one can point to a feature of the blocks-based modality that can account for this 

difference. In the blocks-based language, functions that return values are depicted as ovals or 

hexagons that need to be nested inside another block (like op2 in Figure 6.12b), whereas 

functions that do not have return statements take the shape of the interlocking blocks (like the 
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func1 block in Figure 6.12a). This visual difference at the place where the function is being 

invoked and the ability for the blocks-based representation to enforce syntactic validity, provide 

a pair of scaffolds for the learner that potentially explains this difference in student responses in 

the two modalities. 

Comprehension Questions 

 The final type of question on the assessment is program comprehension. These questions, 

unlike the others, focus more on the purpose of a script rather than on specific outcomes. In each 

case, the question students must answer is: what does the following script do? These questions 

require students to mentally run the program, often for different sets of potential inputs, and then 

interpret that behavior into a natural language description of the behavior. Figure 6.13 shows two 

examples of these questions, with the correct answer being that the program swaps two values 

(left) and returns the largest of the three numbers (right). 

 

a, b and tmp are variables. What 
does this script do? 

vs.  

The function op4 takes in 3 numbers. What 
does op4 function do? 

vs.   
(a) (b) 

Figure 6.13. Two comprehension questions. 
 
 Across the full set of questions, students performed comparably on the comprehension 

questions by modality (a difference of less then 1%). Looking at the questions individually 

reveals outcomes that correlate with the trends of how students did on questions from the 
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conceptual category of the constructs used in the question. So, for example, question b in 

Figure 6.13, involves conditional logic and we found students performed better on the graphical 

versions of the question. Conversely, on a comprehension question that included a while loop, 

students performed better in the text condition. Because these questions involve the additional 

step of interpreting the behavior of scripts and the intention of the author, it becomes more 

difficult to map incorrect responses to specific misconceptions from the literature. Additionally, 

the small difference in performance between blocks-based and text-based questions is also 

interesting as it is the only category for which this is true, which leads to some potentially 

interesting conclusions. Notably, this suggests that while the graphical representation supports 

students in understanding what a construct does (i.e. what the output from using it is), that 

support does not better facilitate learners in understanding how to use that construct. 

Concept By Modality Discussion 

 On three of our four conceptual categories there were significant differences in 

performance between modality, with the fourth category showing a similar, though less 

pronounced, trend. Three features of the blocks-based modality in particular stand out as possible 

explanations for this result. First, the graphical nesting of the blocks to denote scope appears to 

be an effective way to depict this concept, as we saw fewer errors made on blocks-based versions 

of questions where such misconceptions might be found. For example, it was more prevalent in 

the text-based condition for students to incorrectly think both branches of an if/else 

statement will be run. The difference between {}s and visually nested commands provides one 

plausible explanation for this. This finding is consistent with the discussion in the previous 

section on conceptual understanding and will be revisited at the end of the chapter. Second, the 

fact that the blocks-based modality allows for statements that can be closer to natural language 
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can, in part, explain some of the differences found. Notably, the command to assign values to 

variables takes the form of set __ to __, which is a closer description to what the command 

does than the comparable text-based language command of var __ = __. This difference is not a 

feature of the blocks-based modality, but instead an example of the language designer taking 

advantage of the more conversational format that the block-based modality enables. This 

difference can explain at least part of the differences we saw in the variable questions. Finally, 

the different shape of commands that return values from those that carry out actions in the 

blocks-based modality provides a compelling explanation for some of the differences we found 

in the function questions.  

 One of the more interesting outcomes from this work is the uniformity among student 

performance on the comprehension questions. There are a few possible ways to explain this. One 

explanation is that the gains learners get from the graphical affordances of the blocks-based 

modality, which support conceptual understanding of specific constructs, do not carry over to 

slightly more challenging comprehension tasks. A second possible explanation is that it takes 

longer than the time allotted in the study for the gains from the graphical layout to apply to these 

types of questions. If this were the case, we would expect that if given more time, we would see 

similar gaps in performance emerge. A third possible explanation is that the modality has little 

effect on student comprehension, which seems at odds with other findings presented above 

showing the difference to exist, but it is still possible. This section provides evidence showing 

that modality matters with respect to reading programs. In the next section, the analysis looks at 

how learning and performance differ across the three conditions of the study while trying to link 

the learning environment with conceptual outcomes. 

Learning Outcomes by Condition 



 198 
 Having looking at the conceptual differences using qualitative methods and showing 

that modality does matter with respect to students interpreting programs, the section now turns to 

if and how the modality used by the learner influences their ability to read and interpret programs 

in different modalities and employing different concepts. The first objective of this section is to 

show there is no difference across the three conditions in their performance on the pre-

assessment that might skew later findings. On the Pre content assessment, the mean scores by 

condition are: 54.3% (SD = 12.2%) for Blocks, 53.4% (SD = 16.2%) for Hybrid, and 51.6% (SD 

= 14.5%) for the Text condition. Running an analysis of variation calculation on these three 

scores show them to not be statistically different from each other F(2, 84) = .27, p = .76. This 

lack of difference means that the three classes are not different from each other with respect to 

their incoming programming knowledge.  

 With that established, we now move forward with our analysis of learning gains by 

condition. Figure 6.14 shows cumulative scores for students across the three conditions on the 

Pre, Mid, and Post Commutative Assessment administrations. Note the y-axis on the graph does 

not go from 0% to 100%, but instead from 20% to 90%. This is done to make the differences in 

conditions more clear. 
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Figure 6.14. Student Commutative Assessment scores by condition over time. 
 
 The positive slope for all three conditions between the Pre and Mid assessments means 

that, in aggregate, students in all three classes performed better on the Mid survey than they did 

on the Pre. Given that this was an introductory class it is not surprising, but still noteworthy and 

an encouraging sign given that these three conditions cover almost the entirety of the modalities 

used to introduce learners to programming. For all three conditions, the improvement on test 

scores from the Pre to the Mid is significant (Blocks t(24) = 6.11,  p < .001; Hybrid t(26) = 6.65, 

p < .001; Text t(26) = 3.70, p = .001). While the improvements are all significant, the Blocks 

condition saw the largest absolute gain, followed by the Hybrid condition, with the Text group 

showing the most moderate gain. 

 To answer the question as to whether or not students performed differently on the Mid 

survey, an ANCOVA calculation was run showing a significant difference in student scores by 

condition when controlling for Pre scores F(2, 75) = 4.53, p = .01. A Tukey HSD post hoc test 

shows the difference between Text and Blocks to be significant at p = .01, while the Hybrid-

54.3%	

66.6%	 65.0%	

53.4%	

64.1%	 62.3%	

51.7%	
58.8%	

64.9%	

20.0%	

30.0%	

40.0%	

50.0%	

60.0%	

70.0%	

80.0%	

90.0%	

Pre	
Assessment	

Mid	
Assessment	

Post	
Assessment	

M
ea
n	
Ag

gr
eg
at
e	
As
se
ss
m
en

t	S
co
re
	

Score	by	Condi4on		

Blocks	

Hybrid	

Text	



 200 
Block difference and Hybrid-Text distinctions are not (p = .39 and p = .20 respectively). This 

means that the students in the Blocks condition did significantly better than students in the Text 

condition on the Mid content assessment controlling for Pre scores. The Hybrid condition 

students scored better than Text students, but not as well as Blocks, but neither difference was 

significant. 

 Turning the focus to the Post results, we see the gap between conditions that emerged at 

the Mid point close, with all three conditions showing very similar final scores. An ANCOVA 

calculation on the Post assessment controlling for Mid scores shows the three conditions to not 

be statistically different from each other F(2, 74) = .85, p = .43. This mean that even after 

controlling for the variance in prior scores, the three conditions’ Post scores are comparable. 

Unlike the Pre to Mid change, only the Text condition had a positive slope on the Mid to Post 

scores, meaning both Blocks and Hybrid students performed worse on the Post than they did on 

the Mid administration of the Commutative Assessment. Comparing how the three conditions’ 

scores changed from Mid to Post, the data show a significant difference F(2, 75) = 5.16, p = 

.008. A Tukey post hoc analysis shows there to be a significant difference between the Text and 

Hybrid changes (p = .01) and the Text and Blocks differences (p = .03), while there was no 

difference in the changes made by the Text condition relative to the Blocks condition (p = . 88).  

To complete the analysis, looking at changes within each condition, none of the three conditions 

showed a significant change between the Mid and Post assessments: Blocks t(26) = -.28, p = .78; 

Hybrid t(23) = -.84, p = .41, and Text t(25) = 1.55, p = .13. 

 These data show that students in the Blocks and Hybrid conditions saw the most gains 

over the course of the five-week introductory period with respect to performance on the 

Commutative Assessment. After the transition to Java, neither the Blocks nor Hybrid conditions 
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improved, while the Text condition saw another incremental improvement, resulting in all 

three conditions preforming comparably on the assessment given 15 weeks into the school year. 

One possible explanation of these findings is that there is a ceiling effect for learners and that the 

Blocks and Hybrid conditions reached that ceiling faster than the Text condition. In other words, 

learners in the two conditions that enabled drag-and-drop composition were able to more quickly 

understand the concepts at hand, while the Text condition took longer to make sense of the 

activity of programming before reaching the ceiling associated with the curriculum students 

worked through. This explanation partially fits with the attitudinal data presented in the previous 

chapter as students in the Text condition saw increased levels of confidence, enjoyment, and 

interest in computer science between the Mid and Post surveys. The finding that blocks-based 

learning environments allows students to learn more quickly has been shown in some small 

studies in informal environments (Price & Barnes, 2015), so this suggests this may be a larger, 

more robust phenomenon.  

 An interesting thing to consider is how and why student performance improved for 

students in the Text condition after ten weeks of working in Java given the fact that there was 

relatively little overlap in content between the ten weeks in Java and what was covered on the 

Commutative Assessment. Additionally, students did not encounter any blocks-based programs 

between the Mid and Post administrations. In other words, between the Mid and Post 

administration, in the Text condition student performance improved despite not seeing the 

content or the modality. This suggests that in their time working with Java on topics like basic 

I/O and method calling, students’ general understanding of programming concepts, or at least 

their ability to interpret programming across different modalities, improved. This finding is 

unexpected and it will take effort to interpret. In the sections that follow we dig more deeply into 
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these data to try and put together potential explanations and gain a more nuanced 

understanding of these data and the role of modality and concept on learning and on learning by 

condition. 

Condition by Modality 

 To better understanding the learning gains found in the previous section, we now take a 

closer look at the data to try and understand the source of these learning gains, specifically 

looking between the Pre and Mid surveys in hopes of attributing learning gains to the modalities 

used in the introductory learning environments. First we look at differences in outcomes by 

modality, before looking at conceptual outcomes. Figure 6.15 shows mean student scores on the 

Mid administration of the Commutative Assessment grouped by Modality and Condition. As a 

reminder, the three modalities used to present the questions can be seen in Figure 6.7. 

 

 
Figure 6.15. Student scores on the Commutative Assessment grouped by modality and 
condition. 
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 Across all three modalities, the ranking of student performance by condition is the 

same: Blocks students performed the highest, Text students the lowest, with students from the 

Hybrid condition performing between the two, sometimes closer to the high scores from the 

Blocks condition (on Pencil Code Text and Pencil Code Blocks questions) and once closer to the 

lower Text scores (the Snap! questions). Running an analysis of covariance calculation for each 

group (again controlling for pre test scores) shows a difference between conditions on the Pencil 

Code Blocks questions F(2, 75) = 4.77, p = .01, but no difference for the Pencil Code Text (F(2, 

75) = 1.5, p = .23 or Snap! (F(2, 74) = 1.25, p = .29) questions. A Tukey HSD post hoc test for 

the Pencil Code Blocks questions show there to be a significant difference between the Blocks 

and Text conditions (p = .01), but not between Hybrid and either the Blocks (p = .60) or Text (p 

= .10). 

 While not much can be definitively said about the relationship between modality and 

condition due to the relative lack of statistical power from this sample, there are suggestive 

trends that are important to note. The first, mentioned in the previous paragraph, is the consistent 

ordering of the three conditions in terms of performance. The fact that the Blocks condition 

performed highest on all three modalities suggests that the understanding that forms in one 

modality is not tightly coupled to that modality. An alternative interpretation of this finding is 

that the ability to make sense of programs developed in the blocks-based modality is not tightly 

coupled to that modality. This suggests a potential form of near-transfer from the blocks-to-text 

modality, but the data presented are not robust enough to strongly support this claim. This lack of 

statistical differences across modalities does, in part, fit with other work showing a lack of 

conceptual transfer in novices when learning a second programming language (Scholtz & 

Wiedenbeck, 1990; Wiedenbeck, 1993). However, it is important to note that unlike this prior 
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work, the question being pursued here is focused on modality as opposed to the language 

itself. This differing trend can be interpreted by saying that transfer across modality (i.e. from 

Pencil.cc’s blocks interface to Pencil.cc’s text interface) is ‘nearer’ than moving across 

programming language (like from Java to Python). A final thing to note is that once again the 

Hybrid conditions performance lives between the Blocks and Text condition, a recurring position 

for that condition across a number of analyses presented. 

Condition by Concept  

 The next analysis presented looks at difference in conceptual understanding by condition 

and concept. This section answers the question of whether or not certain concepts are more easily 

learned through working in one modality versus another. Figure 6.16 shows student performance 

across the six concepts assessed on the Commutative Assessment. As a reminder, these scores 

are only from the Mid administration of the assessment, meaning students had just completed 

five weeks of working in their version of the Pencil.cc environment. 
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Figure 6.16. Student performance on the Mid administration of the Commutative Assessment 
grouped by condition and concept. 
 
 Like with the previous analyses, the Hybrid condition often scores between the Hybrid 

and Text, however, in this by-concept analysis, this is the case only half of the time. In these 

three conceptual categories (Comprehension, Conditional Logic, and Functions), we find the 

pattern of students in the Blocks condition scoring the highest, with Hybrid students in the 

middle, and the Text condition scoring the lowest. For two types of questions (Algorithms and 

Iterative Logic) the Hybrid condition scores the highest, while in Variables, students in the 
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modality is largely driven by the extremely low score on the comprehension questions by 

students from the Text-based condition. The finding that students scored particularly low on the 

comprehension questions echoes the analysis from the year one assessment (Figure 6.8) and 

matches prior work on students’ difficulties in drawing larger meaning and purpose when 

reading programs (A. Robins, Rountree, & Rountree, 2003). That the scores on these questions 

were the most stratified suggests that comprehension may be one place that learning with a 

specific modality may be helpful. When composing programs with blocks-based tools, the user 

has compositional units that match the larger cognitive building blocks (the command itself) 

allowing less cognitive effort expended on the implementation of that idea, and thus, the learner 

has more practice thinking at a conceptual level.   

Perceived Ease-of-Use of Concepts by Condition 

 The last analysis in this chapter looks not at emerging conceptual understanding or 

performance on the assessment, but at the perceived ease of the concepts covered. On the 

attitudinal assessment given at the midpoint of the study, there were a series of questions asking 

about perceived ease-of-use of the various programming concepts covered on a 7-point Likert 

scale. The mean responses to the Likert questions are shown below in Figure 6.17. The higher 

the score, the easier a student thought it was to use the given concept. 

 



 207 

 
Figure 6.17. Student reported ease of using concepts in their respective version of Pencil.cc.  
 
 Running an ANOVA calculation for each conceptual category finds two of the four 

concepts to be statistically significant, Conditional Logic F(2, 78) = 2.92, p = .05 and Variables 

F(2, 78) = 2.63, p = .08. A Tukey HSD post hoc analysis for the Conditional Logic scores shows 

the Blocks condition to be moderately different from both the Text condition (p = .10) and the 

Hybrid condition (p = .09). In other words, the students found conditional logic easier to use in 

the Blocks condition than in either the Text or Hybrid condition. The difference between Blocks 

and Text conditions can be explained by the modality itself; in other words, students found using 

conditional logics in the drag-and-drop blocks modality to be easier than the all text condition. 

That the Hybrid condition was the lowest of the three, and very close to Text, suggests that 

learners in the hybrid condition viewed using conditional logic in their programs more like the 

Text students than the Blocks students. This is possibly explained by the fact that the Hybrid 

implementation used allowed learners to add new statements to their program via a drag-and-

drop mechanism, but once added, all future edits were made with the keyboard since the editor 

presented code in a text format. As will be shown in the next chapter detailing how learners used 

5.0	

4.0	
4.5	

5.0	

4.1	 3.9	 4.2	

5.0	

4.1	

3.2	

3.9	
4.2	

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

Condi1onal	
Logic	

Func1ons	 Itera1ve	
Logic	

Variables	

M
ea
n	
Li
ke
rt
	S
co
re
	

Ease-of-Use	of	Concepts	by	Condi8on	

Blocks	

Hybrid		

Text	



 208 
the environments, in the Hybrid condition, students often did the supplemental editing (like 

making minor edits to their code) with the keyboard. This may have contributed to the ease-of-

use being more comparable to the Text condition than the Blocks condition. Another explanation 

that will be discussed in the next chapter has to do with how the students chose to use the drag-

and-drop feature of the Hybrid interface, specifically, the practice of using the blocks for 

reference as opposed to for composition, especially for the conditional statements and iterative 

logic. 

 The second significant difference found is with the concept of Variables, where the Text 

condition was the outlier, having a significantly lower reported ease-of-use score than the other 

conditions. When comparing the Blocks condition to the Text condition, the Tukey HSD post 

hoc analysis score was p = .10, and the Blocks to Hybrid condition also did not reach a level of 

significant (p = .15). Whereas the use of a conditional statement in the Hybrid condition often 

included non-trivial post addition edits (i.e. defining the test and the commands to be followed 

after the test is evaluated), when adding variables to a program via drag-and-drop, only very 

straightforward edits are necessary, like entering the name or changing the value, which in both 

case are simple substitutions. This is in contrast to working with conditional statements or 

iterative blocks that also require introducing new nodes into the program’s abstract syntax tree 

(i.e. adding new blocks to the program in the Blocks condition). In this way, the addition of 

variable blocks to a program in the Hybrid condition presented a template that required simple 

replacements, a pattern of use frequently observed in the Hybrid condition. Looking at the 

amount of modification after an addition also seems to explain the perceived ease-of-use for the 

other two categories, in that Functions usually require only the renaming or updating of elements 

present in the blocks. Iterative Logic in the Hybrid condition was reported between Blocks and 
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Text, which can be explained, in part, by the fact that definite loops (for loops) are more 

like variables and Functions requiring only direct replacement, whereas indefinite loops (while 

loops) are closer to conditional logic in that they require more substantial edits to be made. So 

one explanation for Hybrid iteration living roughly halfway between the Text and the Blocks 

responses (unlike the other three conditions) is the blending of the easily substituted for loop 

and the more complicated while loop. The fact that all iterative logic is grouped together means 

this survey does not have the specificity to tease apart these two looping constructs. Looking 

across the data, one explanation for ease-of-use in the hybrid condition is that the simpler a 

required post-addition modification is, the easier the construct to be used is perceived.  

 Comparing Figure 6.17, which shows the ease-of-use of concepts, and Figure 6.16, which 

shows scores by concept and modality, for the four concepts that overlap, it appears there is a 

relationship between how easy a concept is perceived to be and how well students did on that 

question. Running a Spearman rank-ordered correlation returns a value of rs = .78, showing a 

high correlation between students perceived ease of use of a concept and their performance on 

the assessment of that concept. This suggests that students own perceptions of ease-of-use are 

accurate predictors of their knowledge of that concept. That said, there are some seeming 

outliers, like the Hybrid condition’s relatively low ease-of-use score for conditional logic while 

performing well on those questions. Likewise, the Text condition’s reported ease-of-use for 

variables does not align with how well they scored on the perception questions. 

Discussion 

 This chapter investigated the conceptual learning that took place during the first five 

weeks of the two iterations of the dissertation study. A number of different data sources were 
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used and analyses conducted to tease apart differences related to students’ understanding of 

concepts and the modality they used to learn the concepts. This work is in an effort to answer the 

research questions about the relationship between representation and conceptual learning. 

Throughout the chapter and this discussion, differences in outcomes are attributed to the 

modality students used. This is a reasonable causal leap to make given that all of the students in 

the study worked through the same curriculum with the same programming environment using 

the same language and had the same time-on-task, in the same classroom, with the same teacher. 

The only thing that differed across the three conditions of the study was the programming 

modality used by the programming environment and the participants themselves. 

Modality Matters  

 One of the major contributions of this work is showing that when it comes to novices 

learning to program within introductory environments, modality matters. How and when this 

statement is true, as well as when the impacts of modality start to erode, are discussed throughout 

the four analysis chapters in this dissertation. This chapter shows how modality affects 

conceptual learning. The first section of this chapter provided a qualitative analysis of students’ 

descriptions of various core programming concepts. This analysis showed differing metaphors 

used to talk about concepts by students from different conditions, as well as students attending to 

different aspects of a concept based on the modality used in the introductory environment. In 

some cases, these different patterns of responses could be linked to features of the modality. For 

instance, students in the Blocks condition were more likely to discuss if and if/else blocks 

as two distinct things due to their being portrayed as two separate blocks in the palette. In other 

cases, the differences did not seem tied to the modality itself, such as the case of students in the 

Text condition more frequently describing variables as Containers, for which the best 
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explanation we devised had to do with the teacher’s practices and the higher likelihood of 

students asking for the teacher’s help in explaining how variables are used in the Text condition. 

 This chapter shows the influence of modality on student learning after programming with 

a given modality as well as students’ ability to comprehend programs with different modalities 

when learning with the same programming tool. These differences are present at the conclusion 

of the five-week introductory portion of the class in every analysis conducted, including: by 

overall performance on the assessment, in conceptual understanding, in performance on 

questions grouped by modality, and on perceived ease-of-use by concept. However, it is 

important to note that these differences are not robust across the entire data set. There are places 

where modality seems to have little or no effect, as was seen in the last chapter where, in 

numerous areas, little difference was observed with respect to various attitudinal dimensions.  

Also, in later chapters we will see these differences fade as students move away from the 

introductory environments and begin working in Java. This trend was visible on post scores of 

the Commutative Assessment presented in this chapter, but will explored in greater depth in 

Chapter 8. There were also places in this chapter where there appear to be differences by 

modality, but the nature of the data and the power provided by the sample size prevent us from 

making stronger statistical claims about differences. 

Blocks versus Text  

 A second major contribution of this dissertation is isolating a programming 

environment’s modality (graphical blocks, textual, and a hybrid blocks/text) providing the ability 

to link conceptual and learning outcomes and performance on standardized assessments with a 

modality, or even a specific feature of a modality. Using data from the second year, a number of 

differences on test performance emerged. The first finding is that students using a blocks-based 
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modality showed significantly higher learner gains after five weeks of class compared to 

their text-based peers (after controlling for the prior knowledge). A second finding shows that 

this difference in performance does not persist after moving onto a professional text-based 

language and environment. After 10 weeks of working in Java, students in the two conditions 

showed nearly identical scores. As discussed previously in the chapter, there are a number of 

possible interpretations of this data, including: that blocks-based interfaces allow students to 

learn faster, that learning gains from blocks-based interfaces do not transfer to text-based 

languages when the environment and underlying language change, or that the text-based 

modality better prepares learners to transition to other text-based environments. 

 Digging into this finding revealed a consistent pattern of students in the Blocks condition 

outperforming their Text-based peers. When looking at performance by the modality of the 

question being answered, the Blocks condition scored the highest for all three modalities (Pencil 

Code Blocks, Pencil Code Text, and Snap! Blocks). This was surprising as it meant the students 

in the Blocks condition did better on the Pencil Code Text questions than the students who had 

exclusively been using the Pencil Code text interface for the previous five weeks. Likewise, the 

Blocks condition did better on the Snap! questions, which used an interface neither condition had 

seen. There are a few possible ways to interpret these numbers. One interpretation is that there is 

some form of near transfer occurring from the Pencil.cc blocks interface to both another blocks 

interface (Snap!) and to a similar (or syntactically identical) text interface (Pencil Code Text). A 

slightly different interpretation is that the learning that happened by students in the Blocks 

condition is not so tightly coupled to the interface that it cannot be used across languages. The 

distinction between these two interpretations is whether the learning that occurred was about the 

modality or the underlying concept. Other data presented in this chapter suggests the latter 



 213 
explanation is the more likely of the two; that the blocks interface helps learners develop 

understandings of the foundational concepts, as opposed to a type of meta-representational 

competence (diSessa et al., 1991) that applies across programming modalities and interfaces. 

 Just like with the questions-by-modality finding, students in the Blocks condition 

outperformed their Text counterparts in all six content categories on the Mid assessment. This 

means that the utility of learning to program in a blocks-based interface is not confined to one 

specific concept or another. This finding is interesting to interpret alongside the analysis from the 

first year of the study that showed that concepts are more easily parsed in the graphical modality 

relative to the text-based alternative, although not always statistically significantly so (Figure 

6.8). Taken together, this suggests that the blocks-based modality does provide learning supports 

for novices while working in introductory contexts. That last clause ‘introductory contexts’ is 

important, as these differences did not persist once students moved on to learning Java. This is 

shown in Figure 6.14 and further explored in the next section. This means stronger claims about 

the power of blocks-based tools beyond the context and programming environment in which they 

are situated cannot be made. Also, as discussed in the last chapter, the blocks-based interface is 

better with respect to other important aspects of learning, such as confidence and authenticity. 

 The final analysis presented in this chapter, which directly compared the Blocks and Text 

conditions, looked at perceived ease-of-use of different constructs in the different modalities. 

This is the one place in this chapter that the data starts to incorporate dimensions of program 

generation alongside program comprehension. Here again the Blocks condition outperformed the 

Text condition across all four concepts, suggesting the benefits of blocks-based interfaces extend 

beyond comprehension. This dimension of the comparison is further explored in the next 

chapter. 
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The Case of the Hybrid Condition 

 One of the questions this dissertation is pursuing is the exploration of programming 

environments that blend features of a blocks-based interface with characteristics of text-based 

tools. In looking at conceptual learning by condition, the Hybrid design chosen for this study at 

times was more closely aligned with the Blocks condition and other times was more similar to 

the Text group, but more often than not, fell somewhere between the two. In the qualitative 

analysis that opens this chapter, the Hybrid condition was between the Blocks and Text 

conditions20 on two-thirds (18 out of 27) of categories identified. This position of falling between 

the two can also be found in the quantitative learning outcomes analysis, where aggregated 

scores from students in the Hybrid condition were between the Blocks and Text scores for 

questions across all three modalities in four of the six concepts, and on three of the four concepts 

on the ease-of-use Likert questions. This suggests that the Hybrid condition is indeed a 

successful hybrid in that it produced results suggesting it shares characteristics of both of its 

ancestors. This shows that it is possible to blend the two interfaces together, and produce a new 

interface that shares characteristics of both ancestors and thus lives between the two of them. 

 Another interesting piece of insight, which can be gleaned from analyzing the Hybrid 

responses, is to compare them relative to the Blocks and Text conditions to see with which 

condition the Hybrid group more closely aligns. For example, in looking at the ease-of-use 

responses (Figure 6.17), the Hybrid condition is within a tenth of a point of the Blocks condition 

for Functions and Variables, with the Text condition being the outlier, and within a tenth of a 

point of the Text condition for Condition Logic. This tells us that for the Hybrid design used in 

 
20 This number also includes categories where the Hybrid condition had the number of responses 
as either the Blocks or Text group. 
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this study, using Conditional Logic was more similar to working with the text version of 

Pencil.cc, while the Functions and Variables were closer to the Blocks version of the 

environment. As discussed earlier in the chapter, this tells us something about how students used 

these constructs in their programs. Comparing Hybrid to the other two conditions is useful in 

other places as well, such as the qualitative coding, which shows us again that for Variables, the 

Hybrid condition was consistently closer to the Blocks condition’s responses than the Text 

condition’s (Figure 6.1).  

 There are still some questions about the Hybrid condition that can not yet be answered 

using the data presented in this chapter, such as how programming practices in the Hybrid 

condition compared to the other conditions or how programs authored in the Hybrid differ from 

the others. These questions will be pursued in the next section and then revisited in the final 

chapter of the dissertation where findings from the various analyses will be combined. 

Conclusion 

 Understanding the relationship between modality and learning is a central goal of this 

dissertation and is consequential with respect to deciding what tools to use in classrooms and to 

inform the design of future introductory programming environments. The above analyses are 

important as they show us that there is a difference across the modalities and that the answer is 

not as simple as one modality is universally better than the other. Instead, these different tacks 

reveal different facets of the complex relationship between modality and understanding, which 

themselves are a part of a larger and yet more complex relationship between modality and a 

learner. The data in this chapter contribute to the emerging finding that modality is not a uniform 

monolithic thing, and that it affects different aspects of programming differently and like-wise, it 
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affects different learners in different ways, further complicating the challenge of trying to 

understand this basic relationship. 

 This chapter fills in another dimension of the larger questions being asked in this 

dissertation about the relationship between modality and learning to program. The previous 

chapter looked at attitudinal and perceptual outcomes from having novices use different 

modalities, whereas this chapter focused on learning and conceptual gains associated with 

working in the different modalities. What has yet to be discussed is the programming practices 

each modality engenders, the characteristics of programs authored across the three environments, 

and questions related to if and how these different modalities prepare learners for transitioning to 

professional text-based languages. These topics are the focus of the next two analysis chapters 

and continue to fill in the bigger picture of the relationship between modality and learning. 
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7. Practices and Artifacts 

 This chapter answers the third and final component of the first set of research questions 

being pursued in this dissertation: How do modalities influence learners’ emerging programming 

practices and the artifacts they construct. The chapter begins with three vignettes (Erickson, 

1986), one each from the three modalities used by students in the study. In each vignette, the 

student is trying to write the same program as part of a one-on-one interview with the lead 

researcher. The goal of this section is provide a sense of what it looks like for students to author 

programs in each modality. For each vignette, attention is paid to practices that were uniquely 

afforded by that specific modality. A brief discussion after each vignette summarizes the 

differences of the three. From there, the chapter shifts to look at programming practices across 

the full set of participants. To accomplish this, the computational data collected (code snapshots 

and programming events) are used to look at the characteristics of the programs written, patterns 

in how and when students chose to run their programs, and characteristics of how the blocks 

were used in the composition of programs. For each of these dimensions, comparisons are made 

across the three modalities. The chapter concludes with a discussion summarizing the findings 

from this chapter and setting the stage for the transition to the Java data that will happen in the 

next chapter. 

Three Vignettes 

 As part of the Mid interviews, students from each of the three conditions were asked to 

write a short program in Pencil.cc. As a reminder, these interviews were conducted in the sixth 

week of the study, after students had completed the Pencil.cc portion of course and just started 

working with Java. Each student used the same modality during the interview that they had been 
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using for the previous five weeks. The analysis starts by focusing on the unique interaction 

patterns and distinct practices supported by the three modalities. As such, not every moment of 

the three programming sessions are present, but instead an effort was made to provide enough 

detail to give a sense of how the sessions progressed, with an emphasis placed on key moments 

and interesting interactions.  

 A total of 12 interviews were conducted at the midpoint of the study, four from each of 

the three conditions. The vignettes presented in this section were selected because the students in 

each proved to be the best demonstration of the various affordances of the modality. None of the 

vignettes presented were outliers from the other of the modality, but just serve as the best 

example (sometimes because of the bugs they encountered while writing their program or the 

number of different aspects of the modality they used while writing their program). We do not 

have a way to determine if the patterns observed are representative of the entire study population 

due to limitations in the data collection strategy used, thus cannot make claims about the 

typicality of the vignettes. Instead, they serve as specific demonstrations of the possible ways the 

different modalities are used by learners. 

 The vignettes follow students as they try to write a program in response to the following 

prompt:  

Can you write me a program that picks a random number less than 15 and then prints out 
every multiple of that number that is less than 100? So, for example, if your program 
picked the number 11, it would print out 11, 22, 33, 44, 55, 66, 77, 88, and 99. If it picked 
the number 2, it would print out 2, 4, 6, 8, 10, 12, 14 and so on, up until 100. 
 

It was not always clear to students what they were being asked to do from this concise 

description, so the prompt was often followed by questions from the student. Every student 

ultimately understood the prompt and either wrote a correct program, a close to correct program, 
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or was able to articulate an algorithm for producing a correct program. This specific 

programming challenge was selected for a number of reasons. First, it is relatively concise, so it 

can be quickly described and is small enough that most students were able to complete it in the 

time allotted. Second, the solution requires students to use variables and iterative logic (there are 

both definitive and indefinite looping solutions) while also potentially including conditional 

logic, so a number of concepts are encountered. A third useful characteristic of this problem is 

that there are a number of ways to solve it, including using while loop and adding the random 

number each iteration, using a while loop and multiplication along with a variable starting at 

one and increment each iteration, or calculating the number of iterations up front and using a 

for loop to control the looping. A final feature of this problem is that it has a number of natural 

pitfalls that students frequently encountered. Most solutions to this problem require two 

variables, one to keep track of the growing number and a second to store the random variable, 

trying to solve this problem with a single variable was a frequent approach taken and always 

resulted in incorrect results that students had to debug. It is also worth noting the decision to use 

a random number instead of asking the user for input was because we were less interested in 

students remembering syntax and more about their ability to incorporate programming 

constructs. Thus, we did not want learners to get stuck on getting student input, instead we 

wanted them to be able to jump right into the central logic of the program, which could be more 

quickly accomplished with the random number approach. While there are many ways to write 

this program, the most common approach (and the one taken by all three of the students profiled 

below) follows the logic shown in Figure 7.1. 
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(a) (b) 
Figure 7.1. A blocks-based (a) and text-based (b) correct implementation of the prompt being 
worked on for these three vignettes. 
 
 There are a few things to note in the prompt and the correct solutions the students 

created. The first is that it asks students to use variables as well as iterative logic. All but one 

student used a while loop (one student did complete the program using a for loop, adding 

additional calculations to figure out how many times the loop would need to iterate up front). 

The solution also requires the use of more than one variable, a feature most students did not pick 

up initially, but instead had to figure it out as they worked through the program. Finally, the 

inclusion of the + 1 command in the first line of the solution is due to the fact that if the 

random 15 call returns 0, the program will get stuck in an infinite loop.  

Blocks Condition Vignette 

 The portion of the interview being used for the Blocks condition vignette lasted 10 

minutes and 22 seconds. During this time, we see the student leveraging various affordances of 

the blocks-based modality, including browsing, drag-and-drop composition, and hover-over tips. 

We now carefully lead you through this episode, before concluding with a brief discussion at the 

end of this vignette from the Blocks condition. After asking a clarifying question, the student 

begins to work on his program by clicking through a number of categories in the blocks palette: 

Operators, Control, Sprites, Sound, Text, Art, Move, Control (where he scrolls up and down), 
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and finally Operators for a second time. Once returning to Operators he scrolls down and 

finds the random block, which he drags onto the canvas. He then clicks on the number input of 

the random block and changes the value from the default 6 to 15. Next, he takes a moment to 

think, closing his eyes, then opens them and resumes clicking through the categories: Text, 

Move, Control. As he scrolls up and down in the category, he says "there's just so many 

possibilities, you know, different ways I could do it."  Next he drags out the for block before 

dragging it back to the palette (so not adding it to the program). He then clicks on the Operators 

draw and adds the function block21 to his program. With the function block added, he 

clicks on the Control category again, scrolls down to the while block and hovers over it, 

appearing to read the hint text for the while block that reads "Repeat while a condition is true." 

At this point, the interviewer intervenes, asking the student what his approach is. He responds: 

"well, I want to set a variable and that variable equal to the random number. And then, put the 

piece of code that says ‘increase by’ (long pause) and then have that be the random number." He 

then drags out the variable block22, which contains the code x = 0, and drags the random 

15 block from his program into the right side of the assignment block. Next, he changes the left 

side from x to rand by typing it in, resulting in the first line of his program reading: rand = 

(random 15). 

 With this first statement complete, the student resumes verbalizing his algorithm. "Ok, so 

like, have it increase by rand and then, at the end, say write, whatever the result of that is, 

 
21 The function block does not actually say function, but instead is a template for defining a 
function that has the characters f = (x) -> inside a c-shaped block, with f and x being slots 
that can be replaced with the function name and parameter names respectively. 
22 The variable block contains the text x = 0 by default, with the x and 0 being slots that can be 
replaced by the variable name and the initialization value respectively. 
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repeat it, but repeat it until (long pause) ok, ok, ok." He then quickly removes the 

function block he had added and drags in the while block he had been looking at before, 

populating the left side of the < comparator with x and the right with 100. After another long 

pause, the interviewer asks him what he is thinking, to which he explains a few more steps in his 

algorithm, culminating in his adding the statement write rand before his while loop. He 

then clicks on Operators and drags out the += operator block, which he adds inside his while 

loop and fills in the two empty slots with rand and 1, resulting in the statement rand+=1. 

After a second in thought, he changes the left side of the += assignment to x, then quickly adds a 

new variable block before the while loop, which he uses to initialize x. In a flurry of quick 

changes, the student changes the x += 1 command to om += rand and adds a write block 

inside the while loop to print out the variable’s value and a second assignment value at the end 

of while loop. When asked what om meant, he said it was just a random name he came up with. 

By this point, the student had been working on his program for 6 minutes at 26 seconds and 

produced the program shown in Figure 7.2a.  

 

 

(a) (b) 

Figure 7.2. The program the student wrote in six-and-a-half minutes of work (a) and the error he 
saw after running it (b).  
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 Having written this seven-line program, the student clicks the run button, and is 

shown the error message shown in Figure 7.2b. Upon seeing this error on the screen, the student 

pauses, reads the error, then says "OK" and clicks his mouse inside the slot assignment in line 5 

of his program where om is first used. A second later, he drags a variable blocks into his 

program and puts it above the om += rand block, changing the two default values of the 

variable block to read om = rand and then clicks run button again. The updated program is 

shown in Figure 7.3a.  

 
 

(a) (b) 

Figure 7.3. The program the student wrote in seven minutes of work (a) and the error he saw 
after running it (b). 
 
 This addition to his program introduces an infinite loop23, causing the program to not 

print out anything for a few seconds before printing the error shown in Figure 7.3b, giving the 

interviewer an opportunity to interject and ask the student about the changes he just made. After 

a little back and forth, the student starts to explain his strategy24. "The random number (he puts 

 
23 By assigning om to be equal to rand inside the while loop, the value of om never increases, 
thus the while loop never hits its stop condition. 
24 In the following quotes, text inside parenthesis describes what is happening on screen, words 
in italics are what the student says aloud. The line number reference the code showing in Figure 
7.3a. 
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the cursor on line 2) I want to set equal to om (he moves the cursor first to the word rand in 

line 5, then to om in line 5), and then I want it to increase om by the random number (he moves 

the cursor down to line 6 and moves it from left to right as he speaks, circling rand with his 

cursor as he says random number aloud), and then write it (he moves his cursor to line 7 and 

again moves it from left to right, circling om with his cursor as he said it), and then set x equal to 

that increased value (he moves the cursor to the next line and moves it back and forth over the x 

= om block), so that if this is true (he moves the cursor up to the x < 100 block in line 4), I want 

it to repeat it again (he moves the cursor up and down from line 4 to 8 repeatedly). That's what I 

want to happen."  During this walk through, the program stops itself and prints out a 6 followed 

by a string of 12s that ran off the bottom of the screen. Having explained his intentions, he then 

tries to figure out what happened, saying: "well, I think it worked once (hovering his mouse over 

the first 6 and twelve printed to the screen) because it increased it, right, because the random 

number is 6 (moving his cursor from line 1 in his program back to the 6 on the screen) and that 

increased it by six (moving his cursor over the line 6 of his program where the addition takes 

place), so it's twelve but wrote it over and over, probably because of this (hovering his mouse 

over the newly added om = rand block). Yeah, it's because of this (pointing again to om = 

rand)." The conversation continues for another minute, before the student finally says: "I don't 

know, but that's my train of thought." After a few more minutes, the interview ends without the 

student resolving his infinite loop issue, so the interview helps him fix his infinite loop bug. To 

get the correct behavior, the interviewer only has to move the om = rand block from inside the 

while loop to just before it. Seeing that this small change was all that was needed to have a 

functioning program, the student says "Oh, there we go" and starts laughing about how close he 

was to the solution. Having completed the description of this programming session, we now 
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discuss the various affordances and supports provided by the blocks-based editor that were 

on demonstration in this vignette. 

Blocks Condition Vignette Discussion 

 At start of the interview the student begins by clicking through different categories in the 

palette, sometimes scrolling through the blocks within the categories, other times quickly 

continuing to the next category. These actions highlight the support features of the blocks-based 

programming interfaces used by this student. The “browsability” of blocks-based interfaces and 

the logical organization of blocks were discussed earlier in this dissertation and have been 

documented in previous work (Weintrop & Wilensky, 2013a, 2015b, 2013b). The fact that the 

student cycled through nine categories before dragging out his first block speaks to how easy and 

fluid this aspect of blocks-based tools can become. Alternatively, this pattern of use can be 

interpreted as the learner is forming a dependence on the browsable category in order to write a 

program. If the goal of the introductory environment is to prepare learners for more professional 

text-based languages, this pattern is potentially problematic. Whether or not the browsability of 

the Blocks and Hybrid modalities produces a negative outcome when shifting to a modality that 

does not have the feature will be explored in Chapter 8. After adding his first block to the 

program, the student changes the default value in random from 6 to 15. This may seem trivial, 

but the presence of a default value serving as a template for how the block is used, is a powerful 

and often transparent feature of blocks-based tools. In other non-blocks-based interviews, we see 

students typing commands like random [1..15]25 and other incorrect statements, which show 

the potential errors the templates can alleviate. We next see the student drag out a for block, 

 
25 It is worth mentioning that this command is valid in Pencil.cc, but produces a slightly different 
behavior. 



 226 
pause, hover the block over the canvas, then put it back in the palette, thus not adding it to his 

program. This is comparable to typing in a command and then deleting it in a text editor. The 

speed and casualness with which this can be done in the blocks-based interface speaks to how 

quickly the user can compose programs and how the modality provides the ability to focus on 

what statements to include rather than on the act of typing, which is often non-trivial for novices. 

 The next affordance of programming in blocks, which is seen in this vignette, is the 

learner hovering his mouse over the while block to see a natural language description of how it 

can be used. A number of students mentioned this as being useful in their interviews, saying 

things like “[In Pencil.cc] you don't have to type or remember code. you can just put your mouse 

over it and it will tell you what it does.” As the student said this, she moved her mouse over a 

block to show the hint text as a demonstration. It is worth noting that there is no natural analog in 

a textual modality, at least not before a command has been added to the program. Instead, text 

modalities need supports outside of the editor itself (akin to the Quick Reference menu) to 

achieve a similar behavior. 

 After using the hint, the next noteworthy event comes when the student drags out the 

variable block and then drags his random 15 command into the right hand slot, resulting in 

the statement x = random 15. What is interesting about this is that the chronology of creating 

this statement does not match the left-to-right order of its final form. In other words, the student 

defines the right side of the command (random 15) before the left (x =), which is a useful 

feature of the blocks-based modality that is less natural (although certainly possible) in text-

based interfaces. This ease-of-editing was on display as the student’s algorithm took shape. This 

can be seen in his removing the entire function block in a single drag-and-drop action then 
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adding the while block, again with a single drag-and-drop command. These edits are made 

quickly and with fewer keystrokes/clicks than would be necessary in a text-based editor.  

 Continuing the discussion of blocks-based features supporting the novice programmer 

from this vignette, we want to highlight the ease with which the student explained his program 

with the blocks. In explaining what he wanted to have happen after programming the infinite 

loop, he used the cursor to point to specific commands or parts of commands as he built his 

explanation. This is not unique to the blocks-based modality, as it is similarly possible to do this 

with textual programs, but the added spacing provided by blocks, the different colors, and 

visually depicted slots for text entry all contributed to the ease of communication. The final 

aspect of this vignette that should be noted is what was missing from this 10 minutes of 

programming: the student never struggled with syntax, keywords, or the mechanics of 

implementing his ideas. He paused only when trying to figure out what he wanted to do. This 

speaks to how the blocks-based modality can push the mechanistic and syntactic aspects of the 

act of programming to the background and allow the user to focus on the structure and 

algorithmic challenges inherent in composing programs. Having presented the blocks-based 

vignette and a discussion of what features of the modality were employed by the student, we now 

turn to the Hybrid condition. 

Hybrid Condition Vignette 

 The vignette selected to serve as an example of what it looked like for a learner to 

program in the Hybrid modality lasted a total of 9 minutes and 8 seconds, so roughly the same 

duration as the vignette chosen to represent the Blocks condition. In this vignette, we see the 

student leverage some of the affordances highlighted in the previous section, but also see an 

increased use of the keyboard, blending conventional blocks-based and text-based authoring 
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patterns. The student starts by clicking through the various categories in the blocks palette, 

even as the interviewer is still describing the details of the program. With the goal of the program 

outlined, the student first drags the random block into the palette, then puts the cursor next to 

the default value of 6 and replaces it with 15. After asking a clarifying question, he then hits the 

return button, giving himself a blank line to work on, and types: increase=0. He then returns 

to the blocks palette, clicks through a few categories (Sound and Move) before opening the 

Control group and dragging a for block onto the canvas. The for block provides a template 

that defines the looping structure and provides a space to define what will happen inside the 

loop. With the for loop in his program, he deletes the empty command nested under the for 

statement and then moves his cursor up to change the portion of the code that determines how 

many times the loop will execute. After deleting the placeholder inside the for loop the editor 

displays a red x next to the loop’s definition. This denotes there is an error in the code, in this 

case, because there is nothing inside the for loop. The student hovers his mouse over the error, 

sees the message 'UNEXPECTED TERMINATOR,' pauses for a second, then clicks on the Text 

category of the palette and drags in a write block, which causes the red x to disappear. 

The write block has the default argument of 'hello.'. After dragging the block in, the 

student deletes these characters and replaces them with increase* and then highlights the first 

line of the program (random 15), copies it and then pastes it after the *, giving him the line: 

write increase*random 15. The student next adds a conditional statement to his program 

by typing the line if random 15*increase < 100. These characters come from memory, as 

he does not use the block palette or Quick Reference for help. He then makes a few more 

modifications to his program using the keyboard, including changing the code that controls the 

loop and adding a line to increment his program then stops typing and looks at his code. At this 
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point, he has been programming for two minutes and 48 seconds, and has written the 

program shown in Figure 7.4a. 

  
(a) (b) 

Figure 7.4. The Hybrid student’s first run program (a) and the error message displayed in the 
editor (b). 
 
 As the student reflects on his program, the interviewer asks him to explain it. He pauses a 

second, then starts his explanation by saying "Alright, so, so this part of the code selects a 

random number (he clicks and drags his cursor over the first line of his program, highlighting 

line one). Increase represents when the number is multiplied, so it could be 0, 1, 2, 3, etcetera. 

This is going to (points the cursor at the word for, then pauses), increase + 1 is going to be 

one (highlights the increase+1 portion of line 4), so it repeats one time. Then we're going to 

do the random number again (moving his cursor over random 15 in line 5, but not highlighting 

it) and if that times whatever I set increase to is 0, then it should write the product of what 

I'm multiplying it by and the random number (again pointing to the various parts of line 6 as he 

mentions them, but not highlighting them)". With his program explained, the interviewer asks 

him if he wants to run the program or if there is anything else he would like to add. He pauses 

and says "I'm going to set this to a variable because I'm not sure if this random 15 (clicks and 

drags to highlight the random 15 in line 5) is the same as this random 15 (hovers his mouse 

of line 1). I'm just going to set it to x." He then adds the characters =x to the end of line one, so 

the line reads: random 15=x, which causes the editor to display a red x next to the first line. 
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The student sees this and says: "wait, what's this?" and hovers over the x, which reveals the 

message Unexpected '='. Figure 7.4b shows the red x and the error message the learner sees at 

this point. The student reads this message, pauses for a second, then adds a second = to the line 

so the first line of the program reads random 15==x26. This addition to the program resolves the 

compile-time syntax error and the red x disappears. 

 Upon running the program, he gets an error saying ‘x is not defined'. He pauses, thinks 

for a minute, then deletes the ==x at the end of line and then adds x= in front of the random 15 

command. This fixes the error, and he hits run again. His program then prints out the character 0 

and then stops. This leads to the student quietly reading through his program. The interviewer 

then starts to ask questions about the program getting the student to verbalize his intentions and 

how he thinks the program is running. The details of the discussion focus more on the specific 

assignment than the modality, so are not included here. It is worth noting that, throughout this 

discussion, the student frequently highlights words and lines as he thinks through the program, as 

was shown above. As part of his trying to understand what is happening in his program, he 

changes the +1 in line 4 to +2 and runs the program. It now prints out 0 on the first line and then 

2 on the second line, which gives him some insight into the behavior. He next says "I'd also like 

to see what x is" and then puts the cursor at the end of line one and types in write x. He then 

asks "that is it right?" and drags a write block into the program, compares the syntax of the 

newly added command with the command he just typed and says "yeah" before deleting the 

write command he just drag-and-dropped into his program. This strategy of using blocks to 

 
26 In CoffeeScript, like many other programming languages, the double equals sign (==) is used 
to compare the equality of two objects whereas as a single equals sign (=) is used for assignment. 
The double equals sign is not what the student wants in this scenario.  
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check syntax ended up being an unexpected but common practice that will be discussed 

below. When the student next runs the program with his debug statement in place the output is: 2 

0 10, which causes the student to say "that's strange. Oh." and changes the random 15 

command that is still in line 6 to use the variable x. He now re-runs the program which produces: 

6 0 6, each printed on a separate line, which, based on the student’s facial expression, was what 

he was expecting to see. 

 A moment after running this program the student has a revelation. "Oh, I know, I know 

what to do" and then smiles. The interviewer inquires and he continues: "I think a while loop 

would be much better." He then highlights the for loop line, deletes it all at once, types in 

while, and then copies and pastes the condition out of the if statement, producing the program 

showing in Figure 7.5. "Yeah, this aught to work better." Upon running the program, the program 

demonstrates the correct behavior. After a short concluding discussion, the student is thanked 

and the interview ends. 

 
Figure 7.5. The students final, correct program 
 

Hybrid Vignette Discussion 

 This student was chosen for the demonstration of what it looks like to program using a 

hybrid blocks/text interface because he took advantage of various features of the dual modality 
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during the interview. There are also episodes in this interview where his approach and pattern 

of interaction are different than those taken by learners in the fully blocks condition. The first 

interesting thing to note from this vignette is how the student moved back and forth between 

dragging in commands from the palette and typing them directly into his program. This could be 

seen right from the beginning in that the first command (random 6) in the program was added 

via dragging the block onto the editor and the second command (increase=0) was typed. For 

the third command (a for block) he goes back to the palette to again drag-and-drop a command 

into his program, which he then modifies with the keyboard (deleting the placeholder for the 

nested statement). This shows the hybrid interface is successful in supporting two modes of 

composition, allowing students to type commands if they know the syntax and are more 

comfortable on the keyboard, while also having the browsability and ease of composition that 

come with the drag-and-drop-supported blocks-based modality. Another thing to note about dual 

modality composition is the support it provides via scaffolds that can be developmentally 

appropriate for learners at different levels and that allow the learner to be in control of their own 

learning. For example, this student was able to type out an if statement from memory, but used 

the drag-and-drop feature to add a for loop, suggesting he had better knowledge of the syntax 

of one of these concepts compared to the other. In the vignette, we also see the learner clicking 

through categories in search of commands, showing that the browsability of the Blocks modality 

is still present. 

 Another noteworthy feature in this vignette is the presence of in-editor feedback for 

compile-time errors27 and how the student responds. Twice during this portion of the interview 

 
27 Compile-time errors (as opposed to run-time errors) are syntactic errors in a program that the 
environment is able to detect before the program is run. Common examples of compile-time 
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the student introduced a compile time error; in both cases it was while he was manually 

typing in commands. One of these errors happened when the student typed in the line: random 

15=x, which caused an error. What was interesting about this is that the student’s next move 

was to add a second =, producing the line random 15==x, which is still incorrect, but now is a 

semantic bug as opposed to a syntactic error. This is noteworthy as this type of error would be 

very difficult to make in the blocks interface where more constraints are placed on how 

commands can be assembled. By this we mean blocks modalities can prevent the user from 

adding a statement like random 15==x to the program based on the shape of the block. For 

example, in Scratch, the equality comparison block has an oval shape, so it cannot be added to a 

script, while in the Pencil.cc blocks interface, there is not standalone == block to be dragged into 

a program. While it is possible to have compile time errors in the blocks interface, this never 

happened in any of the interviews conducted with students working in that modality. 

 The introduction of compile-time errors was frequently observed in both the Text and 

Hybrid modalities, but in the Hybrid case, there are additional supports provided by the interface 

that can help address this. One clear example occurred later in the interview. When the student 

wanted to add a debugging statement to his program, he typed in the line write x and then 

dragged out a write block and placed it below the line he just typed to check the syntax. Upon 

seeing that what he had typed matched what appeared when he dropped the write block, he 

deleted the second command and continued working. This pattern of using the blocks as a way to 

check syntax ended up being frequently employed throughout the course. In this capacity, the 

blocks were not serving as a means for remembering what is possible, or a way to author new 

 
errors include incorrect keywords (like typing whiel instead of while or forgetting necessary 
punctuation like semicolons, brackets, or curly braces. 
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portions of a program, but instead serving as a supplemental verification for students to 

double-check to make sure they were doing things correctly. In the Text condition, to verify 

syntax, students have to go to the Quick Reference page, which is a slower, more cumbersome 

process than dragging a block into the canvas in the Hybrid interface. This pattern was 

unexpected and tells us something about types of supports novice programmers need and want: 

in-editor scaffolds to quickly verify syntax.  

 Another thing to note from this interview is that the student utilized a number of common 

text-editing techniques: notably copy-and-pasting lines of code to move them around and 

highlighting blocks of text either to denote something to the interviewer or to delete portions of 

his program. When highlighting portions of the code during his explanations, he sometimes 

highlighted whole lines and other times just portions of a larger command.  Seeing the student 

make these types of moves is not particularly surprising as high school students are usually 

comfortable with text manipulation. This is noteworthy in that the Blocks condition does give the 

student the ability to do this type of character-by-character highlighting, showing another small 

difference between the Hybrid (and Text) modalities and the Blocks interface. It shows that the 

text editing practices were present in the Hybrid condition, which also included capabilities not 

present in conventional text editors.  

Text Condition Vignette 

 The text vignette lasts twelve minutes and six second and, like the others, begins with the 

interviewer explaining the programming challenge. In the previous vignette we saw the learner 

start to use the keyboard as a form of input, in this vignette we see how programming differs 

when the learner only has the keyboard input and lacks other features of the blocks-based 

modality (like the browsable categories and visual syntactic information). When the interviewer 
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mentions the program picking a random number less than 15, the student immediately types 

random[1-15] in the first line of the editor, saying: "I'm pretty sure that's how that works." 

The interviewer then continues with the rest of the program details. After hearing the description, 

the student then tries to store the random number into a variable, typing: , defer a after the ] 

on line one of his program28. The syntax he has typed in is not correct (a fact made clear by a red 

x appearing on the left side of the editor like shown in Figure 7.4a). Seeing this error, the student 

moves his mouse to the top right of the screen, opens the Quick Reference menu and says he is 

going to look up defer. As he is doing this, he comments how he cannot remember exactly 

how to use this command. In looking through the Quick Reference, he sees the menu item for the 

random command and opens that up. He reads through its contents, then closes it and says 

"Would I have to do await? I have to do await."29 He types in the command await at the 

beginning of the line, which resolves the error, although it will not produce the behavior he is 

expecting. 

 With his variable command in place and no compile-time errors, he asks the interviewer 

for clarification on the programming task, then types a*2 on the second line of the program, 

saying “That's multiplication right?” He pauses for a second, then says: “I’m going to check 

that” then adds write in front of a*2 and hits the run button. The program gives him a runtime 

error that includes the message: “You might not need a comma here.” Seeing this message, he 

removes the comma and hits run again, which confusingly gives him another runtime error with 

the message “Is there a missing comma?” This causes him to make some more minor 

 
28 The defer command is a custom commands to Pencil.cc and is used to pass control to a 
paused process. It is often used with the await command to read in input from the user. 
29 The await command pauses execution until an asynchronous process completes. It is often 
used with the defer command to read in input from the user. 
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modifications to the syntax in the first line of his program and then open up the Quick 

Reference again to look at the entry on random. As he is doing this he says: "another thing I 

could say I don't like about [pencil.cc] is that sometimes it’s so vague on what the problem is." 

After some more tinkering with syntax and getting more errors, the interviewer steers the student 

towards the variables entry in the Quick Reference menu. This shows him the correct syntax 

for setting a variable, which he types in. With his variable in place, he is ready to move on with 

the logic in his program. He quickly says "I can use an if statement" and then says aloud "if a is 

less than 100 a plus a then write a" while typing out the statement: if a is < 100 a = a + a 

write a. He then runs his program, getting another runtime error, this one saying “unexpected 

<.”  To fix this error, he deletes the is from his program, not using any help from the editor or 

interviewer. Figure 7.6a shows the student’s program up to this point in the interview.  

  
(a) (b) 

Figure 7.6. The student’s text-based program at the middle of the interview (a) and the end (b). 
 
 With all the syntax errors resolved, he runs the program and gets the output 8. He runs it 

again and sees a 14. Upon seeing these two numbers output individually, he says, "I have to do 

while loop" and deletes the if and types in while, leaving the rest of the program in tact. 

Running the program again, he now sees: 14 28 56 112 each printed on their own line. The 

interviewer then asks about the reason for the shift from if to while, which prompts an 

explanation of the if and while statements, that ended with him saying: “while is like, while 
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this is true, I will keep on doing this continuously and that's what it did here.” He runs the 

program a few more times, and then sees the first line of output for one of his runs is 22, so he 

quickly adds write a on a new line before the while loop saying “now we'll see the multiple 

of the numbers we're doing.” 

 He continues by running the program again for which the computer picks the number 2 

and prints out 2 4 8 16 32 64 128. The student looks at it and says: “wait, that's not right, why is 

it like that?” Looking at his program he continues, “a plus a, no I can't do that, I have to make 

this a different variable.” He then replaces a = a + a with b = a + a and changes write a to 

write b and runs the program again. This causes an infinite loop.30 After a minute, the program 

prints out a 9 followed by a string of 18s that run off the bottom of the screen. The student then 

reads through his program saying "if a is less than 100 then do b equals a plus a" at this point, 

he puts his cursor after that line, hits the return and types a = b while saying "a equals b" aloud. 

After a pause, he says "I don't want to do that" and deletes the commands he just typed in one 

character at a time. He then quietly says: "after it writes b, a equals b" typing a = b on a new 

line at the end of his program. He runs the program again. This time the program completes, but 

gives the same behavior he had before adding the variable b. The interviewer asks the student 

what is happening, which prompts him to go on a lengthy explanation of how the number is 

doubling every time instead of incrementing by the random number. After a minute of talking 

through his program he says "Oh, I see what I can do here b equals zero" and types b=0 on a 

new line at the top of his program "and then b equals b + a" changing the first line inside his 

 
30 The infinite loop occurs because he has changed his program so that b is the variable that 
increases each iteration but the while condition is checking to see if a < 100, thus, a never 
changes and the loop never ends. 



 238 
while loop to be b = b + a, explaining "what this will do here is b is zero and then I keep 

adding a, so I keep adding that number and I'll get, there we go!" finishing this statement as he 

watches his program run and produce the desired output. The final version of his program can be 

seen in Figure 7.6b. After a short discussion on what he expects in the coming weeks learning 

Java, the interview ends. 

Text Vignette Discussion 

 Having presented short vignettes from a Blocks interview and Hybrid interview, this 

vignette shows a typical interaction of a student working in the Text condition. There are a few 

things of interest in this vignette, especially when compared with the previous two. The first 

thing that stands out is the number of errors the student encountered. This includes both compile-

time errors due to incorrect syntax as well as runtime errors stemming from improper use of 

commands. Early in the interview, the student spends almost a minute trying various 

combinations of commas and keywords in an attempt to set a variable using the await and 

defer primitives. Things like this rarely happened in either the Blocks or Hybrid condition. In 

the case of the Blocks interface, the lack of typing in commands alleviates the syntax burden, 

while the ability to hover over a block to see what it does helps navigate students towards the 

correct commands. The Hybrid interface also has the hover-over blocks feature that can help 

with syntax by allowing students to drag blocks onto the canvas to check syntax, as was 

demonstrated by the student in the Hybrid vignette. In the Text condition, the student has to rely 

on the Quick Reference, which resides outside of the editor space itself. While using the Quick 

Reference is often helpful for students, in this vignette, we see an issue with this approach. Early 

in the vignette, when the student is trying to set a variable, he goes to the Quick Reference in 
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hopes of finding information about the defer keyword, which is not what he actually wants. 

Even with the logical organization of topics in the Quick Reference, the student still needs to 

know what to look for. 

 Another interesting difference in this vignette from the previous two that relates to the 

aspects mentioned in the previous paragraph was the student’s reliance on the compiler as a form 

of support. At various points during the interview, the student got an error from the compiler 

(either runtime or compile time).  In response to this, the student made a series of small changes 

to the statement where the error resided, thus using the compiler error as a way to tell if he had 

figured it out or not. This can sometimes work, but in the case of this student, resulted in a 

syntactically valid statement that did not do what he had expected (like the statements await 

random[1-15],  defer a, which is valid but does not do what the student had intended). 

Relying on the compiler for syntactic guidance is often employed by veteran programmers who 

have not used a language or a keyword in a long time and are struggling to remember details of 

the command, however, for a novice to engage in the practice is very different. An extreme 

version of this practice was observed in another interview with a student in the Text condition. 

After adding the random 15 command at the start of her program, this student then typed mult 

100. When asked what that meant, she said: “I was trying to print the multiple all the way up to 

one hundred, because it worked for random fifteen.” In other words, she was completely 

guessing that there may exist a command for multiple and only realized it was not a command 

when the interface told her. Most often this type of guess-and-check for novices is not 

particularly fruitful and even when the student succeeds in accomplishing what he or she set out 

to do, will have little understanding as to why the program worked. 
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 A last comment to make about this vignette in comparison to the other two is to point 

out how little the student used the mouse. The interface requires that everything be typed in 

character-by-character, but it is still possible to highlight words or copy-and-paste commands 

that have already been typed in. Throughout the interview, the student rarely used the mouse 

cursor, choosing instead to delete words (and lines of words) one character at a time, and unlike 

the Hybrid vignette, did not use the mouse cursor to reference code during the interview. Instead, 

he relied on reading aloud without a visual cue to communicate where his attention was within 

the program. While this is not a big deal in the context of the interview, it is possible to imagine 

scenarios where this lack of the use of the mouse is detrimental. Having provided rich 

descriptions of students working in each of the three modalities, this chapter now transitions to 

looking across the full set of students, using these vignettes to guide the investigative approach 

taken in the remained of this chapter. 

Programming Practices Across Conditions 

 Having provided a rich description of what it looks like for novices to program in the 

three modalities, the remainder of this chapter will look at the full set of participants to reveal 

larger, more systematic trends across the three conditions. The data for this section were 

collecting by the logging system built into Pencil.cc. Information about the type of data collected 

can be found in Chapter 3 and is summarized in Table 3.6. This section begins with high-level 

descriptive data on programming practices and program characteristics grouped by condition and 

by assignment. A total of 145,207 Pencil.cc events were collected from the students across the 

three conditions. Table 7.1 summarized the average number of times each type of event occurred 
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for each student, grouped by condition31. As a reminder, the three events that start with the 

prefix ‘block’ capture blocks-based composition events, while the other five denote larger, 

program-wide events (like running, loading, and saving a program). 

Table 7.1. The average number of each event types per student that was collected during the 
five-week introductory portion of the study, grouped by condition. 

Event Type Blocks Hybrid Text Total F or t Statistic 
run 733.34 1073.62 742.97 846.41 F(2, 89) = 8.71; p < .001 
load 76.76 110.17 69.13 84.81 F(2, 89) = 7.18; p = .001 
save 85.93 91.45 68.13 81.38 F(2, 89) = 1.59; p < .21 
new 24.41 27.28 23.88 25.14 F(2, 89) = 1.44; p < .24 
logout 9.24 16.69 9.69 11.80 F(2, 80) = 1.25; p = .29 
block-drop-
addition 864.86 118.21 NA 491.53 t(33) = 11.67, p < .001 

block-drop-
floating 114.38 NA NA 114.38 NA 

block-drop-
deletion 288.21 NA NA 288.21 NA 

 
 This table shows that there was a significant difference in how often students ran and 

loaded their programs.  A Tukey HSD post hoc analysis shows that students in the Hybrid 

condition ran their programs much more often than the other conditions (compared to Blocks p < 

.001, compared to Text p = .003), while there was no difference in number of runs between 

Blocks and Text students (p = .86). Similarly, the students in the Hybrid condition also loaded 

their programs more often than students in the Text condition (p = .002) and Blocks condition (p 

= .005) with no significant difference existing between the Blocks and Text students ( p = .97). 

Students in the hybrid condition also saved, logged out, and created new programs more often 

than their Blocks and Text peers, although not at a statistically significant level. Looking at 

 
31 Throughout this section, numbers are reported per student to control for the fact that the three 
conditions did not have the same number of students. Only students who ran their program at 
least 10 times were included in these calculations to not skew the average by including students 
who did not complete the assignment due to absences. 
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block-drop-addition, the one block-level event type for which we have data from multiple 

conditions, we see the Blocks condition adding commands to their programs using drag-and-drop 

at a much higher rate relative to students in the Hybrid condition. These high-level trends will be 

explored in much greater detail throughout the remainder of the chapter. 

Running Programs 

 The first detailed analysis looks at the rate at which students ran their programs, which 

gives some insight into what it looked like to program in each of the three modalities. The five-

week curriculum used for the first phase of the study included 13 individual assignments. Table 

7.2 shows the breakdown of the average number of run events recorded by assignment per 

student. Given that each condition had the same amount of time to complete each assignment, 

looking at the total number runs per assignment serves as a proxy for understanding how quickly 

students were able to write and edit their programs32. An ANOVA calculation was run for each 

row to see if the number of runs differed at a statistically significant level for each assignment. 

The assignments are organized chronologically going from the top to the bottom. 

Table 7.2. Run events collected for each assignment broken down by condition. 

# Assignment Blocks Hybrid Text Total F-Statistic 
1 Quilt 90.50 85.86 94.97 90.64 F(2, 86) = .29; p = .75 
2 Madlibs 55.43 104.89 52.19 70.51 F(2, 86) = 7.13; p = .001 
3 Tip Calculator 25.46 28.20 31.75 28.87 F(2, 76) = 2.67; p = .08 
4 Paint by Quadrant 52.41 100.45 69.55 74.14 F(2, 87) = 6.53; p = .002 

5 
Movie 
Recommendation 
Engine 

45.77 72.81 52.07 57.27 F(2, 84) = 3.92; p = .02 

6 Grade Ranger 25.53 41.88 52.76 40.28 F(2, 72) = 3.27; p = .04 
7 Guessing Game 67.00 107.70 73.97 82.21 F(2, 85) = 2.33; p = .10 
8 Radial Art 37.50 70.67 52.92 53.91 F(2, 81) = 4.69; p = .01 

 
32 There are other, more nuanced ways to interpret the average number of runs per student 
numbers that will be explored later in this section. 
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9 Squiral 44.50 74.93 48.35 56.63 F(2, 85) = 8.79; p < .001 
10 Polygoner 46.44 49.04 42.05 45.97 F(2, 78) = 1.62; p = .20 
11 Connect 4 93.03 104.29 83.10 93.23 F(2, 87) = 1.63; p = .20 
12 Brick Wall 56.04 86.19 56.50 66.63 F(2, 82) = 7.85; p < .001  
13 Final Project 158.17 212.41 145.78 171.24 F(2, 87) = 1.66; p = .20 

 
 Below, Figure 7.7 shows these same data as a line chart, giving a sense of how the 

numbers fluctuated over the course of the five-week curriculum. The figure also shows the 

concept that was the focus of each lesson and denotes the assignments where statistical 

significance was found. 

 

 

 That first thing that stands out in Figure 7.7 is that throughout the five-week curriculum 

students in the Hybrid condition consistently ran their programs more often than either of the 

Figure 7.7. The average number of runs by students for each project broken down by 
condition. 
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other conditions. This was true for ten of the thirteen assignments, including the last seven 

assignments. This pattern is in contrast to much of what was found in the previous two chapters, 

which looked at attitudes and learning outcomes where the Hybrid condition’s results usually fell 

between the Blocks and Text conditions. A possible explanation for this is that the blocks 

interface has the ease-of-composition of the drag-and-drop modality, which makes it easy to 

quickly add commands to the program to see if they work. At the same time, it also allows for 

syntax errors, due to the lack of constraints on how and where commands can be added. 

Together, these characteristics (ease of adding commands and error-prone manual entry) can lead 

to users running their programs. Runs motivated by either of these two practices are in addition 

to running programs to see what happens (which is the main reason why students in the Blocks 

condition would run their program). In this case, the blended Hybrid interface results in a 

summative behavior (i.e. students do both) as opposed to reductive outcome (i.e. the Hybrid 

interface relieves the user from having to do certain things). This is just one possible explanation. 

Unfortunately, the data collection strategy for this dissertation did not include compiler error 

messages or keystroke level changes so it is difficult to validate this hypothesis in the current 

study. 

 Looking at the ANOVA values from Table 7.2 and the stratification of the three 

conditions on different assignments, we start to see how concepts influence the frequency of 

students running their programs. For example, all three of the assignments that focused on 

conditional logic were found to have statistically significant differences in average number of 

runs by condition. Likewise, two of the three iterative logic assignments were significant, with 

the third approaching statistical significance. Only one of the three functions assignments and 

one of the two variables assignments show significant differences in how often students ran their 



 245 
programs. Put concretely, these data show that, based on modality, students in the different 

conditions ran their programs with significantly different frequencies for assignments focusing 

on conditional logic and most assignments looking at iterative logic. For all six of these 

assignments, the Blocks condition ran their programs least often. Our explanation for this finding 

is that the Blocks modality’s prevention of syntax errors removes the need for students to run 

their program to see if the syntax is correct. Similarly, students are less likely to find themselves 

making small changes to their program and re-running it in quick succession to see if the change 

fixes an issue. Both of these outcomes contribute to fewer overall runs. To support this 

hypothesis, we now turn to the timestamps to look at patterns in the time between consecutive 

runs to see if it tells the same story. 

Elapsed Time Between Consecutive Runs of Programs 

 A second way to compare programming practices by condition is to look at the amount of 

time that elapses between consecutive runs by condition. The goal of this analysis is to 

understand how quickly students re-run their programs, which gives insight into another 

dimension of their forming programming practice. Namely, do students develop incrementally 

and systematically or are there big bursts of runs followed by extended stretches of no runs. 

Figure 7.8 shows the average amount of time that passes between consecutive runs for each 

assignment grouped by condition. This data only considers runs that happened on the same 

assignment and within 15 minutes of each other33. 

 
33 Fifteen minutes was selected as an arbitrary cutoff for the longest amount of time that might 
elapse between consecutive runs. The cutoff was added to control for instances where the data 
show hours passing between consecutive runs. 
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Figure 7.8. The average amount of time that elapsed between consecutive runs. 
 
 This graph shows that at the start of the year, the Blocks condition took the longest 

amount of time between runs. As the five-week curriculum progressed, the Blocks time grew 

closer to the other two conditions, while the overall time between runs mostly declined. This 

decreasing pattern continued until the last few assignments, when the time between runs grew, 

which also correlates with the complexity and difficulty of the assignments34. The fact that the 

Blocks condition was slower on average at the outset is interesting and unexpected given a 

feature of blocks is their ease of composition, especially for novices early in their programming 

careers. A possible explanation for this is that, since there are no syntax errors, students do not 

develop the practice of using the compiler as a mechanism to check if a given command will 

work. Thus, there are fewer episodes of quick, consecutive runs where the learner is trying to 

find the right syntax. This explanation fits with the analysis presented in the previous section and 

 
34 The Connect 4, Brick Wall, and Final Project were more difficult than the assignments that 
preceded them as they included more of the concepts taught over the course of the five weeks 
relative to the previous assignments. 
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is backed up by the data, which shows there to be fewer runs in quick succession in the 

Blocks case than either the Text or Hybrid. Table 7.3 shows the average number of runs that 

happened less than five seconds after the previous run for each condition by assignment per 

student.  

Table 7.3. The average number of runs per student that happened within five seconds of the 
previous run, grouped by condition and assignment. 
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Blocks 6.4 5.5 3.5 5.4 8.1 5.8 18.5 2.1 3.3 4.0 5.4 5.0 15.3 
Hybrid 7.9 29.2 6.7 15.2 15.7 6.7 31.6 8.4 7.7 12.1 11.1 11.5 19.7 
Text 10.8 12.7 5.9 19.7 11.2 9.9 19.7 6.6 8.3 5.7 11.5 7.8 28.8 

 
 What stands out in Table 7.3 is that, while the condition that had highest number of quick 

succession runs rotates between Hybrid and Text, for every assignment, the Blocks condition had 

fewer runs that happened within 5 seconds of the previous run. This data confirms the trend 

shown above, that the Blocks condition took longer between runs, in part due to having fewer 

quick-succession runs. The primary explanation is that the Blocks modality, and it’s prevention 

of syntax errors saves students from having to make quick, minor tweaks to fix syntax errors in 

their programs. Another explanation for the trend of Blocks being slower is due to a critique of 

the blocks-based approach to programming brought up by learners early in the study, namely that 

programming with blocks is slower than authoring in a text-based modality. The slowness of 

dragging-and-dropping commands and often having to assemble a number of blocks to define a 

single instruction could also explain the on-average longer delays between runs (this idea will be 

revisited with new data later in the chapter). This aspect of authorship, paired with the lower 

frequency of quick-successions runs, can in part explain the slower authoring patterns shown in 
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Figure 7.8. Having looked at the overall characteristics of the programs and patterns linked to 

students running their programs, the analysis now shifts to look at composition patterns that 

happened between runs. 

Characteristics of Programs 

 Another dimension to investigate differences across conditions is looking at 

characteristics of the students’ final versions for each of their assignments. Figure 7.9 shows the 

average size of each program completed by students in the first five weeks of the course35.  The 

length measurement used in chart is the number of characters in the final project. While there are 

more sophisticated ways to calculate this measure, given that all students were given the same 

assignment and had relatively constrained instructions, total number of characters serves as a 

useful proxy for more complex measures of length36. 

 

 
35 The Final project is left off because the size dwarfed the other assignments and also due to the 
fact that the size of the program was greatly influenced by the type of final project students chose 
to do. For example, students who authored text-driven story programs had projects that were 
much larger than other more syntactically complex projects. 
36 For the blocks condition, length is calculated based on the characters within the blocks. So a 
blocks-based an text-based program made comprised of the same commands will have an 
identical length. 
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Figure 7.9. The average size of student authored programs by condition. 
 
 Although students were completing the same assignment regardless of the condition, 

differences in the length of the assignments do emerge. On ten of the twelve assignments, the 

Text condition produced the shortest solutions (on average), with Blocks students writing the 

longest average programs on eight of the assignments and Hybrid being the longest for four 

assignments. Running an ANOVA calculation for each of the assignments, four were found to 

have statistically significant differences at the p < .05 level: Tip Calculator (F(2, 82) = 4.78, p = 

.01) , Grade Ranger (F(2, 71) = 5.26, p = .01), Radial Art (F = (2, 83) = 3.51, p = .03) and 

Connect 4 (F(2, 87) = 2.90, p = .05). The assignments with the greatest stratification focused on 

conditional logic (Paint by Quad, Movie Recommendation Engine, and Grand Ranger) and the 

last two assignments from the functions portion of the course (Connect 4 and Brick Wall). The 

variance in the conditional logic assignments is similar to what was seen in the runs-by-

assignment analysis (Figure 7.7), but that pattern does not continue with the iterative logic 

assignments or the functions assignments. This variation in the Connect 4 and Brick Wall 
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assignments may come from the fact that those two assignments were by far the most 

difficult in that they asked students to incorporate logic from previous parts of the course and 

required the most amount of code to accomplish relative to the other assignments37. The fact that 

we see a difference in conditional logic is another piece of evidence towards the larger trend of 

modality affecting students’ learning and using those constructs, which was identified in the 

previous chapter as well as in work by others outside of this study (C. M. Lewis, 2010). 

Blocks-based Usage in the Hybrid Condition 

 Since, in both the Hybrid and the Blocks conditions, students had the ability to add new 

commands to their programs through the use of dragging-and-dropping blocks from the palette, 

comparing patterns of adding blocks provides insight into how modality affected programming 

practices. It also provides some insights into how the two modalities differed. Figure 7.10 shows 

the average number of blocks added to a program per run for students in the Blocks and Hybrid 

conditions, broken down by assignment.   

 

 
37 The Grade Ranger and Movie Recommendation Engine assignments’ numbers are inflated due 
to the amount of text included in the assignment. 
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Figure 7.10. The Average number of blocks added to a program for each assignment. 
 
 There are a few things that stand out from this chart. The first is the gap between the 

Blocks condition and the Hybrid condition. For every assignment, students in the Blocks 

interface added more than twice as many blocks for each run of their program, meaning they 

added blocks to the program at more than twice the rate of students who worked in the Hybrid 

interface. There are a number of possible explanations for this. First, as was shown above, the 

students in the Hybrid condition ran their programs more often than those in the Blocks 

condition, which would result in a smaller number of block additions per run. This explanation 

only tells part of the story as the absolute number of blocks additions was also much higher in 

the Blocks condition. A second, more compelling explanation comes from the fact that the 

Hybrid condition allows both the drag-and-drop addition of commands as well as direct 

keyboard input of the textual modality, as was seen in the Hybrid vignette presented earlier in 

this chapter. This explanation says that students in the Hybrid condition added fewer blocks in 

writing their programs because they supplemented adding blocks by directly typing in 
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commands. This explanation also explains the decreasing slope of the Hybrid condition’s 

plot over the course of the five weeks. As student’s familiarity and experience grew, students in 

the Hybrid condition were more likely to directly edit the program than to use the drag-and-drop 

mechanism. This explanation is supported by data collected during the interview, as a number of 

students in the Hybrid condition commented on their preference towards typing over the drag-

and-drop composition strategy. For example, one student said: “for the most part, I just type the 

code myself. I don't think the blocks are useful other than showing what you can do.” This 

finding replicates other similar work which looked at how, when given a choice to use either a 

text-based or blocks-based modality, students shift from blocks to text as their experience grows 

(Matsuzawa et al., 2015).  

 In contrast to the declining use of blocks for composition in the Hybrid condition, the 

students in the Blocks condition show a relatively consistent block-addition-to-run ratio. The 

outlier for this trend in the Blocks condition was the Grand Ranger assignment, which saw a 

spike in the number of blocks added between runs. This happened because this assignment asked 

students to work with multiple conditional statements and, since each conditional statement 

required a number of blocks to be added (the conditional itself, the comparator, and blocks for 

one or both of the argument slots), in total, more blocks were added to make basic changes to the 

program. Whether or not the requirement for using the blocks-based form of authorship affects 

students’ approach to programming in Java is the topic of the next chapter.  

Quick Reference Usage 

 The last dimension of programming practices this chapter investigates is if and how 

students used the Quick Reference feature of the Pencil.cc environment. As a reminder, the 

Quick Reference menu is an in-editor resource that provides instructions on various aspects of 
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the Pencil.cc language and environment. Like the blocks palette, the Quick Reference guide 

is conceptually organized and provides definitions and examples of all of the central topics 

covered in the five-week introductory curriculum. Logging was put in place to track when and 

how the Quick Reference feature was used. This information gives us insight into when students 

need assistance beyond what is provided by the modality itself. Thus, looking at Quick 

Reference is not about understanding that feature itself, but to understand shortcomings of the 

modalities in providing sought after support. 

 Overall, students working in the different modalities visited the Quick Reference manual 

at very different rates. The Quick Reference was used a total of 2,591. By condition, that number 

breaks down as follows: Blocks loaded 229 pages, Hybrid loaded 553, and the students in the 

Text condition loaded 1,809 Quick Reference pages. Running an ANOVA calculation on the 

total number of look-ups by condition shows the usage of this resource differed significantly by 

condition F(2, 82) = 10.7, p < .001. A Tukey HSD post hoc analysis shows the Text condition to 

be significantly different from both the Hybrid and the Blocks conditions at the p < .001 level, 

while the Blocks and Hybrid conditions are not statistically different from each other (p = .34). 

Looking at the pages for the specific concepts that were the focus of the curriculum, we see a 

similar pattern in use of the Quick Reference feature. Figure 7.11 shows these numbers. 
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Figure 7.11. The number of times the Quick Reference pages were loaded for the four concepts 
covered in the introductory curriculum, grouped by Condition. 
 
 This figure shows a consistent pattern in Quick Reference usage. For every category, the 

Text condition used this reference the most, followed by the Hybrid condition, with the Blocks 

condition using it least often. Running an ANOVA on each of these categories shows the 

difference between usage to be significantly different for all four concepts (Variables: F(2, 82) = 

3.29, p = .04; Conditional Logic: F(2, 82) = 5.89, p = .004; Iterative Logic: F(2, 82) = 10.39; p < 

.001; Functions: F(2, 82) = 10.7, p < .001). What this chart shows is a systematic difference in 

reliance on programming assistance that resides outside of the editor. Our explanation for this is 

that because the text modality does not provide the same scaffolds that the Blocks and Hybrid 

modalities do, namely a list of available commands via the blocks palette and hover-over tips for 

each command, that students in the Text condition had to look else where for guidance. This 

explanation is corroborated by the vignettes presented earlier in the chapter, where we saw the 

student in the Text condition refer to the Quick Reference menu, but not the Hybrid or Blocks 

students. In the final section of this chapter, we summarize the findings presented. 
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Discussion 

 This chapter sought to understand the programming practices engendered by the blocks-

based, text-based, and Hybrid modalities of the Pencil.cc environment. Using a variety of 

methods and data sources, the chapter depicts a number of facets of the learning to program 

process. Collectively, they paint a vivid picture of the practices and patterns that develop as 

novices learn to program across three different modalities. This final section provides a 

discussion that looks across these various data sources to summarize what was learned in this 

chapter.  

Using the Vignettes 

 The first half of this chapter presented vignettes of students working in the three 

modalities used in this study. The goal of this section was to provide a thick description of what 

it looked like for beginners to author programs in different modalities after having worked in 

them for five weeks. In using the Mid interviews, we see students demonstrating how they had 

come to rely on various scaffolds and affordances of the different modalities and environments. 

This discussion section is broken down into four subsection, each of which covers a different 

step in writing a program: deciding what to do, doing it, making sure it is right, explaining it. For 

each phase, the three modalities are addressed. 

Deciding What to Do 

 All three students were able to come up with a strategy for accomplishing the task set 

before them, however, the role of the environment in supporting this process differed. The 

student in the Blocks modality relied heavily on the blocks palette, browsing through the various 

categories a number of times both at the beginning of the programming process, as well as 



 256 
throughout the activity. We also saw this student use the hover-over tip feature of the editor 

to gain additional information about the set of commands available to him. The student from the 

Hybrid condition was also observed browsing through the blocks palette early in the interview, 

thus taking a similar approach to the idea generation portion of the programming activity. The 

vignette of the student from the Text condition on the other hand, did not have the blocks palette 

available to him, so could not use it as a resource. Instead, the student drew ideas from memory. 

This is especially clear at the outset of the activity when he quickly begins typing and uses 

incorrect commands that he says he remembered needing for previous programs. The Blocks and 

Hybrid vignettes also used prior knowledge to construct their programs, for example, knowing to 

store their random numbers in variables, but these three vignettes do show how modality 

facilitates this initial phase of writing a program. In other interviews, we saw students in the Text 

condition browse the Quick Reference menu as a source of ideas although this use occurred less 

frequently and was often less useful than how the Blocks and Hybrid students used the blocks 

palette. Looking across the full set of students, the use of the Quick Reference by student in the 

Text condition proved to be a common practice and one that was distinct (or at least distinct in is 

frequency) to the text modality. 

Writing the Program 

 The next phase of writing a program on display in these vignettes was the students 

actually composing the program. It is in this phase that the three modalities differed the most. In 

the Blocks condition, we see the student using the cursor to drag-and-drop commands into the 

palette, assembling the program block-by-block, command-by-command. We also see the 

student incrementally building up commands, like when he dragged the random block into his 

program, changed its argument from 6 to 15, then dragged out the variable block, and finally 
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moved the modified random block inside the variable block. In this way, the command 

was not constructed in a sequence that matched the left-to-right presentation of the final 

statement, which is the natural way to compose in a textual modality38. Throughout the Blocks 

vignette, the student always added and moved commands using the cursor, only using the 

keyboard to changes arguments inside the blocks. In contrast, the student from the Text condition 

was unable to add or edit the program using a drag-and-drop approach, instead typing in every 

command in the program one character at a time. Using this approach, the student in the Text 

condition encountered a number of compile-time syntax errors, something that did not happen in 

the Blocks vignette. In both the Blocks and the Text use-cases, the form of authorship was 

imposed by the modality, the Text condition was not able to drag-and-drop commands and the 

Blocks condition was not able to author his program entirely with the keyboard.  

 The Hybrid condition proved to be the most interesting of the three vignettes in terms of 

how the program was authored given the modality supported both drag-and-drop blocks-based 

additions and keyboard-driven textual authorship. In the vignette presented, we see the student 

fluidly moving between these two forms of composing a program. He dragged the commands 

random and for into his program, while typing in variable declarations and a while loop. We 

also saw the student take advantage of convention text-editing strategies, including copying and 

pasting chunks of text to duplicate logic in his program, a technique supported in the Blocks 

 
38 It is worth noting that it is possible to author programs in a non-left-to-right sequence in a text-
based modality, although is more cumbersome as it requires the author to move from the 
character keys to the arrow keys (or mouse/touchpad) and back. This authoring pattern was not 
observed during the four text-based interviews. 



 258 
modality, but rarely (if ever) used39. This vignette also showed the student encountering 

syntax errors like the student in the Text vignette. Collectively, this vignette shows how a student 

from the Hybrid condition, after working in the modality for five weeks, had become 

comfortable using both a blocks-driven and text-based approach to authoring programs. 

Correcting Errors and Making Sure the Program Works 

 After composing their programs, students must then check to see if what they just wrote 

behaves as expected and if not, make the necessary modifications. All three of the vignettes 

followed students writing the same program and then saw them encounter various errors on their 

journey towards a working program. While all three students had bugs in their initial attempts to 

write the program, the types of struggles the students encountered were not all the same. Most 

notably, the Hybrid and Text vignettes showed the student encountering syntax errors, whereas 

the Blocks vignette never encountered the red X that, in the editor, denotes a syntax error. 

Between the Hybrid and Text condition we saw different strategies employed to verify syntax or 

look for help. In the Text condition, the Quick Reference menu became the main source of 

syntactic help. While it proved useful, it was not without its difficulty, as the learner must know 

what he or she is looking for as the Quick Reference menu is conceptually organized, as opposed 

to having an entry for every single command40. While the Quick Reference menu is a feature 

specific to Pencil.cc, it is a common way to organize help resources. The Hybrid student on the 

other hand, was able to use the blocks palette and the drag-and-drop feature to check syntax by 

 
39 During the five weeks of data collection and observation, no student was seen using the 
copy/paste technique in the Blocks modality even though it is possible using the conventional 
ctrl+c and ctrl+v key bindings. 
40 For example, the Quick Reference menu has a single entry for Arithmetic that includes the 
various mathematical operators available to the programmer. 
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dragging out commands to see their syntax. This strategy was observed in every Hybrid 

interview conducted and was widely used during the five-week curriculum. 

 In all three vignettes, students made sure the program was working by running the 

program and then evaluating the output relative to what was expected. This run-evaluate-edit 

cycle was the catalyst for many of the edits across the vignettes. For example, in the Hybrid 

vignette, the student, on seeing that only two values were being displayed, replaced his if 

statement with a while loop. Similarly, when the students saw the output of their program 

double, as opposed to increase by a fixed amount, they responded by revising their programs. It 

is worth noting this pattern of run-evaluate-edit did not differ by modality and it did not appear 

as if modality played a significant role in how students went about this component of the 

programming process. 

Explaining the Program 

 The last step in writing a program that we saw in all three vignettes was the students 

explaining the programs they had written. In all three modalities, students used the cursor as a 

pointer to direct the interviewer’s attention but with subtle differences. In the case of the Text 

and Hybrid interviews, students would point to specific characters and words, move their cursor 

back and forth over lines, or click-and-drag over the text, to highlight portions of the statement. 

In the Blocks modality, the student similarly guided gaze using the mouse and had additional 

visual indicators like color and shape to explain what was happening, but lacked the ability to 

highlight portions of the code to make it clear what specifically he was referring to. While this is 

a relatively small difference, it is these small things that collectively lead to different experiences 

and lead students to develop different programming practices. In this way, modality facilitates 

this portion of the authoring process in a slightly different way. 
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Wrapping up the Vignettes 

 Across the three modalities we saw different practices employed during all phases of the 

programming activity. This analysis intentionally did not project any normative evaluation of the 

different moves made by the learners because there is no one “right” or “best” way to write a 

program. Instead, this section documents how the different modalities support novices in forming 

different programming practices and affords different compositional strategies. The big question 

that remains from this analysis is the one that is tackled in the next chapter: If and how these 

programming practices transfer to more conventional, professional programming languages and 

environments? 

Differences in Programming Practices and Artifacts 

 The second half of this chapter used the computational data collected to look across the 

full set of participants to understand how the differences identified in the vignette analysis 

manifested themselves in aggregate outcomes across all of the students that participated in this 

study. This analysis included looking at programming patterns in the form of number of 

programming runs, types and frequencies of errors, and finer-grained patterns of composition 

observed across the three modalities. In this section we summarize this work, drawing across the 

various measures used to identify aggregate trends in programming practices and constructed 

artifacts by modality.  

Programming Practices by Condition 

 Looking at the data logs collected during the first five weeks of the study for differences 

by condition, characteristics of the modality start to emerge. Students from the Blocks condition 

ran their programs the least frequently, spent the most time between runs, and also produced the 
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longest programs on average. Characteristics of the modality provide potential explanations 

for these findings. First, the lack of syntax errors due to the shape and construction constraints 

provided by the blocks kept students from engaging in a cycle of making small syntactic changes 

and re-running the program to see if the change works. By backgrounding syntax, this modality 

allows students to focus on the semantic and algorithmic aspects of writing the program, which 

require more concentration and could in part explain the fewer number of runs and the more time 

taken between consecutive runs. Second, the ease of dragging-and-dropping commands relative 

to typing them in character-by-character could explain the longer programs produced by students 

in this condition. Since it is easier to add more commands, students are more likely to do so. 

There are also practices we do not see the students from the Blocks condition engage in, notably, 

the Quick Reference menu is relatively rarely used compared to the Hybrid and Text conditions. 

As discussed above, our explanation looks to the other various supports the modality provides 

for partially alleviating the need for learners turning to this resource. 

 Whereas students in the Blocks condition ran their programs the fewest number of times 

and at the slowest pace, the students in the Hybrid condition ended up at the other end of the 

spectrum. Students working in the Hybrid modality ran their program the most often, having the 

shortest average delay between consecutive runs, and also were found to have re-run their 

programs in under five seconds the most number times of the three modalities. These outcomes 

were a little surprising given that the Hybrid condition has largely resided between the Blocks 

and Text conditions for many of the dimensions of programming explored in this dissertation. A 

possible explanation for the frequency of runs was briefly proffered earlier in this chapter. Since 

students in the Hybrid condition can add commands to their programs by dragging-and-dropping 

them, an action that is quicker and easier than typing out the command character by character, 
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students could quickly build out their programs. At the same time, the text-based canvas does 

not provide the syntactic scaffolds of the blocks modality, so it was possible for students to 

introduce syntax errors into their programs. This allows students to quickly write programs that 

contain errors, which then need to be debugged, which is often done through tinkering and 

making small changes. This iterative development produces quick turn-arounds and a rapid 

succession runs of their program. This is one potential explanation, but the data suggests this is 

only part of the story, since Figure 7.10 shows the use of the blocks feature declining over the 

course of the curriculum, while the speed and number of runs relative to the other conditions did 

not. Unfortunately, this dissertation did not gather keystroke level data in the logs, so we do not 

have a complete view into the programming practices in aggregate for students in the Hybrid or 

Text conditions, so the explanation for these patterns remains incomplete and is left as an avenue 

of future research. 

 Students working in the Text condition ended up writing the shortest programs and often 

landed between the Hybrid and Blocks students on the measures used to evaluate the programs 

and practices in aggregate. Students in the Text condition also used the Quick Reference feature 

of the environment far more often than either of the other two. We think these two features are 

related. Students working in the Text modality had to contend with syntax errors while having 

the fewest number of in-editor scaffolds available to help. Authoring shorter programs is a 

logical outcome when encountering more syntax errors that impede progress and when having to 

add content to a program faster than character-by-character. Further, relying on the Quick 

Reference menu would also slow down the authorship process as it resides outside of the 

components of the editor directly involved in the act of authoring the program. The Text vignette 

provided a glimpse into some of the challenges associated with the Text modality when he 
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encountered syntax errors and was unable to fix it on his own using only the Quick Reference 

menu. The Text condition of the introductory portion of the study was the closest to what 

students will be doing in the next phase of the class, so the discussion of programming practices 

and artifacts will continue in the next chapter of this dissertation.  

Collectively, looking at different aspects of programming practices and features of programs 

authored in the three modalities, we can see differences emerge. In some ways these differences 

mirror trends that were documented in the previous two analysis chapters, while in other 

instances, some of the trends and outcomes were new and unexpected. For example, throughout 

the last two chapters, the Hybrid condition has largely lived between the Blocks and Text 

conditions, a natural home for a modality that is a mix of the other two. In this chapter, however, 

we see places where the Hybrid condition lives as an outlier, showing how blending blocks-

based and textual programming modality can produce a new modality that engenders practices 

and uses distinct from its two parents.  

Programming Practices by Concept 

 One of the features of the study design of this dissertation is the ability to look at how 

different factors affect learning to program and if and when those factors interact with each 

other. The guiding question for this dissertation looks at the relationship between modality and 

learning to program. In this chapter, we can see how and when modality interacts with the 

various concepts that are foundational to programming. The last chapter showed how modality 

and concepts interact with respect to learners’ comprehension of programs (Figure 6.8). This 

chapter compliments those findings by providing insight into the interaction of modality and 

concept for students during the composition of programs.  
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 Figure 7.7shows how often students ran their programs by assignment while also 

overlaying the concept being taught for each assignment. That figure and the analysis that it 

summarizes shows how students ran their programs at different rates for all three assignments 

focused on conditional logic and two of the three iterative logic assignments. Conditional logic 

emerged again as an outlier in Figure 7.10, which showed the average number of blocks being 

added to a program between consecutive runs. This was especially true for the Grade Ranger 

assignment, which asked students to take a number between 0 and 100 in as input, then report 

what the letter grade for that score would be (91-100 returns an A, 81-90 returns a B, and so on). 

In this assignment, students added more than twice as many blocks per run than any of the other 

assignments, with the other two conditional logic assignments also falling among the four 

assignments that had the most number of blocks added per run. Similarly, there is also a spike 

showing that the time between runs increases for this assignment. These data provide evidence 

for the claim student have often made (and was reported in Chapter 4) of blocks-based 

programming being perceived as slower than the text-based alternative. Triangulating this data 

provides a way to show that while it may not be universally true that Blocks authorship is slower 

than text-based programming, in the case of conditional logic, more blocks are required to 

construct a statement and thus blocks-based construction is slower than comparable statements in 

the text modality. 

Conclusion 

 This chapter presented a third and final analysis of the data collected in the first five 

weeks of the school year. Collectively Chapters 5, 6, and 7 paint a detailed picture of high school 

students learning to program in three different modalities. With this chapter, we showed what it 

looked like to author programs in the different modality through three detailed vignettes and 
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looked across the full set of students to tease out systematic practices and trends within the 

programs and log data collected over the course of the five weeks. Taken together, this chapter, 

along with the preceding two, provides a complete picture of how modality influences novice 

programmers. The major outstanding question this dissertation has yet to answer is if and how 

students’ experiences in these three introductory programming environments impact their early 

Java learning. This question will be answered in the next and final analysis chapter in this 

dissertation.  
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8. Transitioning to Java 

 One of the over-arching goals of this dissertation is to understand the role of modality in 

introductory environments in terms of if and how it prepares learners for later computer science 

learning opportunities. Put more concretely, do blocks-based programming environments 

effectively prepare learners for later text-based programming? And how does the blocks-based 

modality compare to isomorphic text and hybrid blocks/text interfaces with respect to 

preparation for future computer science learning? This chapter presents data and analysis 

towards answering these questions. Understanding this is consequential as many uses of blocks-

based tools in formal educational contexts presuppose that such tools will help prepare students 

for later instruction in text based languages. However, little empirical work supports this 

position, and as one of the students in this study said during an interview: “I can guarantee that 

the transition between languages will be hard to do.” 

This chapter begins with an analysis of student responses to questions from the Mid and 

Post attitudinal surveys which investigate learners’ experiences working in either a blocks-based, 

text-based, or hybrid blocks/text interface, specifically focusing on if students found that 

experience to be useful preparation for Java. As part of this analysis details about what was 

learned in the introductory portion of the class that transferred to Java are investigated by 

condition, trying to identify the strengths of each. Throughout this section, the results are 

supplemented with data from interviews conducted with students from all three conditions. The 

next portion of this chapter looks at how attitudes towards and perceptions of programming 

shifted between the end of the introductory five-week curriculum and the end of the study ten 

weeks later. This work sheds light on how perceptions shifted after working in Java. The final 

section of this chapter looks at programming practices developed and the successes of students 
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from the three conditions in their early Java programming assignments. This final section 

uses the programs written by students in the first ten weeks of the Java portion of the class to 

understand the lasting impact the various modalities had on students programming ability. The 

chapter concludes with a discussion of these various analyses, tying them together to paint a 

larger picture of students’ transitions from the three modalities used in the introductory portion 

of the study to Java. 

Perceptions of Introductory Programming Environments as a Preparation for Java 

 In this section, interviews and survey responses are analyzed to try and understand how 

students viewed their experiences using the different modalities with respect to the transition to 

Java. The section starts with data from the Mid and Post interviews, supplementing these data 

with excerpts from interviews conducted with students at the midpoint and conclusion of the 

study. The first analysis of this section investigates whether or not students themselves found the 

experience of working with Pencil.cc useful for preparing them from later Java learning. This 

analysis begins with students’ responses to the 10-point Likert question asking them on the Mid 

survey “What I learned with Pencil.cc will help me learn Java” and then on the Post survey: 

“What I learned in Pencil.cc has helped me in Java.” In both cases, a higher value means stronger 

agreement with the statement. It is important to remember, when asked about Pencil.cc, students 

from each condition envision a programming environment with a different modality, so when 

students in the Blocks condition think about Pencil.cc, they are thinking about a blocks-based 

programming environment41. Student responses to this question by condition are shown in Figure 

 
41 This question asks about Pencil.cc as opposed to a specific modality because students do not 
necessarily know that there are multiple versions of Pencil.cc. There is possible conflation 
between modality and non-modality-related features of Pencil.cc, but as all non-modality 
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8.1. Please note the y-axis in the chart does not start at zero, this was done to make the trends 

clearer. 

 
Figure 8.1. Student responses to whether or not they thought their time spent working in 
Pencil.cc was helpful for learning Java.  
 
 On this question, the average Mid survey response was 7.5(SD = 1.7) and the average 

post survey response was 6.8 (SD = 2.2), showing that students collectively agreed with the 

prompt that the introductory tools were helpful, but did not do so in a particularly strong manner. 

Between the Mid and Post administration, all three conditions show a negative slope, meaning 

that after working in Java for 10 weeks, students viewed what they had done during the first five 

weeks of school as less useful than they had before the Java portion of the study. Overall, the 

average score on the Mid survey was higher than the post survey (Z = 1217.5, p = .00 running a 

Wilcoxon signed ranks test on normalized z-scores). The changes between the Mid and Post 

 
features of Pencil.cc are shared by all three conditions, these differences would not account for 
the emerging differences observed. 
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surveys were also significant for the Text condition (Z = 147, p = .00) and the Block 

condition (Z = 149, p = .01). Only the Hybrid condition failed to reach statistical significance (Z 

= 100, p = .86). For both the Mid and Post surveys, the responses are relatively tightly clumped 

together, thus we see no differences by condition on the Mid survey (F(2, 78) = .40, p = .67) or 

the Post survey (F(2, 80) = .43, p = .65). This means that at neither the Mid nor Post 

administration did students in the Blocks, Text, and Hybrid conditions report a significantly 

different opinion on the utility of their introductory experience relative to the other conditions. 

Due to the Hybrid condition deviating slightly from the other two condition on the Mid survey 

(slightly less helpful) and the Post survey (slightly more useful), the data show a statistically 

significant difference when looking at the change in perceptions by condition F(2, 74) = 3.38, p 

= .04. A post hoc Tukey HSD test shows a significant difference in the change in perceived 

helpfulness between the Hybrid and Text conditions (p = .04) but not between Hybrid and 

Blocks (p = .12) or Blocks and Text (.86). 

 This analysis shows that students’ perceptions of the helpfulness of the introductory 

modalities decreased over time. When comparing across the three interfaces used in the 

introductory portion, the learners in the Hybrid condition initially saw the tools as the least 

helpful, but by the Post survey, this position shifted to the point where the Hybrid modality was 

viewed as the most helpful. This is possibly explained by some of the findings given in Chapter 

4, where the Hybrid condition, being both similar enough to and sufficiently different from Java, 

was initially seen as having little in common with Java but for the links to become more clear 

after working in Java. An alternative explanation given earlier cited the potential value for 

exposing multiple modalities to the learner up front. The similarity of response values and trends 

between this question and the question of whether or not students thought Pencil.cc improved 
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their programming abilities (Figure 5.4 in Chapter 5) shows these two questions are linked in 

terms of student perceptions. This can be seen by running a validity test showing the two 

questions are getting at the same underlying belief (Cronbach’s α = .83). This is evidence 

showing that the more students’ felt they learned using a specific modality, the better prepared 

for Java they felt. This is not surprising but is another piece of data showing that students see 

similarities in what it means to program across the modalities and environments. 

 Understanding if and how Pencil.cc does or does not prepare students for transitioning to 

Java is one of the central research questions being pursued in this dissertation. As such, 

additional questions were asked on the Mid and Post surveys trying to understand exactly how 

and where students saw the utility of the introductory environments they used. These questions 

were asked using an open-ended format, giving students more freedom to express their own 

perceptions. Having laid out a high level trend on student reactions to the introductory portion of 

the course broken down by modality, the analysis next digs into specific concepts and aspects of 

the introductory portion of the course that they identified as being helpful once they transitioned 

to Java. 

Helpful Aspects of Introductory Programming Environment for Transitioning to Java 

 The idea of “helpful’ can mean many different things, so to further understand exactly 

how students found the introductory modalities to be helpful and to investigate if the type of 

perceived help it offered differed by condition, students were asked to respond to the following 

free-response prompt: “The thing I learned in Pencil.cc that will be most useful in Java is:”42. 

 
42 These charts are similar to those presented in Chapter 5 but are not the same. In chapter 5, the 
question was about student perceived differences between the introductory environments and 
Java. Here, the question looks at if/how the introductory tool was helpful for the transition to 
java. 
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Again, it is important to remember that when asking about Pencil.cc in general, the question 

will call to mind either a blocks-based, text-based, or hybrid blocks/text interface depending on 

what condition the student was in. Student responses to this question were conceptually grouped 

and are summarized in Figure 8.2. Each code is discussed in the paragraphs following the 

summative figure. Cohen’s κ was run to determine agreement and consistency of the application 

of these codes, and found there to be moderate agreement between the coders, κ = .73, all 

differences were resolved through discussion. The coding manual used to code these responses 

can be found in Appendix E. 

 
Figure 8.2. Student responses to perceived useful aspects of Pencil.cc with respect to the 
upcoming transition to the Java language. 
 

The first and most frequent feature of introductory environments cited for being useful in 

Java was the Specific Concepts code. A response was given this code anytime a student 
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responded: “I learned how to use for loops, variable referencing, functions and parameters, 
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while loops, and if statements.” Not all students mentioned all concepts, a number of students 

gave responses like “The concepts of variables and if statements” or more succinctly “functions.” 

A more detailed breakdown of the Specific Concepts category is presented later in this section.  

After Specific Concepts, the next category identified was Programming Basics, which 

includes responses that speak to general programming knowledge, as can be seen in the response 

“I learned the basic components of programming, which was a mystery to me before this class. 

Now, I will be able to apply all of this information to Java.” The Syntax and Format category 

was the next most common code and captures responses that speak directly to those two aspects 

of programming, like in the response: “That spacing, commas, and syntax matters”. The next two 

codes are related, the Process code captures students attending to the steps taken to write a 

program including decomposing the problem, designing an algorithm, and then the steps required 

to execute the stated plan, which can be seen in responses like: “The process of planning the 

right steps in order to make your program run the way you want it to.” The Order and Sequence 

code was applied to responses that talked about how programs run or attended to the relationship 

between consecutive commands, like the response: “Coding runs from the top to the bottom”. 

The Concepts Beyond Programming code captures students attending to important knowledge 

that is relevant for programming but that is not specifically about programming, including things 

like problem solving and being organized. The final code is for students who responded that they 

did not know how the introductory tool would be useful for their upcoming Java work. 

The first thing to note about these responses is the overwhelming frequency of students 

attending to specific concepts as being helpful. This suggests that the most direct relationship 

students expected between the introductory tools and Java was conceptual; that concepts 

encountered, like variables and functions, would be useful for their work in Java. This sentiment 
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was also captured during the interviews; for example, one student from the Blocks condition 

described the introductory environment as being “like a stepping stone. It reminds you about 

assigning variables and…different methods and assigning each class and functions. Because 

every code, well, every program has functions, has code, has variables…so it kind of helps us 

wrap us around that idea of being organized and the concepts”. In other words, the introductory 

environment covers the same concepts, but in a way that is easier to understand. The fact that 

this category was the most frequently cited for all three conditions suggests that modality was 

not a deterrent for seeing the conceptual similarities between introductory and professional 

programming environments. 

A second interesting trend is the general similarity in responses of the Text and Hybrid 

conditions compared to the Blocks condition. This can be seen in the Programming Basics, 

Process, Order & sequence, Meta Programming Concepts, and Not Sure categories. This pattern 

matches the findings in the perceived differences analysis in Chapter 5 and Chapter 6’s findings 

on conceptual learning showing that in certain contexts the Hybrid condition was found to be 

more similar to the Text condition than the Blocks. The two categories where the Hybrid and 

Text conditions outnumber the Blocks responses, Process and Order and Sequence, reveal 

something about the difference in utility across the modalities. The fact that no Blocks students 

attended to Process while six students across the other two conditions did, suggests that the text 

manipulation aspects of the Text and Hybrid forms of Pencil.cc helped students see procedural 

similarities between writing programs in different environments. For example, one student in the 

Hybrid condition responded: “The understanding of what you want your program to do. By 

knowing the step by step process of what you want, you will be actually able to know how the 

program works.” Nothing in this response, at the surface level, seems coupled with modality, but 
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nonetheless, no Blocks students seemed to attend to these procedural dimensions of 

programming on the mid survey. One potential explanation draws on the authenticity finding 

identified in Chapter 4 as contributing to the potential transfer of procedural strategies as the 

Hybrid and Text environments were viewed as more similar to “real programming.”  

After working in Java for 10 weeks, students were again asked this same question on the 

Post survey, with the tense changed from future to past. Figure 8.3 shows student responses at 

this point in time. Cohen’s κ was run to determine agreement and consistency of the application 

of these codes, and found there to be moderate agreement between the coders, κ = .63, all 

differences were resolved through discussion. 

 
Figure 8.3. Student responses to a question on the useful aspects of Pencil.cc and the modality it 
used after working in the Java language for 10 weeks. 
 
 The first that stands out in this Figure compared to the analysis of the Mid responses is 

the frequency of Blocks students citing Order & Sequence on the post survey relative to the Text 

& Hybrid conditions. This is especially interesting given the fact that no students in the Blocks 

condition predicted this would be the case on the Mid survey. This suggests that a strength of the 
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Blocks modality is that it makes clear to the learner the order in which commands execute 

and that this feature only becomes salient after the transition to the textual modality. A similar 

pattern can be seen in the change in the Process category, where Text and Hybrid decreased and 

Blocks increased, suggesting that features less tightly coupled to the modality grew in perceived 

helpfulness in the Blocks condition.  

 This Mid to Post comparison is interesting in that it sheds light on the differences 

between what students thought would be useful and what they claimed to be useful across 

conditions. The growth in the frequency of Order & Sequence being cited by Blocks students 

combined with a decrease in Syntax & Formatting is evidence towards what features of the 

blocks-based modality are useful in the transition to Java. Namely, that making explicit order is 

clear and helpful, while syntactic features of the blocks-based interface are not so useful. 

Likewise, the high counts of responses in the Specific Concepts category in both the Mid and 

Post show that students can recognize the conceptual similarities across the transition of 

modalities and environments.  

Given the high frequency of responses in the Specific Concepts category and the fact that 

it is comprised of many constituent concepts, we next tease apart that category to better 

understand what concepts were actually cited by name in the responses. Table 8.1 shows the 

frequency that students cited the four concepts covered in the opening five-week curriculum. 

Table 8.1. Student responses to the concepts perceived to be most useful for Java that were 
learned in Pencil.cc. 

 Functions & 
Parameters 

Variables Iterative Logic Conditional 
Logic 

Mod.         Time Mid Post Mid Post Mid Post Mid Post 
Blocks 10 2 4 8 3 0 6 1 
Hybrid 8 0 5 9 7 0 3 1 
Text 11 1 6 16 8 1 6 2 



 276 
Total 29 3 15 33 18 1 15 4 

 
 There are a few things to note in this table. First, looking only at the Mid responses, 

students mentioned Functions & Parameters in their concept responses significantly more 

frequently than other concepts (29 times, compared to 15, 18, and 15 for the other three concept 

areas). Doing this same comparison for Post responses, we see an overwhelming focus on 

Variables (33) compared to the other three concepts (3, 1, and 4). This is most likely explained 

by the fact that the first concept covered in the Java portion of the class was variables and 

Input/Output, so this increased attention on variables is not especially surprising. Functions was 

the last topic covered in the introductory curriculum, which suggests there may be a recency bias 

in the responses. The last thing to note in this table is the relative lack of variance across the 

three conditions. For each concept, looking down the columns, the numbers are relatively 

consistent, suggesting that the modality did not significantly influence student responses with 

respect to what concepts were cited. The one exception is Iterative Logic, where only 3 Blocks 

students cited it compared to 7 and 8 in Hybrid and Text students respectively. This is slightly 

surprising as the ease of loops is often cited as a strength of blocks-based programming 

languages, although other research shows that it does not support deeper conceptual 

understanding, a finding discussed in the Chapter 6. A possible explanation for the greater 

frequency of iterative logic for the textual conditions could be that the need to remember 

particularities of syntax made the concept more salient to the learner.  

Perceptual Outcomes Discussion 

Two interesting findings stand out from the analysis of students’ perceptions of the three 

introductory modalities with respect to their utility for learning Java. First was how the Hybrid 

condition faired relative to the other two. Students in the Hybrid condition initially viewed the 
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Hybrid condition to be the least helpful relative to how students in the Blocks and Text 

conditions responded. However, after working in Java for 10 weeks, the students in the Hybrid 

condition saw that experience as the most helpful relative to the other two modalities. This trend 

stands out from most of the other trends in this dissertation, where the Hybrid condition is 

aligned with either the Blocks or the Text students. Here however, the Blocks and Text 

conditions are similar with the Hybrid environment serving as the outlier. This could be one 

place that Hybrid is not acting as a best-of-both-worlds tool, but instead is a case where the 

whole is greater than the sum of the parts. In other words, the Hybrid interface is contributing 

more than either modality it is built on can individually. One potential explanation for this is the 

fact that the Hybrid condition is the only one where students see code represented in more than 

one way, which can help lead students to the perspective that not all programming interfaces or 

languages are the same. This view, coupled with the scaffolds of the blocks-based features and 

the authenticity of the textual canvas collectively could explain this positive outcome for the 

Hybrid condition. 

The second finding that stands out from this analysis is the emergence of students in the 

Blocks condition citing order and sequence as being something learned in the introductory tool 

that was helpful in Java. Before working in Java, no students in the Blocks condition cited this 

reason. Afterward, a third of students cited this as being something they learned in the Blocks 

modality that was helpful in Java. The novices’ ability to focus their attention on order and how 

programs fit together instead of syntax or other mechanistic distractions is cited as one of the 

conceptual strengths and learning benefits of the blocks-based approach to programming 

(Maloney et al., 2010). These claims are often made without data from learners to support it. 
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This finding suggests that indeed, the blocks-based modality is effective for helping learners 

understand the role that order and sequencing play in the practice of programming. 

Changes in Attitudes and Perception in Java 

 Part of understanding and evaluating the lasting impact of working in different modalities 

during the introductory portion of the course is investigating how the attitudes and perceptions of 

programming that formed during their use persisted or changed as students moved on to Java. 

This section is a continuation of the analysis presented in Chapter 5 that looked at students’ 

attitudes and perceptions of programming. Whereas that previous analysis looked at student 

responses from the Pre and Mid surveys and the changes between them, this section looks at 

shifts from the Mid to the Post survey. While each of the diagrams in this section show the 

trajectory over the full 15 weeks of the study, the analysis starts by looking specifically at the 

Java portion of the study, before incorporating findings from the earlier analysis to paint a larger 

picture of students’ trajectories over the 15 weeks. The charts in this section are the same as 

those shown in Chapter 5. Note, the charts do not start at zero on the y-axis and do not all cover 

the same portion of the 10-point Likert scale, but are on the same scale. This means it is safe to 

compare changes (slopes) across the charts, but not absolute values or vertical position. 

Confidence in Programming Ability 

The first attitudinal dimension discussed is students’ perceived confidence in their own 

programming ability. As a reminder from the earlier discussion of this topic, the aggregate 

confidence scores is the average of the two Likert statements: I will be good at programming (or 

I am good at programming on the Post test) and I will do well in this course. The aggregated 

confidence measure at the Pre, Mid and Post points in time are shown in Figure 8.4. 
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Figure 8.4. Calculated levels of students’ confidence in programing at three points in the study. 
 
 The mean confidence scores on the Pre (8.11, SD = 1.47), Mid (8.19, SD = 1.67), and 

Post (8.00, SD = 1.86) surveys show a relatively minor downward trajectory between the Mid 

and Post and Pre and Post surveys, meaning students’ confidence in their programming ability 

decreased over the 15 weeks. The decrease from Mid to Post survey was not significant when 

grouping the three conditions together (Z = 945, p = .14). As previously reported, there was no 

difference between the three conditions at the Mid point (F(2, 74) = .10, p = .90), nor was there a 

significant difference on the Post survey (F(2, 80) = 2.07, p = .13), although the numbers were 

trending in that direction. An analysis of the changes between Mid and Post for each of the three 

conditions also fails to return a significant result (F(2, 74) =  1.11, p = .33). Collectively, this 

means there was not a significant difference across the three conditions, although the trends 

suggest that with more statistical power, a difference may emerge. 

 Looking at changes within groups, we see some moderate significance emerge in the 

Blocks condition (Z =55.5, p = .10), but not in the Hybrid (Z = 58.5, p = .64) or Text (Z = 94, p = 

.69) numbers. In the case of the Blocks condition, the results show students’ confidence in their 

7.64	
8.11	

7.45	

8.48	 8.31	

8.28	8.18	 8.14	

8.33	

6.50	

7.00	

7.50	

8.00	

8.50	

9.00	

9.50	

Pre	Survey	 Mid	Survey	 Post	Survey	

M
ea
n	
Ag

gr
ea
te
	L
ik
er
t	S

co
re
	

Aggregate	Confidence	Score	

Blocks	

Hybrid	

Text	



 280 
programming ability decrease, showing that after working in Java, their overall confidence in 

their programming ability decreased relative to where it was after working in the blocks-based 

interface of Pencil.cc. From the beginning to the end of the study, none of the three conditions 

show a meaningful change in their programming confidence (Blocks: Z = 158.5, p = .82, Hybrid: 

Z = 61, p = .48, Text: Z = 130, p = .82). Taken at this level, the data leads one to conclude that 

the modality did not have an impact on students’ confidence, however this conclusion misses the 

interesting trajectory followed by the Blocks condition. 

 The Blocks condition saw a significant improvement in their confidence after five weeks 

in Pencil.cc, followed by a decrease after ten weeks working in Java. At a surface level, this 

suggests that students thought Blocks was improving their programming, then, revising this 

impression after working in Java. There are a number of possible explanations for this. One is 

that students thought they had become better programmers after working in Blocks, which could 

explain the increase, however, data presented in Figure 5.4 in Chapter 5 on whether or not the 

different modalities had made the students better programmers, does not support this 

explanation, as Blocks students didn’t show a different outcome than the other two conditions. A 

second possible explanation that is supported by the data draws from findings from the 

conceptual outcomes chapter showing that students in the Blocks condition performed the best 

on the Mid content assessments. This performance potentially explains this improvement, as 

students answering questions correctly would lead to them feeling more confident in their ability. 

However, this explanation does not fully hold up, as students in the Blocks condition also scored 

highest on the Post survey, at the same time point as they are reporting a decreased confidence. 

The increase in confidence for students working in a blocks-based interface could explain other 

findings showing an increased retention for students using these types of graphical tools in their 
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first computer science course (Cliburn, 2008; Johnsgard & McDonald, 2008), but does 

potentially call into question the effectiveness of such an approach for preparing students for 

future learning of computer science as the gains with respect to confidence do not persist. 

Enjoyment of Programming 

 The second attitudinal dimension included on the survey was to understand if students 

enjoyed programming and if so, how it differed by condition both during their time using the 

introductory tools and their time in Java. The aggregate enjoyment score is a composite of 

responses to the following three questions: I like programming, Programming is Fun, and I am 

excited about this course. Figure 8.5 shows the average aggregate enjoyment score by student 

across the three surveys. 

 
Figure 8.5. Calculated levels of students’ enjoyment of programming by condition at three 
points in the study.  
 
 Between the Mid and Post surveys, there are no statistically significant changes, this 
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.76, p = .47). Likewise, a within-group Wilcoxon signed rank test does not reveal any 

significant changes between Mid and Post within condition (Blocks: Z = 38, p = .22; Hybrid: Z = 

96.5, p = .97; Text:  Z = 83, p = .93). Qualitatively, the graphs show trends that would match 

expectations, namely that the Blocks condition sees a decrease in their enjoyment of 

programming while the Text condition sees their enjoyment increase. However, the relatively 

minor changes do not allow for stronger claims to be made. The main take away from these 

numbers, like with the Pre to Mid analysis, is that modality seems to have little effect on student 

enjoyment of programming, which is both true when using the modality as well as after leaving 

the modality behind and transitioning to a more conventional text-based programming language. 

 The choice to use aggregated enjoyment scores provides a more reliable measure of the 

underlying attitudinal aspect being measured, but also potentially masks some more nuanced 

perspectives the students may hold and mute some trends in the data. This can be seen by 

looking at some of the underlying enjoyment measures. For example, looking at the responses to 

the “Programming is Fun” Likert question (Figure 8.6a) and “I am Excited About this Course” 

question (Figure 8.6b) side-by-side reveals additional insight into how the Hybrid condition is 

viewed relative to the two others. 

  
(a) (b) 

Figure 8.6. Average student responses to the Likert prompt Programming is Fun (a) and I am 
Excited about this Course (b) grouped by condition. 
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 What is interesting about these two sets of responses is that, in the Programming is Fun 

chart, the Hybrid condition’s path is similar to that of the Blocks condition, where it increases 

from Pre to Mid, then decreases from Mid to Post, while the Text condition has the inverse 

trends. However, on the second chart, I am Excited about this Course, the opposite is true; the 

Hybrid condition is more similar to the Text condition, showing a negative slope from Pre to 

Mid that is closer to the Text condition, then seeing that slope shift positive in the Mid to Post 

time period. There are a few things that can be gleaned from this. First, this provides evidence 

that the design of the Hybrid condition was successful in finding a space between the textual and 

graphical interfaces. Second, this shows that modality affects different aspects of students’ 

impressions in different ways.  

Programming is Hard 

 The question asking if students found programming to be difficult is the third attitudinal 

dimension being investigated. Figure 8.7 below shows the average student responses to this 

question by condition. 
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Figure 8.7. Average responses to the Likert statement: Programming is Hard. 
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difference remains. In other words, the shift to Java did not affect those difficulty perceptions 

that formed in using the introductory environments.  

Interest in Future CS 

The final attitudinal survey question presented in this analysis inquires after students’ 

interest in pursuing future computer science learning opportunities. It asked students to give a 

response on a 10-point Likert scale to the prompt: I Plan on Taking More Computer Science 

Courses after this One. Student responses at all three points in time, grouped by condition are 

shown in Figure 8.8. 

 

 
Figure 8.8. Average responses to the Likert statement: I plan to take more computer science 
courses after this one, grouped by condition. 
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changed; Blocks students were less interested in future computer science courses, while Text 

and Hybrid students’ interest increased. The difference in the three conditions at the Post survey 

did not reach statistical significance (F(2, 80) = .32, p = .72), nor did the difference in the deltas 

across the three conditions (F(2, 74) = 1.03, p = .36), despite the opposite signs of the slopes. 

Looking within each condition by running a Wilcoxon signed rank test does not find significant 

changes for any of the three conditions (Blocks: Z = 26, p = .32; Hybrid: Z = 99.5, p = .87; Text:  

Z = 82.5, p = .21). These data suggest that the introductory language does influence students’ 

likelihood of wanting to take another computer science class after they have transitioned, but not 

at a statistically significant level (with the power available in this study).  

Attitudinal Changes Discussion 

The analysis of students attitudes relied largely on the Pre, Mid, and Post surveys 

administered, using statistical methodologies to identify how and where attitudes differed over 

time and across conditions. Taken collectively, looking across all four of the attitudinal 

dimensions pursued, we see little significant effect of the transition to Java in changing student 

attitudes or perceptions. This lack of significance is in part due to the relatively weak statistical 

power of the study design due to the number of students in each condition and the three-way 

comparisons. With that being said, there are some noteworthy trends. Foremost among them is 

the fact that students in the Blocks condition showed a negative trend in all four of the categories 

they were asked about on the Post survey relative to their responses on the Mid survey. At the 

same time, for both Text and Hybrid, on three of the four dimensions, attitudes improved over 

the time spent working in Java, suggesting an opposite trend, that the move to Java improved 

students overall attitudes and perceptions of programming. In other words, students in the Text 

and Hybrid conditions saw their attitudes improve over the ten weeks of working in Java, while 
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students in the Blocks condition saw the opposite effect. These trends suggest that there are 

potential consequences to the decision of what language you choose to start with. For example, if 

a computer science sequence is setup so that in the first class students only use an introductory 

language and in the second class students use a professional text-based language, then these data 

would recommend using a blocks-based language, as students likelihood of taking future courses 

after using the introductory language was highest in that condition. However, if the course is 

setup such that students start with an introductory language and then transition to a professional 

language as part of the same course, then the decision of introductory modality is less important 

as student opinions are not different after the transition has occurred. 

A second interesting trend to notice across the four categories is the frequency of slopes 

inverting between the two time periods. When the changes were positive between the Pre and 

Mid surveys, they often became negative from Mid to Post, and vice versa. This potentially reads 

as a sort of dampening effect, where the introductory environment pushes learners out towards 

some (relative) extreme and then the shift to Java brings that dimension of the learners’ attitude 

or perception back towards their initial position. The trend was followed on nine of the 12 

individual trend lines mapped in the four aggregated figures. While this characteristic is shared 

across the three conditions of the study, the order of the slopes (increase then decreases or vice-

versa) differs by modality. On all four charts, the Blocks condition peaks on the Mid survey, then 

declines afterwards. The Text condition has the opposite trajectory (decrease then increase) on 

three of the four categories. The Hybrid condition only changes slopes once across the three 

categories, twice having a positive slope for both time segments and once having a negative 

slope. The larger interpretation of this finding will be revisited as part of the overall discussion at 

the conclusion of this chapter. 
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Differences in Java Programs 

Along with interviews and written surveys, all of the programs that students authored 

throughout the fifteen-week study were collected. For the Java portion of the study, each student 

computer was instrumented so that a call to compile a program would send a copy of that 

program, along with the complier output to a remote server controlled by the researcher. In this 

way, every student program authored and every run of the program was logged. This section digs 

into this data to try and understand if there were different patterns in programming practices or 

varying frequencies of errors and successes across the three conditions. This section begins by 

looking at frequency of compilations and levels of successes and continues with an analysis 

looking at the types of error encountered and if they differed by introductory modality. 

Collectively, this analysis adds another dimension to the picture that is being filled in around 

how introductory modality informs later programming experiences.  

Frequency of Compilations Over Time 

 The first programming practice investigated was to see if there were differences across 

the three conditions with respect to how often students attempted to run their programs. As a 

reminder, in this class, students run their programs by calling the javac command from the 

terminal. This form of compiling and running of programs is different than many introductory 

programming classes, which use development environments that provide built-in compilation 

support (like clicking a button to compile). As discussed in Chapter 3, this approach was an 

intentional pedagogically-driven decision made by the teacher. As was shown in the previous 

chapter, there were differences across the three conditions using the introductory tools with 

respect to how often students ran their programs (Figure 7.7), so here we look to see if those 

differences persisted. Students in the Blocks condition ran the javac command an average of 
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142.3 times (SD = 67.1), the same value for the Text conditions was 130.9 (SD = 61.1) and 

150.9 (SD = 79.2) for the Hybrid Condition. These numbers are not statistically significant (F(2, 

80) = .594, p = .55), meaning in aggregate, there was no difference in the number of calls to 

javac based on the modality students used in the first five weeks of the school year. These 

numbers are visually depicted in Figure 8.9, which shows the average number of compilations 

for each student across the three conditions by week43,44. This chart includes both successful 

compilations as well as calls the resulted in an error. 

 
Figure 8.9. The average number of compilations of Java programs by student by week. 
 

Although none of the differences between the three conditions reach statistical 

significance, this chart does start to show some patterns. First, in six of the eight weeks, the 

Hybrid condition had the most calls to compile, while the Text condition had the fewest number 

 
43 Unless otherwise specified, all charts in this section show per-student averages to control for 
the fact that not all classes had the same number of students. 
44 The chart starts at week two of the Java unit as no calls to compile happened during the first 
week of the Java unit, largely due to other non-Java related activities, like administering the 
attitudinal and content assessments, getting Java development environments setup and presenting 
final projects from the first portion of the course.  
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of calls in the same number of weeks (six out of the eight covered). Second, for the most 

part, there was roughly the same number of compilations that happened per week. Running an 

ANOVA calculation on each week of Figure 8.9 finds no week to have a significant difference in 

the number of runs by previous modality (week 4 comes the closest with F(2, 77) = 1.79, p = 

0.17). This chart suggests that the introductory modality had relatively little effect on how often 

students attempted to run their programs.  

The chart shows some unexpected trends comparing week to week, like the dip in week 6 

followed by the spike in week 7. This is in part due to one of the challenges of doing research in 

schools: the unpredictability of the school calendar and the number of days that students are not 

in the classroom or are not working on what one might expect. Week 6 of the study was 

Thanksgiving week, so those numbers are lower than they otherwise might be because students 

were only in class 3 days that week. Students also missed two days of classes in week 4 and one 

day in week 5. This explains some of the fluctuations. The same data from the figure above is 

presented again in Figure 8.10, this time showing the average number of runs per student per day 

in class. The relationship between conditions is the same across these two figures, but this 

updated figure below gives a better sense of the activity by week.  
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Figure 8.10. The average number of javac calls per student per day grouped by week. 
 
 The above Figure still shows spikes (like weeks 4 and 7) and dips (like in weeks 5, 8, and 

9), although now, these are explained by how the teacher chose to spend class time as opposed to 

external factors (like school holidays). For example, in week 7, students were introduced to the 

char variable type through an assignment where they were asked to write a short program, then 

try and run it with different values to see what would happen. As a result, there was a spike in 

week 7 as these types of assignments (that would have student call javac over and over again) 

were not the norm. Other assignment related trends are discussed later in this section.  

So far, the charts shown in this section have included all calls to javac, grouping 

together both successful compilations as well as calls to the compiler that produced errors. We 

now tease apart these two outcomes to see if students were differentially successful or error 

prone based on the modality used in the introductory portion of the course. Figure 8.11 uses the 

same data as the two previous charts, but now only includes successful compilations.  
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Figure 8.11. Average number of successful compilations by condition. 
 
 The pattern in this chart largely matches the data from the previous charts. The Text 

condition frequently had the lowest average number of successful compilations per student, 

while students who had worked in the Hybrid version of Pencil.cc showed the highest number of 

successful compilations. Since the students were all working on the same assignments in the 

same programming environment, the slight differences in successful runs does suggest 

something about programming practice. The higher frequency of the Block and Hybrid students 
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although the magnitude of this difference is relatively small, and seems to start to fade by the end 

of the study. There are a number of possible explanations for this. One explanation could be that 

students in these conditions were more likely to compile their program at intermediate steps 

along the way. In other words, as they were writing their program, they would check to see if the 

portion they had written was correct before continuing with the next portion. A second 
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again), thus inflating their successful compilation counts.  A final explanation is as simple as 

the fact that students in the Text condition did not call javac as often as students in the other two 

classes. In the following paragraphs, we explore these different potential explanations. 

 To identify the cause of these trends, we can look at consecutive successful javac calls 

for the students participating in the study and focus on the size of the changes students made 

between them. This analysis only looks at successful runs and does not consider how many failed 

javac calls might have taken place between them. The intention with this investigation is to 

understand the incremental nature of the programming approach taken by students from the three 

conditions and to see if different development practices can be found. To measure the distance 

between two programs, we use the Levenshtein distance between the texts of the two programs. 

Levenshtein distance captures the minimum number of single-character edits (i.e. insertions, 

deletions or substitutions) required to change one string into the other. Table 8.2 shows the 

results of this analysis. The columns capture the size of the Levenshtein distance between two 

consecutive successful programs, while the cells show the average number of compiles of that 

distance per student. The lower the number, the less often a program with that distance from the 

previous successful compilation was run by that student. For example, the left-most column of 

numbers shows that, on average, students in the Blocks condition complied a program that was 

identical to the last program they compiled 7.00 times over the course of the 10 weeks, while the 

Hybrid condition recompiled programs an average of 7.40 times and the Text condition only did 

this 6.16 times.  

Table 8.2. The frequency of successful compilations with a given Levenshtein distance from the 
last successful compilation of the same program. 

 
Levenshtein Distance 
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Blocks 7.00 3.37 5.70 1.33 2.37 4.30 3.52 6.56 3.33 
Hybrid 7.40 3.68 5.88 1.84 2.60 4.64 4.72 6.48 3.76 
Text 6.16 3.00 5.58 1.23 2.13 3.77 3.48 5.87 2.55 

 
Table 8.2 shows that students in the Text condition made fewer small changes to their 

programs, fewer large changes to their program, and also re-ran their programs without making 

any changes less often than the two conditions. In other words, the Text condition had fewer 

successful runs than the other two conditions. The data does not show that these fewer 

compilations are a result of them making larger sets of changes between runs, thus ruling out that 

explanation for the fewer number of successful runs. There is some evidence for the difference in 

number of runs coming from the students in the Text condition rerunning their programs less 

often and making fewer calls after modifying only a few characters in their program, but these 

differences are not so large as to convincingly explain the larger trend. These numbers tell the 

same story as Figures (Figure 8.9) and (Figure 8.10), both of which show the Text group to have 

called javac least often. The most likely explanation for this is that students who used the text-

only modality in the first five weeks of the course are slower to author programs in Java, but this 

study did not collect keystroke data, which is the data source needed to provide strong evidence 

for this outcome. 

 Figure 8.9, which shows all compilations, includes both successful compilations, as well 

as compilations that resulted in errors. Figure 8.12 below shows the average number of javac 

calls the produced an error broken down by week. All of the errors captured at this point were 

compile time errors, meaning the program violated some syntactical requirement of the Java 

language (e.g. a missing semicolon or misspelled keyword). This is in contrast to runtime errors, 

which only emerge once the program is run. An analysis was done looking for runtime errors in 

the programs collected, but no runtime errors were detected. This is largely due to the types of 
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programs written, which did not include constructs that are the most frequent culprits of 

runtime errors (e.g. array indexing and divide-by-zero calculations). 

 
Figure 8.12. The average number of compilation calls that resulted in at least one error, grouped 
by condition and week. 
 
 The pattern in this figure roughly matches that of the previous two, with the Text 

condition again having the lowest numbers, but we see three weeks where the conditions split, 

(weeks 4, 5 and 7). Whereas with the successful compilations we can gain insight into the 

programming practices by looking at the nature of the changes made between runs, with the 

errors we have additional information in the form of the type of error that was detected. This 

information can be used to further understand and explain this graph. The next section starts to 

explore the patterns of errors observed in this data.  

Before digging into the nature of the errors, the last chart we present in this section, 

Figure 8.13, shows the ratio of successful to unsuccessful javac calls over the ten weeks of the 

Java portion of this study. This chart controls for the overall number of compilations so rules out 

that explanation for the less successful number of compilations in the Text condition. 
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Figure 8.13. The percentage of syntactically correct calls to javac by condition. 
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a commonly used feature of Pencil.cc, namely, that students can have their turtles ‘wear’ an 

image by passing a URL into the wear command. This assignment is the closest to any of the 

turtle geometry or visual assignments given in Pencil.cc. Given this fact, it seems reasonable to 

expect that students who fared better in Pencil.cc may perform better on this assignment, which 

is indeed what happened.  

Week 8 again sees students from the three conditions experiencing different levels of 

success with respect to successful compilation rates. This time, however, the Blocks condition is 

the least successful of the three conditions, with the Hybrid condition having the highest success 

and the Text condition being in the middle. Week 8 saw the introduction of input into Java 

programs using the Scanner class. Interestingly, whereas week 5 had the Blocks students excel 

when working on a program related to displaying images, in week 8 they appear to struggle to 

write syntactically correct programs when the assignment is based on taking input from the user. 

All students had read in data from a user as it was part of the Pencil.cc curriculum but the syntax 

they used was very different than what was required in this part of the course. A possible 

explanation for the poorer performance of students in the Blocks condition is that students from 

the Text and Hybrid had a more comfort writing text-based programs to handle user input, and 

thus more quickly were able to author syntactically correct programs. An investigation into the 

outliers previously mentioned in weeks 3 and 4 revealed no clear link between the assignment 

and the frequency of errors. Having looked at aggregated and temporal error patterns for this 

portion of the study, in the next section, attention turns away from whether an error occurred and 

towards what type of error it was, in hopes of linking features of the modality to early Java error 

and programming patterns. 

Types and Frequencies of Java Errors  
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 The last figure shown in the previous section charted the frequency of students’ errors 

as they advanced in Java. This gives us some sense of how students were faring in Java, but does 

not provide insight into the types of errors they were making. In this section, we dig further into 

this information, trying to understand the nature of errors that were being made to see if any 

patterns could be attributed back to the introductory modality students used. As a reminder, 

every time a student makes a call to javac (the Java compilation command) the logging system 

put in place makes a record for the call that includes who the student was, what he or she typed 

in (usually the name of the program, but also any arguments provided), the contents of the 

program, as well as all errors reported by the Java compiler. The first step in this process is to try 

and normalize and categorize each error captured by the logging system. The plurality of 

compilation errors produced by the Java compiler has been documented as both a source of 

difficulty for novices (Nienaltowski et al., 2008; Traver, 2010) as well as an opportunity for 

improving introductory programming environments (T. Flowers, Carver, & Jackson, 2004; 

Hristova, Misra, Rutter, & Mercuri, 2003). 

 Before looking at frequency of specific types of errors, we first look at some overall 

frequency numbers, trying to understand if there are differences in total number of failing calls to 

javac by student, the average number of errors per student (since there can be more than one 

error per program), and the number of errors per compilation by student. Table 8.3 shows these 

high-level descriptive patterns. 

Table 8.3. High-level descriptive patterns of failing compilations and errors. 

 Failing javac calls per 
student 

Compilation errors 
per student 

Compilation errors per 
failing javac call 

Blocks 75.11 165.78 2.23 
Hybrid 80.04 212.04 2.5 

Text 69.55 164.26 2.21 
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Looking at this table, we see a pattern similar to that shown in the previous section. The Hybrid 

condition had the highest average number of javac calls that retuned a compilation error per 

student. Similarly, the Hybrid condition had the most number of errors per student over the 

course of the ten weeks. The far right column shows the average number of errors per javac call. 

Again, we see the students who spent the first five weeks of the course working in the Hybrid 

version of Pencil.cc had the most number of compilation errors per program. This chart shows 

relatively little difference between Blocks and Text, but shows students in the Hybrid condition 

to be relative outliers. These numbers match the figures shown in the previous section where the 

Hybrid condition was often plotted above the lines representing the Text and Blocks conditions. 

We now shift from total number of errors to the frequency of different types of errors. 

The collection and analysis of Java error messages is not without its challenges. Due to the 

process by which javac compiles programs, the compiler often does not (and at times cannot) 

provide meaningful error messages to the programmer. For instance, a missing ‘;’ could be 

described by the error message “expected ‘;’ on line 11” or by the rather generic 

error message “not a statement”. In addition, many error messages stated by the compiler 

are class specific (e.g. “Class names, 'VarRefConcate', are only accepted 

if annotation processing is explicitly requested”). In order to make the 

analysis more meaningful, errors were grouped into broadly specified error types. For example, 

the class name error above was classified as an “Incorrect javac Call” as that is the 

most common cause of that particular error. The logic used to conduct this categorization can be 

found in Appendix F. Figure 8.14 shows the 10 most frequently found errors collected by 
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compilation, grouped by condition45. The values in this chart are reported on a per-

compilation basis to control for how often students chose to compile as well as the fact that the 

three conditions did not have the same number of students.  

 
Figure 8.14. The ten most frequently encountered Java errors, grouped by condition. 
 

There are a few things to notice about this chart. Running an ANOVA calculation on 

each error, looking for statistically significant differences between the groups finds that none of 

the errors rise to the p < .05 level of significance. The two errors that come the closest are the 

two categories where the Hybrid condition is the outlier: “not a statement” (F(2, 82) = 

 
45 Note: this figure includes the top 10 errors, each of which occurred over 500 times. This cutoff 
was chosen because there was natural break in the data between this error and the next most 
common error, which occurred over 100 times less often. 
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2.26, p = .11) and “illegal character: ‘\’” (F(2, 82) = 2.54, p = .08),. These two 

categories will be discussed later in this section.  

The first thing that stands out about this figure is how often the first two errors were 

encountered relative to every other error. The most common error was: “’;’ expected”, 

which is seen when students forget to end a statement with a semi-colon, a syntactic requirement 

of Java. The second most common error: “cannot find symbol”, occurs when students try 

and use a variable before it has been defined. Neither of these errors are possible in Pencil.cc, as 

semi-colon terminators are not required and variables do not need to be defined before they are 

used (at least in most cases). While this Pencil.cc explanation seems reasonable, it is important to 

note that regardless of prior programming experience, novices frequently encounter these two 

errors. The literature shows these two mistakes to be very common, in fact, both Jadud (2005) 

and Jackson et al. (2004) identified these two mistakes as the most frequently encountered in 

their data. In this way, the findings of this analysis replicate findings documented elsewhere in 

the literature. 

Looking across the ten errors, we see that half of the ten most frequently occurring errors 

were seen least often by students in the Blocks condition. A possible explanation for this 

outcome is that, because Java code is so unlike the blocks-based modality used by the students in 

the first five weeks, they were more attentive to the specific syntax they were being forced to 

learn. Text and Hybrid students on the other hand, were already accustomed to manipulating a 

text-based language, but had used an entirely different syntax, so they may have assumed a 

higher level of similarity across the text-based languages. Another explanation for the fewer 

number of errors made by students from the Blocks condition relies on the data analyzed in 

Chapter 6, which found the Blocks-based students performed the best on the Mid assessments. 
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The explanation thus becomes, students in the Blocks condition learned the most about 

programming in the first five weeks of the course, so had the least amount of conceptual 

difficulty in the early weeks, and thus, had the fewest errors. This explanation does not 

completely hold up, as the differences in the performance on the content assessment eroded over 

the course of the ten weeks of working in Java, but that is not reflected in this data. 

As previously mentioned, the two categories that showed the largest difference between 

the introductory modalities both had the Hybrid condition as an outlier. These two errors are: 

“not a statement” and “illegal character \”. The “illegal character \” 

error was encountered frequently because early assignments asked students to include escape 

characters in their output text (which includes tabs, quotes, and backslashes). In Java, the “\” 

character is used to denote an escaped sequence. This error often occurred in cases where 

students wanted to output text, but were missing the enclosing quotes or tried to escape a 

character not inside a string to be output. In blocks-based modalities, this type of error rarely 

occurs as the keywords themselves are prefabricated (i.e. a novice cannot escape a keyword) and 

because strings are visually denoted inside slots and quotes are not needed. A possible 

explanation for the students coming from a Hybrid modality encountering this error is that they 

were used to seeing and working with commands that have the opening and closing quotes 

provided. Also they did not have the higher level of attention to detail when working in Java that 

seems to accompany the students from the Blocks condition. The other error frequently seen, 

“not a statement”, is usually the result of typing only part of a statement, leaving it 

incomplete and meaningless. One explanation for this is that, at the start of the year, Hybrid 

students did not have the predefined commands and sequences that could be dragged into their 

programs but instead gained experience in the text-based modality, so are more intrepid and less 
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cautious. In this way students had the familiarity with the modality but previously had more 

scaffolds in place to help them compose their programs. The combination of fewer scaffolds with 

less caution may explain these outcomes. Other errors in this list could be encountered as a result 

of students having this orientation of confidence without scaffolds, including “unclosed 

string literal” and “illegal start of expression”, two other errors most 

often encountered by students from the Hybrid condition. If these types of mistakes are indeed an 

outcome from working in the hybrid interface for the reasons discussed above, this would be a 

place where this specific interface is producing the worst-of-both-worlds, rather than the 

opposite, which was the intended outcome. 

A final important thing to point out about this figure is that all of the errors in the chart 

are tied to the contents of the programs students’ wrote, with the exception of one. The 

“Incorrect javac call” error is a category we created to capture the various errors 

associated with issues related to calling javac. These errors include mistyping the program file 

name, trying to compile a file that does not exist, or giving (or forgetting) arguments that do not 

match what the program expected. There is no difference in the prevalence of this error by 

introductory modality, which is not surprising given that no students were asked to do this type 

of compilation and program calling in Pencil.cc. Collectively, this analysis by error reveals some 

minor trends towards types of error by previous modality experience, but a clear link between 

types of errors and introductory modality did not emerge. These findings will be further 

discussed in the context of everything else presented in the next section of this chapter. 

Java Programs Discussion 
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 In previous chapter, programs written by students were used as a data source to try 

and understand if and how the modality students had used during the first five weeks of the 

school year influenced their early Java programming practices. The first investigation looked at 

frequency of compiling programs and the success rate of those javac calls. Overall, no obvious 

differences were observed. Students across the three groups showed similar programming 

patterns with respect to frequency of failures and successes in their calls to compile their 

programs, comparable patterns in the size of changes between successful calls to javac, and 

encountered the same types of compilation errors with roughly the same frequency. 

Even though clear differences did not emerge, there were some trends that suggest some 

difference did exist. Of the three conditions, students who had spent their first five weeks 

working in a text-based modality had the fewest number of calls to compile their programs, 

despite the same amount of time on task. This suggests that students in the Text condition took 

more time between compiles, resulting in fewer overall calls to javac relative to their peers. 

Other alternatives were explored (like Text students made larger edits between runs, or that 

students in the Text condition needed to compile their programs less frequently because they 

were more efficient and finished their programs sooner), but the data did not support these 

alternative explanations. 

 In looking at the ratio of successful to unsuccessful calls to javac, there were a few points 

where the three conditions started to vary. When assignments involved images, students with 

prior experience working in a fully blocks-based modality excelled, while those same students 

seemed to struggle on assignments related to reading in user input. The plausible explanations 

given for these two findings drew on different characteristics of the programming activity. For 

the image assignment, the visual nature of the assignment seemed the most plausible 
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explanation, while the variance for the input assignment was part of an explanation that was 

also used to explain some of the error patterns observed later. When looking at patterns in the 

types of errors observed, there were a few places where the Hybrid condition was an outlier in 

terms of seeing specific errors more frequently and, in the Blocks condition, a larger pattern of 

fewer errors. The explanation given for these has to do with students in the Blocks condition 

attending more closely to the syntactic details of Java due to how different the modality was. The 

students in the Hybrid condition were the least well suited for Java due to their prior experience 

working in a text-based modality with an introductory version of Java that had scaffolds. While 

these explanations seem reasonable, there is only weak support for them in this data, so for now 

they remain conjectures, with the hope of returning to explore them in more detail in future 

work.   

 The final discussion point from this section is less about the research questions and the 

modalities being investigated and more about the challenges associated with doing this work in 

classrooms. Trying to make sense of the data at the highest level gathered over the course of 

weeks in the classroom cannot be interpreted without considering the complex milieu of the 

classroom and the school infrastructure in which it resides. These issues can take the form of 

school holidays, differences in the types of assignments being given, and the pedagogical choices 

the teacher makes and the fact they can change from day-to-day and week-to-week. This, in 

conjunction with other challenges related to studying modality previously discussed (like the 

difficulty of separating modality from language and assignments) make it difficult to find clean 

and clear findings, but at the same time, engaging in such work is essential for answering the 

types of question being pursued in this dissertation in ecologically valid ways. 

Discussion 
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 This chapter began by looking at students’ perceptions of whether or not the 

introductory environment was useful for the eventual transition to Java and if so, what features 

were useful for that transition. The chapter then continued by looking at attitudinal shifts of 

students that occurred during their first 10 weeks of learning to program in Java. Finally, the 

chapter presented data looking at student successes in their early Java programming, using logs 

of Java programs to gain insight into if and how the modality used in the introductory 

environment helped students at the outset of their Java experience. Collectively, these analyses 

illuminate different facets of the larger question of how the modality used in an introductory 

programming environment does or does not prepare learners for the transition to a professional 

text-based programming language. A brief discussion for each of the three analyses was provided 

within each section, here, the three larger trends from these three analyses are presented and 

connections are made across them trying to pull together these three avenues of inquiry to tell the 

larger story on learners transitioning to Java. As the goal of this dissertation is to understand 

differences by modality, that is where we choose to focus in this section. 

 Across the three analyses there were as many facets of learning to program in Java that 

seemed to be affected by the introductory modality students had used as were places where 

modality seemed to make little difference. Asking students to reflect on what they found to be 

useful from the introductory environment produced largely uniform results across the three 

conditions. The exception being the emergence of students who used the blocks-only modality 

highlighting how their time using the visual programming representation helped them see the 

importance of Sequence and Order in learning to program. The investigation of programming 

practices based on the computational logs collected yielded a similar lack of difference across the 

three conditions. While some trends emerged, like the fact that students from the Text condition 
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had fewer calls to javac and that there were a number of errors more frequently 

encountered by students from the Hybrid condition, both of these findings are relatively minor 

compared to the larger potential trends that could have emerged. This suggests that the 

introductory modality used plays either no role or only a relatively minor role in shaping 

programming practices after transitioning to a professional programming language, or at least, 

modality does not differentially affect emerging practices.  

 Where differences based on modality do appear, the largest differential impact is in how 

attitudes change during the first ten weeks of working in Java. Interestingly, it appears that much 

of the influence of modality on attitudes when working in Java was shaped by the attitudes 

students held after the five weeks working in the introductory tool. As was shown in Chapter 5, 

the Blocks condition largely had the most positive effect on various dimensions of students’ 

attitudes. What this chapter found, is that student attitudes showed a negative slope for every 

dimension that was captured. At the same time, the students from the Blocks condition saw a 

relative improvement in three of the four attitudinal dimensions (with the fourth showing a 

decrease of only .03 points on a ten-point scale). One way to read these trends is that the 

different modalities used in the introductory portion had the effect of fanning out the attitudes 

(Blocks improved while Text decreased with Hybrid living in the middle) and then the shift to 

Java moves students back to being closer to the attitudes held at the outset of the study. This 

makes some sense as students coming into the course held various preconceived notions about 

what it meant to program in Java and had incoming dispositions about the activity. 

 While the framing of the discussion and analysis has focused on how the modality from 

the introductory portion of the study informed students’ experience in Java, the shift between the 

two phases of the study included more than just changing the programming language. In the 
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curriculum designed for the first five weeks of the study, care was taken to give assignments 

that would result in all of the students producing similar programs as well as opportunities for 

students to be creative and expressive, creating unique and personally meaningful programs. In 

the Java portion of the class, for a variety of reasons, the assignment become much more 

formulaic and standardized across the class, leaving less room for creativity and expression. 

Similarly, the pedagogy in the class shifted to a model that relied more heavily on direct 

instruction (either through demonstration or following examples in the textbook). This was in 

contrast to the exploratory, self-directed approach used during the introductory portion. These 

shifts in the culture of the classroom were related to the shift in modality (more heavily 

scaffolded environment can support different types of activities), but also had to do with the 

teacher taking back the reins of curriculum design from the researcher. At the same time the 

cultural shift happened, so to was there a drastic shift in the nature of the programming 

environment being used. Whereas the Pencil.cc environment provided a number of built-in 

scaffolds independent of modality, the text editor used for the Java portion of the class was 

intentionally spartan, providing no coding support to the learner. While this shift was shared for 

all students it, along with the cultural shift, provide two dimensions that confound the study 

design, which was trying to isolate language as the major difference between the two phases of 

the study. While this does not undermine any of the data, analysis, or findings presented in this 

chapter, it does suggest that more studies of a similar design need to be conducted before the 

findings in this chapter become robust enough to be responsibly applied to diverse classrooms 

and learning contexts. 

Conclusion 
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This chapter is the fourth and final analysis chapter of this dissertation and fills in the 

last remain big piece of the analytic approach taken in understanding the role of modality on 

learning. The three analyses presented in this chapter took different approaches towards 

understanding how the modality a learner uses in an introductory course impacts their experience 

and approach to programming in a professional language. In taking these different approaches to 

understand this question, this chapter shows how and where modality informs students’ 

experiences in learning to program with Java and places where little residue from the time spent 

working with different introductory modalities was found. These findings have potentially large 

implications with respect to the suitability of various introductory tools based on the larger goal 

of the learner and the educator. These implications, along with a longer summative discussion to 

capture the full breadth of the findings will be presented in the next and concluding chapter of 

this dissertation.  
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9. Discussion and Conclusion 

 The final chapter of this dissertation summarizes the work undertaken and recapitulates 

the findings presented throughout the document, providing a larger framing for the contributions 

made and the implications of what was learned. Over the previous four analysis chapters, 

different aspects of the relationship between modality and learning to program were investigated. 

In this summative chapter, I link these analyses to provide clear answers to the stated research 

questions pursued in this work. The chapter begins by restating the research questions and briefly 

describing the course pursued to answer them. The summary of the findings follows. It starts 

with a comparison of the findings from the textual and blocks-based conditions of the study and 

then brings the hybrid blocks/text condition into the story. The implications of this work follow 

and reflect on what these findings mean for pedagogy, classroom curricula, and learning 

contexts. Next is a section that serves as a discussion for the major focus of this work: the 

relationship between modality and learning to program. Finally, the limitations of the current 

study are discussed with care taken to discuss potential future work to address each of the 

limitations identified. 

Review of the Program of Research  

 This study sought to understand the relationship between modality and learning to 

program. The concept of modality is intended to capture both the design of the representation 

used as well as the types of interactions made possible by that design. In this way, modality is 

not a characteristic of a representational system in isolation, but instead captures the larger 

sphere of representation-with-actor. The domain of interest is computer science, specifically, 

novices learning to program. This area is particularly well suited for pursuing questions of 
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modality because of the diverse set of modalities used in introductory programming contexts 

and the interactive nature of working with programming languages and environments. Stated 

concretely, this dissertation pursued three sets of interrelated research questions seeking to 

understand the impact of students’ learning in blocks-based, text-based, or hybrid blocks/text 

modalities. The three sets of research questions pursued in this work are as follows: 

 

1. (a) For text-based, blocks-based, and hybrid blocks/text programming tools, what is the 

relationship between the programming modality used and learners’ perceptions of 

programming with respect to confidence, authenticity, enjoyment, and to their broader 

attitudes towards the field of computer science? (b) How does the representational 

infrastructure used affect learners’ emerging understandings of programming concepts? 

c) What programming practices do learners develop when working in each of these three 

modalities?  And, for each of these questions, how do the answers differ across blocks-

based, text-based, and hybrid blocks/text environments? 

2. (a) How do understandings and practices developed while working in different 

introductory programming modalities support or hinder the transition to conventional 

text-based programming languages? (b) How does a learner’s understanding of and 

attitudes towards programming change as learners shift from introductory environments 

to more widely used, professional programming languages? How is this different among 

text-based, blocks-based and hybrid blocks/text introductory modalities? 

3. Can we design hybrid introductory programming environments that blend features of 

blocks-based and text-based programming that effectively introduce novices to 

programming and computer science more broadly? How does such an environment 
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perform relative to blocks-based and text-based programming tools with respect to 

conceptual understanding, development of productive programming practices, and 

attitudinal, motivational, and engagement outcomes for learners? 

 

 To answer these questions, a quasi-experimental, mixed-methods study design was 

developed and executed. Three isomorphic programming environments were developed. The 

environments used the same programming language and had the same set of capabilities, but 

differed in the modality used: one environment was fully text-based, one was fully blocks-based, 

and a third presented users with a text canvas but also provided a blocks-based palette, thus 

supporting the addition of commands through a drag-and-drop mechanism as well as character-

by-character editing.  

 The study was conducted in three high school programming classes, run in the same 

room by the same teacher during three different class periods. Each class worked through the 

same curriculum using just one of the three modalities. The study began on the first day of 

school and lasted 15 weeks, the first five weeks were spent using the introductory programming 

environments, followed by ten weeks of following the students as they transitioned to Java, a 

professional text-based programming language. The strength of the study design is that it 

controls for many (but not all) of the confounding factors that make comparative classroom 

studies and studies of programming languages and modality so difficult. The study controls for 

teacher effects and curricular effects because they were held constant across the three conditions. 

Students were drawn from the same student body, which helps to control for larger school 

culture effects. To try and isolate modality from other aspects of introductory programming 

environments, the three introductory environments were built on the same platform, used the 
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same underlying programming language (CoffeeScript), provided the same capabilities in the 

same runtime, and differed only in how the commands were presented and edited. In other 

words, the environments were isomorphic with modality being the only difference. The three 

modalities are shown below in Figure 9.1. With these tools and this study design, we are able to 

answer the stated research questions in a rigorous and compelling way. 

   
(a) (b) (c) 

Figure 9.1. The Blocks (a), Text (b), and Hybrid (c) environments used in the study. 

Summary of Findings 

 This section serves as a high-level review of the finding from the four analysis chapters 

and, for the first time, draws conclusions across the full set of evidence presented. The first 

portion of this section compares the Blocks and Text conditions to make claims about modality’s 

influence on attitudes, conceptual outcomes, and programming practice, as well as if and how 

those differences inform and affect the transition to Java. The second half of this section gives a 

similar treatment to the Hybrid condition, situating it relative to the two modalities from which 

its design was drawn.  

Comparing Blocks and Text Modalities 

Blocks versus Text: The First Five Weeks 
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 In Chapter 4, students’ attitudes towards and perceptions of programming were 

investigated. The data found that, while working in the introductory modality, students using the 

blocks-based modality reported higher levels of enjoyment and a greater interest in taking future 

computer science classes than students who worked in the Text condition. Additionally, these 

students saw their confidence increase more than students in the Text modality, but this is 

partially explained by students starting with a lower level of confidence in the Blocks condition, 

resulting in students in the two classes ended with roughly the same levels of confidence after 

five weeks. No difference in enjoyment of programming was found between the Blocks and Text 

students. All of the numbers reported were in the positive half of the response range, meaning 

even with the differences, all students had self-reported positive programming experiences. 

Where the Text condition was found to be more successful than the Blocks condition at the end 

of five weeks was in students’ perceptions of the authenticity of the introductory programming 

experience. Students’ responses from the Text condition showed that those students found what 

they were doing to be more similar to what real programmers do and viewed it as more useful in 

preparing them for their upcoming transition to Java. 

 Looking at the differences in student performance on the Commutative Assessment at the 

completion of the introductory curriculum revealed a similar pattern. After controlling for prior 

knowledge, students in the Blocks condition scored significantly higher on the content 

assessment than students in the Text condition. The Blocks condition scored higher on questions 

across all three modalities (Pencil.cc Text modality, Pencil.cc Blocks modality, and Snap! 

Blocks). They also scored higher on all six of the content areas covered by the assessment 

(variables, conditional logic, iterative logic, functions, comprehension, and algorithms). Students 

were also asked to report how easy they found it to write programs that included the four 
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concepts that were the focus of the curriculum (variables, conditional logic, iterative logic, 

and functions). The Blocks condition reported that all four of the concepts were easier to use 

than students in the Text condition. Along with these aggregate outcomes, a second analysis 

looked at students’ responses to short answer questions asking for written explanations of the 

meaning and use of the main concepts of the curriculum. This analysis revealed some differences 

between the conditions, but, overall, responses were found to be more similar than different. A 

difference that did emerge was that students in the Blocks condition were more likely to see 

instances of similar concepts as distinct. For example, rather than speaking about concepts in 

general, they viewed if and if/else statements as distinct and for and while loops as 

independent. This perspective seems linked to the blocks palette and the choice of what to 

display as a distinct block and how and where things are grouped.  

 Despite these differences, the students in each condition seemed similar in their 

conceptualization of computer science ideas, with no systematic difference emerging when they 

talked about what conditional logic does or how and when functions are used. Similarly, we did 

not find a difference in frequency or types of misconception identified in students’ written 

descriptions of the concepts between the Blocks and Text conditions. This suggests that the 

Blocks and Text modalities play a relatively small role in shaping conceptual understanding of 

programming concepts. 

 This dissertation also included an analysis of the practices students developed in writing 

their programs and the types of programs they wrote. Vignettes were used to understand 

programming practices, with clear differences emerging between the two modalities. The Blocks 

modality requires students to drag-and-drop commands onto the canvas in order to assemble 

their programs, while the Text interface makes students use the keyboard and type in commands 
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character-by-character. This resulted in students using a different composition mechanism 

and produced a number of side effects. For example, the Text condition encountered syntax 

errors more frequently than the blocks condition due to the blocks modality enforcing syntax 

correctness. Similarly, the Blocks condition used the Blocks palette as an external memory aid to 

determine what was possible and used the hover-over tooltip for assistance in figuring out what 

commands were used for. In contrast, since the Text modality did not provide this information, 

students had to rely more on the Quick Reference menu to figure out what was possible in the 

language and the correct syntax to use. A second difference observed was the ease with which 

students in the Blocks condition could incrementally build up commands by dragging and 

dropping components sequentially while ignoring the components’ position in the final 

command. In other words, students could build up complex commands left-to-right, right-to-left, 

or from the inside out, in a way that was possible, but unintuitive and not observed in the Text 

modality. In this way, the Blocks modality provides a type of authoring pluralism that is less 

well-supported in the Text modality (at least when used in a conventional text editor). Looking at 

the full set of programs collected by the automated logging system used in the study showed the 

students in the Text condition produced shorter programs, ran their programs more often, and 

had more quick succession runs relative to the students in the Blocks condition. These patterns 

can be explained by what was observed in the vignette, which showed how students in the Text 

condition encountered syntax errors and had to run their programs more often, and in quick 

succession, as part of their debugging process. This shows that modality does change how 

students author programs and that these different authorship mechanisms have consequences 

beyond the specific mechanics of writing the program. 
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 Taken together, these data reveal important differences between the Blocks and Text 

modalities. In most dimensions, attitudinal and perceptual outcomes were better for the Blocks 

condition during the time spent using the introductory tools. Likewise, in terms of conceptual 

learning, the data show the Blocks-based condition to be more effective for teaching high school 

students programming basics within the constraints of the study. These constraints, such as the 

relative short duration of the curriculum, its fast pace, and the use of the visual programming 

execution environment, mean that we cannot make larger claims about how robust this finding is 

for other modalities, curricula, age groups, etc. This point will be addressed later in the 

limitations and future work section of this chapter. This dissertation also showed how the 

different mechanism for constructing a program (typing versus dragging-and-dropping) affected 

other aspects of the programming experience, including help seeking, frequency of compilations, 

and the length of the programs. It is also likely that there is an interaction between the practices 

that formed and students’ attitudes and conceptual outcomes. For example, one explanation that 

fits the data is, since the Blocks students could ignore the details of syntax, they were better able 

to focus on the conceptual aspects of programming, i.e. what is the concept and how can I use it? 

Additionally, spending less time on errors and debugging allowed them to dig deeper into the use 

and behaviors of constructs and also affected their attitudes with respect to confidence and 

interest in the field, even if it came at the expense of perceived authenticity. 

Blocks versus Text: Transitioning to Java 

 The second set of research questions ask if and how attitudes, practices and concepts 

learned in a given modality in an introductory environment carry over to learning a text-based 

professional language. Looking at students’ attitudes during the second phase of the study, the 

opposite trend from the changes in made in the first five weeks can be seen. Students coming 
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from the Text condition see their confidence, enjoyment, and interest in computer science 

rise, while the aggregate scores for the Blocks condition decrease. Even with the decreasing 

trajectory, students in the Blocks condition still attained high aggregate scores for interest and 

perceived difficulty of programming. Additionally, compared to perceptions at the midpoint of 

the study, students in both the Blocks and Text conditions saw their time in the introductory 

modalities as less useful for learning Java and less authentic relative to professional 

programming practices after the ten weeks of working in Java.  

 Looking at conceptual outcomes at the end of the 15-week study, we see the gap that 

emerged in performance between the Blocks and Text conditions close. At the conclusion of the 

study, the two conditions showed no difference on the content assessment. The Text condition’s 

score between the Mid and Post administrations improved, while the scores for students in the 

Blocks condition remained at roughly the same level. There were a few subtle differences 

observed in the programming practices developed by learners from the two conditions, but 

overall the programming practices were relatively indistinguishable from each other. Students 

from the two conditions showed roughly similar success and failure rates for the compilation 

calls, produced comparable programs, and encountered the same types of errors with roughly the 

same frequency. This data suggests there is little lasting impacting on programming practices 

between the introductory modality and working in a professional, text-based programming 

language. 

Blocks versus Text: Summary 

 Taken together, these data show students having rather different experiences while using 

the different modalities in the introductory portion of the course, but that those differences 

eroded as the students transitioned to Java. Attitudinally, even though students ended up in 
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roughly the same place, the data show students taking a rather different path to get there. The 

Blocks students saw gains in the introductory portion, while the Text condition saw gains after 

transitioning to Java, suggesting that part of the benefit of the text-based introductory 

environment was not experienced until after it was left behind. A similar pattern was observed 

for conceptual learning. Students in the Blocks and Text modalities showed similar scores on the 

final test, but again, the path there was quite different with learners in the Blocks condition 

seeing all of their learning gains coming during the first five weeks while the Text condition 

students saw consistent incremental growth over the two phases. A number of possible 

explanations for this were given in Chapter 5 (like ceiling effects or students not having enough 

time on task). These and other aspects of the outcomes will be explored in greater detail in the 

implications section later in this Chapter.    

 Overall, the results of this dissertation show that modality makes a significant difference 

in learners’ early programming experiences in a variety of ways. This dissertation also reveals 

that these differences begin to fade as students leave the introductory modality and move on to 

more conventional programming languages. With this work we were able to tease apart aspects 

of this story to show how modalities fostered productive attitudes, supported effective 

programming practices, and facilitated students in learning foundational programming and 

computer science concepts. In the next section, a review of the Hybrid condition is given, before 

a longer discussion on the implications of these findings is presented.  

The Case of the Hybrid Modality 

 The third set of research questions asked in this dissertation pertained to the design of 

hybrid blocks/text programming environments, asking: Is it possible to design a “best-of-both 

worlds” introductory programming modality? Overall, the Hybrid environment used in this study 
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was found to produce outcomes similar to the Blocks condition in some dimensions while 

being more closely linked to the Text condition in others. At the same time, there were also 

instances where the students in the Hybrid conditions were outliers relative to their Blocks and 

Text peers. Below, these findings are summarized. 

The Hybrid Condition: The First Five Weeks 

 Over the first five weeks of the study, students in the Hybrid condition showed attitudinal 

changes that were similar to those observed in the Text condition: little change with respect to 

confidence or enjoyment of programming and a decrease in interest in taking future computer 

science courses. When asked about how the introductory environment compared to what real 

programmers do and if the introductory environment made them a better programmer, the Hybrid 

students gave responses similar to the Blocks students, which were lower than their Text-based 

peers. Together, these findings show that the Hybrid environment was not particularly successful 

with respect to cultivating positive attitudes and interest in computer relative to Blocks or Text 

alternatives.  

 On the mid-point administration of the commutative assessment, the Hybrid condition 

scored between the Blocks and Text students overall. Grouping questions by modality, the 

Hybrid condition’s aggregate scores were close to the high-mark set by the Blocks condition on 

the Pencil.cc Text and Pencil.cc Blocks questions and close to the lower scores set by Text 

condition on the Snap! Blocks questions. The Hybrid condition also netted out between Blocks 

and Text students on three of the six conceptual categories (conditional logic, functions, and 

comprehension). The Hybrid condition scored the highest on algorithms and iterative logic and 

the worst on variables (only narrowly). When asked about the perceived ease-of-use of various 

programming constructions, the Hybrid students gave responses closer to the “they were easy to 
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use” responses given by the Blocks condition for variables and functions, but closer to the 

lower scores of the Text condition for conditional logic. Again, this shows that the Hybrid 

condition shares the features of the other two modalities. The analysis of students’ responses to 

the open-ended conceptual questions showed that the Hybrid students once again have 

characteristics similar to the Blocks condition in some respects and the Text condition in others. 

Like the Blocks condition, students in the Hybrid condition showed a higher likelihood to treat 

related concepts as their own entities (like treating if and if/else concepts separately and 

viewing variables as their own distinct entities). This finding fits in with the explanation of the 

presence and nature of the blocks palette in shaping this view. We also saw patterns akin to the 

Text condition, such as students favoring technical definitions of more colloquial explanations of 

ideas (as seen in the students discussion of conditional logic). There were also conceptual 

outcomes unique to the Blocks condition, like the increased rate of defining looping constructs 

temporally. Taken together, these results highlight how the Hybrid condition has successfully 

blended the Blocks and Text modalities, with the Hybrid modality often resulting in students 

showing attitudes and results that live in the space between the two other modalities. There were 

also a few places where the Hybrid condition is distinct from the other two modalities, 

suggesting that, in some ways, the Hybrid modality is not just is simply the sum of the other two 

modalities.   

 The dimension where the Hybrid condition was least like the other two modalities was in 

the programming practices students developed. Over the course of the five-week introductory 

curriculum, Hybrid students wrote the longest programs and also ran their programs more 

frequently than either of the other two modalities. The vignettes reveal one potential explanation 

for this. In the vignette, we saw the student fluidly move back and forth between using the drag-
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and-drop mechanism of the blocks modality and editing statements and adding new 

commands with the keyboard. This means students could quickly add fully formed statements, 

making it easy to author longer programs, but also quick make minor edits or introduce syntax 

errors through keyboard input, both of which help explain the increased run frequency. The 

analysis of programming practices also found unique affordances of the Hybrid modality, such as 

students using the blocks as a way to check the syntax of typed-in commands. We also saw that 

over time, the students in the Hybrid condition used the drag-and-drop mechanism for adding 

commands less and less. Together, these two trends suggest that high school aged students prefer 

the keyboard-based form of input and that the drag-and-drop mechanism is a helpful way to 

bootstrap authorship early and an intuitive way to verify statement structure and syntax.  

The Hybrid Condition: Transitioning to Java 

 Whereas the Hybrid condition did not seem to produce the desired, positive outcomes 

with respect to attitudes of and perceptions towards programming during the first five weeks, 

things start to change after the transition to Java. When asked to reflect on their time in the 

introductory modality, students in the Hybrid condition reported their time in the introductory 

tool as being the most helpful and the most similar to real programming when compared with the 

other two modalities. In the four other attitudinal categories evaluated, the Hybrid condition saw 

relatively little change, having three categories showing slight increases (enjoyment, perceived 

difficulty, and interest) and a minor decrease in one (confidence). Students’ scores on the 

Commutative Assessment decreased a small amount after working in Java for ten weeks, 

suggesting the modality was not an outlier with respect to preparation for future text-based 

learning in a different language. Looking at various characteristics of programming practice for 

students in the Hybrid condition showed them to adopt an approach more similar to the Blocks 
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condition in terms of frequency of running their programs and in the size and nature of their 

incremental programming edits. Where things differed for the Hybrid condition is an increased 

frequency of certain types of Java errors made during the first ten weeks of learning the 

language. Students in the Hybrid condition showed a higher propensity for having compilation 

errors generated by incomplete quoted strings in their programs, which can result in a number of 

different types of errors. This error is interesting in how it relates to specific features of the 

Hybrid modality, which provided all of the necessary open/closing quotes when adding 

statements to a program in the introductory environment. So here, we have a nice, albeit 

relatively nuanced, example of a practice, fostered in the Hybrid modality, carrying over to the 

professional text-based language with detrimental effects. 

The Hybrid Condition: Summary 

 The major take away from this analysis is a definitive answer to part of the third research 

question, showing that it is possible to design Hybrid modalities. The specific Hybrid modality 

used in this study shows that the design choices made in the creation of new modalities and 

learning environments can produce outcomes similar to either of the source modalities used, as 

well as unique outcomes distinct from the designs that served as its inspiration. In this study, we 

found places where the Hybrid condition succeeded in drawing on the strengths of both 

modalities. For example, in providing the scaffolding and ease of composition of the Blocks 

modalities while also conveying the perceived authenticity students associated with the text-

based interface. At the same time, there were instances where the Hybrid condition produced 

something closer to a “worst-of-both-worlds” outcome, as could be seen in places where the 

programming practices that relied on the blocks palette resulted in students encountering certain 

types of errors more often. In this case, they had developed comfort and familiarity with the 
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textual representation, but did not have the supports that accompanied the practices they had 

developed. Taken together, the Hybrid condition in this study shows the potential for this line of 

work in developing effective programming environments. It also shows one of the many possible 

ways to blend blocks-based and text-based programming environments and sheds light on the 

potential set of outcomes from doing so. The next section discusses the implications of these 

results before taking a few steps back from this specific study to situate the findings in the larger 

context of modality, learning, and design. 

Implications  

 Having reviewed the findings from the two-year study, this section discusses some of the 

concrete implications of these discoveries. First, the implications of modality choice as it relates 

first to the learner are discussed. Similar discussions looking first at teachers and then at schools 

follow. These focus on how modality choice potentially impacts the larger educational 

infrastructure that surrounds the formal computing education learning opportunities provided to 

learners today. 

Implications of Modality on the Learner 

 This dissertation is the first careful study into how modality impacts learners. It shows 

how modality affected students’ attitudes, perceptions and conceptual learning. Thus, it supports 

the claim that modality has a direct impact on learners’ experiences with programming and their 

early computer science classroom learning experiences. Further, given that modality was 

conceptualized in this work as characterizing the relationship between representation and user, 

the impact of modality will necessarily be unique for each student based on their predispositions, 

prior experiences, and incoming knowledge.  
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 The choice of modality can facilitate engagement, help foster a positive classroom 

culture, and shape how a learner feels about the domain. The choice of modality is especially 

important early in learners’ interactions with the field, as negative early experiences may turn 

them away. At the same time, the choice of modality will influence how learners experience 

future computer science learning opportunities. As was shown in this dissertation, productive 

dispositions fostered by blocks-based modalities early in the study did not carry over to more 

professional programming languages, resulting in less positive experiences down the road. Here, 

we refer to the limited extent of modality on impacting learners – it matters while students are 

working with it, but modality choice for introductory environments seems to have relatively 

small long-term attitudinal, perceptual, or conceptual impact. This is not to say it is not an 

important decision. Negative early experiences may result in students’ choosing to withdraw 

from the course or lose interest and not put forth the same effort they may have if the early 

experiences were more positive. 

 A complicating aspect of modality choice in formal education spaces is the fact that 

students are entering their first computer science learning opportunities with an increasingly 

diverse set of prior programming experience. In this study, some students had never programmed 

before, while others had just spent the summer trying to learn trendy, professional development 

frameworks. Given that all students in the same class usually learn with the same environment 

and are asked to complete the same set of assignments, keeping advanced learners engaged while 

also not leaving true novices behind is a challenge. Modality choices made to support one type of 

learner may negatively affect the other. This came up a few times in this study, when advanced 

students lamented having to use a blocks-based modality, instead wanting to go straight into 

learning Java. In cases such as these, hybrid modalities, like the one used in this study, show 
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promise for achieving both the low-threshold needed for true novices as well as the high 

ceiling for students with more prior experience. As will be discussed in greater detail in the next 

section, modality does not inherently make a language more or less powerful, instead it just 

shifts how one interacts with it. Further, much of computer science is less concerned with syntax 

and details of a programming language and instead focuses on issues related to problem solving 

and critical thinking. Modality choice directly impacts learners, but through framing and 

carefully selected activities, the drawback of beginner modalities on more advanced learners may 

be mitigated without sacrificing the benefits they hold for the novices they were designed for. 

 Finally, this dissertation shows that high school students are able to think critically about 

the tools there are using and can articulate strengths and drawbacks of such tools. This finding 

shows the sophistication that high school students have with respect to their own preferences and 

perceptions as it related to programming and learning. Students’ ability to discuss the various 

ways that a modality is useful for learning shows they see how and why these tools can be 

instructive and useful for their own learning. This implies that when choosing a modality for 

specific pedagogical or affective reasons, students should be encouraged to use the tools in the 

ways they find meaningful. If a student finds the scaffolds or features of a modality to be a 

distraction because they do not feel they need them, they should be allowed to use the tool as 

they see fit. Likewise, this dissertation shows that high school-aged learners have pre-conceived 

notions about what “real” programming is, and what it looks like. Given this preconception, it is 

not necessarily beneficial to try and convince high school aged students that blocks-based 

programming is the same thing as text-based programming. Alternatively, by taking advantage of 

the sophistication of the learner and respecting their knowledge, framing introductory, highly 

scaffolded modalities as being productive for learning can potentially alleviate issues of 
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inauthenticity or a lack of perceived uselessness. Shifting utility towards usability and 

learnability may help learners identify the value of different modalities, irrespective of their prior 

experience.  

Implications of Modality on the Teacher 

 The choice of modality will have a large impact on the experience of the teacher and their 

experiences in the classroom. Modality can influence classroom culture, pedagogical approaches, 

and in part shapes the curriculum that is followed. In choosing a given modality, the teacher is 

setting in motion various aspects of the course and their own position in it. Modalities designed 

to support novices in programming independently will impose different challenges on the teacher 

compared to a modality with fewer beginner-oriented features. A teacher’s preference for direct 

instruction versus letting learners discover and explore on their own should be taken into account 

when choosing a modality. When working in a modality designed for beginners, the learners’ 

reliance on the teacher for guidance is decreased, thus the teacher can spend more time in one-

on-one support. At the same time, if students are better able to make progress on their own, there 

is less potential for teachable moments – instances when students ask questions that lead to 

productive class discussion. One of the first year teachers brought up this point as he explained 

his experience teaching in the blocks modality: “the point of the environment is that it shouldn't 

generate a whole lot of questions, like ‘how do I do this?’ - it's more intuitive.” The teacher went 

on to explain that while this is empowering for the learner, it gives him fewer opportunities to 

engage in productive discussions on different aspects of programming. 

 Just as modality choice shapes the role of the teacher in the classroom, it can also shape 

the curriculum. Modalities designed to facilitate exploration and creativity allow for different 

types of assignments compared to modalities designed for efficiency or clarity. If a teacher 
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prefers every student to author a program that looks the same, choosing a modality that 

makes discovery easy may prove counterproductive to the teachers desired form of assignment. 

There are also class management and grading considerations in choosing a modality. If 

assignments are open-ended or assigned in a modality that make it easy for students to go beyond 

what has been covered in class, the teacher is more likely to encounter more diverse solutions or 

solutions that include extra features beyond what was asked. This was a frequent occurrence over 

the two years of this study, especially among more advanced students who sought to challenge 

themselves on assignments they were able to complete quickly.  

 Along with impacting students and the role of the teacher, modality can also shape 

classroom culture. As one teacher who participated in this study pointed out: “[Blocks-based 

programming] creates a different feel to the room...blocks take away the foreign feel, it looks 

friendly, and it's something you can do right away, and because of that, the culture in the room is 

different, kids are more prone to talk to their neighbors, more prone to feel OK about joking 

around.” While modality is not the only contributor to a classroom culture, more inviting and 

playful tools can help shape a certain set of classroom norms. 

 A final, potential afterthought for a teacher in choosing a modality is considering the 

larger technological infrastructure of the class. Are assignments going to be submitted in a 

specific online format? Is the teacher planning on running all of the students programs to make 

sure they work and meet the requirements of the assignment? The environments used in the 

introductory portion of this class were all browser-based, which made it tricky for students to 

submit their work as they did not have a local file to submit. The teacher in the second year of 

the study would do her grading of student projects by walking around the room asking students 

to show her their work. While this worked for the purposes of this teacher, it had its limitations 
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as the teacher could only spend a few seconds on each and did not have a way to give 

detailed or written feedback to students. 

Implications of Modality Choice on Schools and Administrators 

 A major implication of the findings in this dissertation affects, not the students or 

teachers, but should inform the larger infrastructure in which these learning opportunities are 

situated. The decision of if and when to transition from an introductory modality to a 

professional programming environment is consequential and has many potential repercussions. 

For example, if the transition from a blocks-based introductory tool to a text-based language 

takes place the week before the drop/add deadline, what will be the implications of that transition 

relative to if it happened a week after students could no longer drop the course? The findings in 

this dissertation say you would likely see more students choose to leave the course if the 

transition happened before that deadline. Likewise, what if students were asked to sign up for 

next year’s classes in week four of the study? Would we expect to see the same number of 

students from the Blocks class enroll in a future computer science class as from the Text 

condition? The data presented in this study suggest that that timing of transitioning between 

modalities should be carefully considered and external deadlines, like enrollment dates and 

drop/add deadlines should be considered. 

 This also opens up the larger conversation about whether or not the transition from 

introductory tools to professional languages is necessary. In the United States, until recently, the 

AP Computer Science exam, which is the closest thing the country has to a national computer 

science curriculum, was essentially a Java programming exam. In order for students to receive 

college credit in computer science, they had to learn to program in Java. This is now changing 

with the introduction of the AP Computer Science Principles course, which focuses less on text-



 330 
based programming languages and instead emphasizes broader computer science concepts, 

such as algorithms, problem solving, and data and information. Deciding the importance of 

programming and whether or not to prioritize professional text-based languages is a 

consequential decision that has large effects on how computer science will be taught and the 

experiences that learners will have. This dissertation sheds light on some of the implications of 

this decision, showing both the promise of introductory programming tools as well as some of 

the challenges associated with transitioning modality and language early in a learners computer 

science career. As one teacher said when asked about how concepts carried over from the blocks-

based introduction to Java, the transition was “rough, I think [the students] lost what they were 

doing [in the blocks-based tool] with what they were doing in Java.” Whether or not this 

transition is necessary is an important question for administrators and department chairs to 

decide given the shifting nature of computer science education where the decision is no longer 

being made for them. 

On Modality, Learning, and Design 

 While this dissertation was focused on three specific modalities and the domain of 

computer science, the implications for this work extended beyond the particularities of this 

study. At the highest level, this dissertation is concerned with understanding the relationship 

between modality and learning and then relating those findings to the design of new modalities. 

In this work, the conceptualization of modality included not just the static representation, but 

also its affordances and the various ways it was appropriated by learners. In this way, describing 

modality is not purely an exercise in describing visual characteristics, but also includes how 

various features are taken up by users and how they do and do not enable the learner. Over the 

course of the fifteen weeks of the study and the three modalities used, new insights into the 
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relationship between modality and learning emerged as well as implications for their study 

and design. This section characterizes what we learned about modality through conducting this 

work. 

Modality Matters  

 One contribution of this work shows how and when modality matters with respect to 

learning to program and the design of introductory programming tools. By following novices 

learning to program with three isomorphic modalities, we showed the various ways that modality 

does and does not impact learners. Over the two years of the study, modality was found to 

influence learners in many different ways, including program comprehension ability, program 

composition strategies, emerging conceptual understanding, and various dimensions of affect and 

attitudes towards the discipline. In the first year of the study, the data showed that students 

performed better on questions asked using a blocks-based modality than a textual form. In the 

second year of the study, students using blocks-based, text-based, and hybrid blocks-text tools 

ended up performing differently on content assessments, reporting different levels of interest in 

the field, and viewed the utility and authenticity of their learning experiences differently. Along 

other dimensions, little difference was found across the modalities, including confidence, 

enjoyment, especially in conceptual understanding after students stopped using the introductory 

modalities. These findings show the importance of recognizing and considering the various ways 

that modality affects learners and the context in which learning is taking place.  

 The definition of modality used in this dissertation uses the term to characterize how one 

interacts with a given representation and the role the design of the representation plays in 

supporting various uses and interaction patterns. This dissertation thus provides insight into the 

various ways a representation design can shape and support different types of uses. Across the 
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three modalities used in the introductory portion of the study, various types of supports were 

provided for different aspects of the practice of programming. For example, the drag-and-drop 

capability of the Blocks modality provided a form of interaction not possible with the Text 

modality, thus these two modalities produce distinctly different authorship patterns with different 

challenges and supports provided. In this way, the modality shapes how things are done, but not 

what can be done. A second example could be seen in the first year of the study, where the Snap! 

Blocks modality was shown to be easier to comprehend for novices than a text-based modality. 

A careful analysis of student responses was able to identify features of the modality that 

supported novice comprehension, such as the shape of function calling blocks helping learners 

know what their behavior will be. Other dimensions such as color, the choice of words used in 

the language, and the presentation and arrangement of the representation also supported learners 

in various ways including the construction of programs as well as helping them develop ideas 

and communicate information about their programs. 

 Throughout this dissertation, much care was taken to highlight the various ways that 

learners used the modalities. Both within and across conditions, this dissertation reported on 

different features of modalities being appropriated by learners in different ways. This provides a 

concrete example of what Noss and Hoyles (1996) call webbing. The construct of webbing is 

intended to capture the rich, diverse, and interrelated features of learning environments that 

provide support to the leaner. Webbing describes “a structure that learners can draw upon and 

reconstruct for support – in ways that they choose as appropriate for their struggle to construct 

meaning” (Noss & Hoyles, 1996, p. 108). The term webbing was chosen to capture the full 

network of supports provided to the learner, not just a single scaffold within the environment. To 

understand the role of modality in supporting the learning process through this lens, one must 
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view the various features of the environment being used in concert, as opposed to elements 

used in isolation. In this work, this means recognizing how the shape of a block, the drag-and-

drop mechanism, and the arrangement of block in the palette all collectively contribute to 

helping the learner make meaning. Further, through this lens, we can remain faithful to the 

recognition that learning is not uniform, but is unique to the individual. This is to say, modality 

matters not just in terms of what it makes possible, but also for the various ways it allows diverse 

sets of learners to make meaning in their own, personally meaningful ways. Modality cannot and 

should not be evaluated by looking at a single student, nor should it be designed to promote a 

single specific practice, but instead, the design of modality should be seen as an opportunity to 

support diverse practices and forms of expression. 

Modality is Malleable 

 In addition to showing that modality choice is consequential, this dissertation shows that 

modality is not fixed. Instead, modality is malleable; it can be designed, changed, blended, and 

extended. This perspective opens the door to the larger enterprise of creating new modalities 

through the revision of existing forms as well as the creation of entirely new ways of expressing 

ideas and interaction with representational systems. We see this dissertation contributing to a 

new and growing discipline on the study and design of representations that has been argued as a 

possible future direction for the Learning Sciences (Papert, 2006; Wilensky et al., 2005; 

Wilensky & Papert, 2010). Further, this dissertation argues that in considering the design of 

modality, it is important to look beyond the static represented form and consider the practices 

and interaction patterns made possible by the modality. This shift is important as new 

representations increasingly are coupled with, and rely on, the capabilities of computational 

media. The interactivity and feedback enabled through computer-based representations adds a 
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new dimension to the design of notations. By including practices and usage patterns as part 

of a broader conceptualization of modality, new considerations and design opportunities emerge. 

 Programming languages provide an especially rich context for the design of new 

modalities due to what Papert (1980) called the Protean nature of computers. Computers provide 

the ability to introduce layers of abstraction between the way a representational infrastructure is 

presented to the user and the form those instructions must take so the can be executed by the 

machine. From this relatively blank canvas a vast design space emerges for the creation of new 

modalities. Looking at the three modalities used for this work we can start to see the various 

dimensions along which computationally situated modalities can be defined. Visual rendering 

(color, shape, location on the screen, etc.) is a first dimension that a modality design can explore. 

Likewise, how and when other representational systems are incorporated can differ. By this we 

mean, if natural language descriptions will be used, compared to symbolic representations or 

programming language primitives can differ by modality. This can be seen in comparing Scratch 

Jr. (Flannery et al., 2013) and its use of glyphs to Scratch (Resnick et al., 2009) where natural 

language expressions are used, to Pencil Code (Bau et al., 2015) which provides visual supports 

on top of programming keywords, and finally to Logo (Papert, 1980), which is a fully text 

language. Figure 9.2 shows the turn right command as it is represented across these four tools. 

   
right 90 

(a) (b) (c) (d) 

Figure 9.2. The same concept (turning right) conveyed in four modalities: Scratch Jr. (a), 
Scratch (b), Pencil Code (c), and Logo (d). 
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 The four representations shown in Figure 9.2 are all static for the user, once defined 

they do not change. However, modality need not be static. Looking at the design potential of 

modality across a temporal dimension, we can start to imagine new representations that change 

over time. For example, we can have visual cues like moving arrows or blocks that change shape 

or size based on uses or the point in the composition process. Likewise, the modalities presented 

above and used in this dissertation are all virtual. A growing number of programming tools take 

advantage of physical devices, like Tern (Horn & Jacob, 2007), Robo-blocks (A. Sipitakiat & 

Nusen, 2012), and Cubelets (Schweikardt & Gross, 2006), which each allow the user to express 

computational statements without using a screen. 

 As modality is intended to describe interactions, designing modalities extends beyond 

just the visual depiction of the representation. The design activity also includes various 

interaction capabilities that influence the mechanics of interaction with and use of the modality. 

The clearest distinction of this aspect of modality in this dissertation is the difference between 

dragging-and-dropping blocks on the canvas versus typing commands in character-by-character 

with the keyboard. While the textual modality supports in Pencil.cc were rather minimal, other 

integrated development environments (IDEs) include a richer suite of functionality to support 

different interaction patterns and authoring mechanism. For example, autocomplete allows users 

to type only a few characters before a curated list of potential commands appears. Another 

example comes in the form of templates, where the user can browse a set of pre-defined sets of 

commands to choose larger blocks of code to accomplish set tasks. For more advanced 

programmers, IDEs provide other programming authoring/editing mechanisms such as code 

refactoring tools that allow the user to edit multiple lines of code at once or rearrange large 

portions of code based on the needs and wants of the author.  
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 A final important dimension to discuss in terms of the malleability of modalities is to 

point out that a user need not be pinned to a specific modality. A growing number of 

environments are supporting users in moving between multiple modalities.  The learners in this 

dissertation study were held to a specific modality for the purpose of the research study, not 

because of design constraints. Pencil Code, the environment that was the basis for Pencil.cc, 

allows learners to freely move back-and-forth between a text-based and blocks-based modality, 

with changes in one modality being reflected in the other. A number of projects are looking at 

supporting this same dual-modality representation for various programming languages include 

Java (Matsuzawa et al., 2015), Python (Bart et al., 2015), and Grace (Homer & Noble, 2014). 

The ability to provide multiple modalities within the same environment further opens of the set 

of possibilities to modality designers. A strength of this approach is that it gives agency to the 

learner to decide not just how to use the various features of a single modality, but also to choose 

the modality they want to use. 

Modality and Structurations 

 The findings presented in this dissertation with respect to the role of modality on learners 

complement existing work on representational infrastructure and its impacts. Prior work, both 

theoretical and empirical, has shown that representational infrastructure has implications along a 

number of dimensions including expressive power, learnability, communicability, and shaping 

the nature of emerging understanding (diSessa, 2000; Kaput et al., 2002; Sherin, 2001; Wilensky 

& Papert, 2006, 2010). Much of this work has looked at the nature of notational systems, the 

prototypical example of which is the comparison between roman numerals and Hindu-Arabic 

numerals, and the widespread impact of the shift between these two ways of representing the 

same concepts (Swetz, 1989). Wilensky and Papert (2006, 2010) use the term structuration to 
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capture the relationship between a representational infrastructure and its ability to encode 

knowledge of a given domain. This dissertation is primarily concerned with modality, which 

differs from structurations in that modality is concerned with a person’s interactions with a given 

structuration and how the design of that representational system supports various uses, whereas 

structuration is more foundational, characterizing a representation’s ability to encode and express 

ideas of a given domain. While modality differs from structuration, Structuration theory provides 

a productive lens for thinking about modality and the findings from this study. Wilensky & 

Papert (2006, 2010) describe five properties for evaluating a given structuration: power, 

cognitive, affective, social and diversity, many of which are on full display in this dissertation. 

Below we discuss each of these structuration properties as they pertain to modality broadly and 

then link them to the specific modalities explored in this dissertation. 

The Power Property 

 The power property of a structuration describes the set of things that it is possible to 

express with a given representational system. We view the power of a structuration and its 

modality as orthogonal; modality does not change what can be expressed with a given 

representation but instead, characterizes how one goes about saying it. That is not to say the two 

are unrelated. We see two ways that modality influences the power properties of a structuration. 

The first has to do with perception. The first year of the study showed some students to hold the 

perception that blocks-based modality as less powerful than the text-based alternative, saying 

things like ““blocks are limiting, like you can't do everything you can with Java”. While 

technically not true, it is revealing that the students held this view. This means, that while 

modality does not change the power of a structuration, it can change the perceived power of it, 

which potentially results in the same outcome. In this case, it might mean students taking the 
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structuration less seriously or seeing it as less valuable. The second interaction between 

power and modality we see is in how a modality can make things easier than they might 

otherwise be. If the same idea can be expressed in two modalities, but one requires less cognitive 

load, less time, or fewer steps, that may lead to other benefits related to the power principle. For 

example, a new modality might make discovery more likely as exploration of ideas with that 

structuration may be better supported. This was observed in this study in how students relied on 

the blocks palette as a way to support their program construction; this helped novices do more in 

the blocks-based modality than the isomorphic text modality. 

The Cognitive Property 

 The cognitive property of a structuration captures its learnability; does a specific form of 

representation make ideas more intuitive or accessible? This dissertation shows that modality 

plays a potentially strong role in shaping the learnability of a given structuration. While working 

in the blocks-based modality of Pencil.cc, students showed greater learning gains relative to 

students working in the text-based modality. These two modalities were isomorphic, shared 

language semantics, and most other environmental factors were held constant. In other words, 

the structuration was the same, the modality differed, and after five weeks, learning outcomes 

also differed. This finding has potentially large implications for thinking about the role of 

modality with respect to the evaluation and design of new structurations. 

The Affective Property  

 The third property for evaluating structurations is the Affective Property which describes 

how one feels about a given representational infrastructure with respect to things like enjoyment, 

engagement, and other emotions. Like with the Cognitive Property, this dissertation showed that, 
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along some dimensions, modality played a role in shaping a learner’s affect for a given 

structuration. This dissertation found subtle differences in terms of affective dimensions like 

enjoyment and confidence, and stronger differences in terms of students’ relationship to the 

discipline of computer science and whether or not they would continue in the field. There is also 

the notion of perceived authenticity and utility, which falls under the Affective Property and was 

also found to be affected by modality. This provides evidence that there is an interaction between 

structuration and modality with respect to affect, although in this dissertation, that interaction 

was less pronounced than the cognitive property. 

The Social Property  

 The next property for evaluating structurations captures how well an idea can be 

communicated in a given structuration. Does the form make it easy to describe ideas, share 

insights, and convey information? While the construct of modality is meant to capture the 

relation between an individual and the structuration, features that support that interaction may 

also facilitate person-to-person communication. We saw some examples of this in the vignettes 

presented in Chapter 7, where students had slightly different ways of using the modality to assist 

in their explaining their programs to the interviewer. This data does not fully capture the breadth 

of everything included in social aspects of a structuration, but suggests there is some interaction 

between the two. This dissertation provided glimpses of the social properties of modalities but 

was not the focus of the work, thus exploring this dimension remains an open question and a 

possible avenue for future work. 

 A second relevant aspect of social dimensions of modalities considers the larger, online 

communities that can form around tools that leverage specific modalities. The most notable 

example of this is the online Scratch community that includes over 15 million projects. On the 
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Scratch website, visitors can run programs written by others, inspect the code behind the 

project, and “remix” the program, starting with a project and making their own additions and 

modifications (Fields et al., 2014; Roque, Kafai, & Fields, 2012). While such online 

communities are not tightly coupled to modality, the most vibrant online learner communities for 

sharing programs are associated with blocks-based languages. Further, they are some aspects of 

the blocks-based modality that might facilitate the remixing culture that tools like Scratch seek to 

promote, specifically, the “readability” of the programming representation makes it easier for 

novices to parse and understand a program written by another. Again, the existence and ongoing 

success of an online community built around a programming environment is not specific to 

modality, but modality plays a role and it impacts the social properties of a structuration. 

The Diversity Property  

 The final structuration property is the Diversity Property. This property describes how 

well a structuration is at supporting different ways of thinking or solving problems, what Turkle 

and Papert (1990) call epistemological pluralism. Along with the Cognitive and Affective 

Properties, this seems like the place where modality and structuration intersect heavily, as all 

three are characteristics of the relationship between the structuration and the individual. In 

Chapter 4, when reviewing the findings from the first year of the study, we saw a nice example 

of the Blocks modality supporting a form of construction that, while possible in a textual 

modality, is less well supported. The episode we are referring to saw a student author a condition 

statement by first dragging out an = block, then defining the two signs of the comparison, then 

dragging out the if block and finally defining the behavior to be carried out if it evaluated to 

true. These steps show the student authoring this conditional statement from the inside out, as 

opposed to from the left to right, the sequence suggested by the text modality. Throughout the 
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two years of the study, we saw examples of students building complex statements diverse 

ways, rather than the relatively uniform approach students in the text condition followed. This 

shows that modality has the ability to influence and support a diversity of ways of constructing 

with blocks-based tools. 

Modality and Milieu 

 In this final section of our extended discussion on modality, we look at how modality 

interacts with the larger context in which it is encountered. Modality is inherently situated into a 

larger network of designed entities and established practices that collectively shape the 

experience of the learner. For example, the last section explored the relationship between 

modality and structuration, showing the two to be interconnected but distinct. Likewise, there are 

a number of other situational aspects in which a modality lives and interacts. One major 

influence on modality is the environment in which it is situated, which can inform and shape 

how a modality is used. In this study the three modalities were presented inside the larger 

Pencil.cc context. Pencil.cc included the visual execution space, defined and constrained the 

types of things that are possible with the modality (like Turtle Geometry and text input/output), 

and included additional scaffolds outside of the modality that influenced learners’ actions. To 

that last point, Pencil.cc’s Quick Reference menu provided guidance to learners on the usage and 

capabilities of the language in a way distinct from the supports available through the modality. 

The data collected in Pencil.cc showed how usage of the Quick Reference menu was different 

based on the modality of the student. 

 The idea of environment influencing modality extends beyond the specific technological 

setting or medium being used to include the larger socio-cultural context in which it is being 

used. Bronfenbrenner (1979) argues for a concentric nesting of contexts in which the individual 
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resides, starting with the microsystem (peers, family, classroom) and growing outward 

through a mesosystem (school, friends-of-friends), exosystem (media, neighborhood, extended 

family) and finally macrosystem (cultural factors). Each of these sequential contexts informs and 

influences how an individual interacts with a given modality. For this study, the microsystem 

played a large role in shaping usage patterns. The presence of teachers, peers, and the one-

laptop-per-student arrangement of the classroom all influenced how learners interacted with the 

modality. The ability to ask a neighbor or listen to the teacher carefully introduced different 

concepts changed how and when the learner engaged with the modality and the role the modality 

played.  Influences of the larger dimensions of the learning context could also be seen, including 

the school system and how technology was integrated into the K-12 learning experience and also 

the larger cultural values placed on technology and learning to program.  

 In this study and the specifics of the modalities used we can also see aspects of the exo- 

and macrosystems and play. Specifically, the blocks-based design takes advantage of a puzzle-

piece metaphor, where visual cues denote how and when commands can fit together. This design 

approach assumes that the user has experience with puzzles or toys that share this interlocking 

assembling characteristic, be it Legos, train tracks, or jigsaw puzzles. Drawing on the form-

function shift framework (Saxe, 1999), Horn (2013) calls these cultural forms and argues that 

such cultural practices and knowledge can be leveraged in the design of intuitive computing 

interfaces. The blocks-based modality used in these classrooms serves as one example of a 

cultural form being productively leveraged with positive outcomes. 

 The fact that modality influences the classroom culture affects both the learner as well as 

the teacher, whose role changed between the three conditions of the study. In interviews with the 

teacher from the second year of the study, she described how the level of detail she needed to 
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provide differed by modality and how students independence differed by modality, with the 

Blocks students being the most self-sufficient (Weintrop & Wilensky, 2016a). Tightly coupled 

with the role of the teacher is the set of pedagogical strategies supported by different modalities. 

As discussed in the previous section, with modalities that provide high levels of scaffolding to 

support learner independence, teachers’ pedagogical strategies can shift away from direct 

instruction to one-on-one personal attention. The opposite is also true, when using modalities 

with little in the way of novice support, the strategies the teacher uses differ and the 

opportunities for meaningful conversation also shift.  

 Just as the modality interacts with classroom culture and teaching practices, so too are the 

curriculum and the set of activities the students work through similarly affected. Asking students 

to have onscreen sprites move around and draw a specific shape will allow learners to leverage 

different affordances of a modality than a different activity, like sorting numbers. More 

concretely, in an activity involving motion, having a modality that supports natural language 

expressions like turn right 15 degrees on a block, will provide a different form of support 

than if a student had to type in the command rt(15); to accomplish the same behavior. 

Likewise, the browsability of blocks-based modalities can facilitate creativity and exploration in 

open-ended assignments differently than other modalities that do not have that ease of discovery. 

This feature of the blocks-based modality is not surprising given the constructionist roots of the 

modality.  

Limitations and Future Work 

 While this study provided insight into the relationship between modality and learning in 

the domain of computer science, it does have limitations with respect to the claims that can be 

made. This section reviews the limitations and discusses potential future directions that may be 
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taken to try and address them. The first limitation of this study is related to the students who 

were recruited to participate. The school where the study took place was a selective enrollment 

institution. This means that all of the students that participated in the study have historically been 

successful in formal educational contexts. Thus the findings of this dissertation do not 

necessarily apply to underperforming students who have not had success in conventional 

classroom settings. A second limitation of this study relates to the student population as this 

study took place in an elective class. This means the students who participated in the study had 

chosen to take part in a computer science learning opportunity, suggesting they showed a pre-

disposition for being more interested or placed a higher value on the concepts being taught. A 

final participant-related limitation of the study has to do with the gender breakdown of the study. 

In both years, female students made up less than one third of the student in the class. The gender 

breakdown was beyond the control of the researchers as student recruitment for the classes was 

outside of the scope of the study, but is none-the-less not representative of the greater student 

population. All three of these limitations can be addressed by conducting future iterations of the 

study at different schools where these limitations are not necessarily true. In some school 

districts around the country, computer science is becoming a graduation requirement for high 

school. Conducting a similar version of this study at a non-selective enrollment school where all 

students must take the class would directly address all of these limitations and is one intended 

future direction for this work.  

 A second limitation of this study has to do with the teachers who volunteered to 

participate. Finding a teacher who is willing to teach the same curriculum using three different 

modalities is difficult. Any teacher willing to take on such a challenge will have a level of 

confidence and experience that is rare among in-service computer science teachers. 
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Understanding how modality affects less experienced and less confident teachers is an open 

and important question to answer. Just as the way to address the student-related limitations of 

this study was to replicate the study at a different site, the solution to the generalizability of the 

findings due to the teacher can similarly be addressed this way. Working with a less 

accomplished and experienced teacher (or set of teachers) is a direction of future work that goes 

hand-in-hand with working with a different population of students, and is an intended avenue of 

future work. 

 A third limitation of the study has to do with duration of the second phase of the study. 

The study followed students for the first ten weeks of the Java portion of the course. For a 

number of reasons, the amount of content covered in the first 10 weeks of learning Java was 

much smaller than the breadth of concepts students encountered in the 5-week introductory 

portion of the course. There are a number of reasons for this, including the level of detail topics 

are given, the ease of compiling running programs in Pencil.cc compared to Java, and the various 

supports provided by different modalities that have been the focus of this dissertation. As a 

result, some of the concepts covered in phase 1 were not encountered during phase 2, which 

limits our ability to make claims about whether or not the conceptual learning of that concept 

transferred. Similarly, when the students do re-encounter the concepts, a great deal of time will 

have passed. For example, more than 15 weeks elapsed between when students used iterative 

logic in Pencil.cc and when they learned it in Java. An alternative study design would have 

students use an introductory modality to learn a concept, then immediately transition to Java to 

learn the same concept, and then repeat this introductory modality then Java pattern for each 

concept. The sequencing was initially proposed by one of the teachers in the study who said she 

might use this approach in future courses. The means she sees pedagogical value in the 
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introductory modalities, but would like to use them in a way that is different than how they 

were used for this study. We hope to investigate this pedagogical approach in future work. 

 A fourth limitation related to the structure of the study stems from the fact that the 

courses took place at different points in the school day. The Hybrid condition was fourth period, 

in the middle of the day, whereas the Blocks and Text conditions were seventh and eighth period 

respectively. Being at the end of the day has a number of potential impacts on students in the 

classroom. First, at the end of the school day, students may not be as attentive as they would be 

during earlier periods, this may be due to fatigue from a long school day, or excitement about 

post-school activities. Likewise, students in the classes at the end of the day were more likely to 

be absent than classes in the middle of the day. For example, a few times during the study, 

football players were excused from their eighth period class to prepare for their upcoming game. 

As there were football players in the eighth period class, those three students received less 

instruction relative to their non-football playing peers. While this limitation is unavoidable, it is 

nonetheless important to note. The remedy for this limitation is similar to the solution for the 

other study-design related limitations, more iterations of the study that vary the time of day for 

each condition, thus giving us the ability to counter balance this dimension of the study. 

 There are also limitations to this study related to the specific languages and tools that 

were used. For this work, Pencil Code’s blocks editor was used to represent the blocks-based 

modality, while it’s text editor served as the canonical text editor. In the case of the blocks editor, 

other blocks-based modalities, like Scratch and Snap!, include additional features not supported 

by Pencil Code]. Likewise, Pencil Code’s text editor included some built-in scaffolds like syntax 

highlighting and automatic indentation, but not others that are common in text-based coding 

tools like auto-complete. Also, the choice of CoffeeScript to serve as the underlying language in 
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the introductory condition and Java as the transitioned-to professional language are both only 

one of many possible ways such instruction could take place. The course just as easily could 

have used JavaScript as the underlying language for the introductory portion and Python as the 

professional language. In all of these cases, the design decisions made do not invalidate the 

findings, but instead impose a set of qualifiers. We do not yet know if students working in a 

blocks-based JavaScript environment then transitioning to Java (or even text-based JavaScript) 

would produce different results. The exploration of different languages and different underlying 

syntaxes is work that is being actively pursued. Just as the choice of language and specific 

modality influence the findings, so too does the programming paradigm used and the design of 

the curriculum. The fact that roughly half of the introductory assignments relied on drawing or 

Turtle Geometry in some capacity does change the way students interact with the modality. 

Again, this does not invalidate any of the claims made, but instead slightly constrains the 

generalizability, an issue that can (and hopefully will) be addressed through future iterations of 

similar studies with new languages, curricula, and paradigms. 

 Along with this list of limitations, there are also other avenues of future work that we 

hope to pursue and that this dissertation starts to address but by no means is definitive about. The 

most obvious is the fact that the Hybrid environment used in this study was just one of many new 

modalities. Looking at how other emerging modalities and new ways of blending existing 

modalities influences and potentially improves the learning of the powerful ideas of computing 

offers many opportunities for exciting work and new findings. A second avenue of future work is 

to look at the impact of modality on different types of students. Do students struggling students 

see more, less, or different benefits from working in a specific modality compared to students 

who have excelled in academic settings? A third direction of future work is taking a similar 
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modality-centric approach to concepts beyond programming and computer science. As 

argued by Wilensky & Papert (2006, 2010), there is great promise and much work to be done 

looking at restructurations across a diverse array of disciplines. As new fields becoming 

increasingly computational, new tools, interfaces, and modalities are being invented to support 

new computational endeavors. Research projects similar to this dissertation could fit well 

amongst the various activities that accompany the formation new technologically enhanced tools 

and practices and the larger emergence of new computational fields. 

Conclusion 

 This dissertation sought to answer foundational questions looking at the relationship 

between modality and learning in the domain of computer science. This work serves as the first 

systematic investigation of modality in formal high school computer science classrooms. 

Through the design of the study, this dissertation makes claims about the role modality places in 

shaping novice programmers’ attitudes, perceptions, and conceptual understanding. It also 

revealed ways that modality can shape emerging programming practices. Further, in following 

students as they moved from introductory programming environments to more conventional 

professional languages, contributions were made with respect to our understanding of how and 

when the impacts of working in introductory tools carry over into later programming 

environments. 

 The title of the dissertation states its central contribution: modality matters. The fuller 

picture revealed by the two iterations of this classroom-based study found that, while modality 

mattered along a number of dimensions while students were working in it, the introductory 

modality had relatively little lasting impact with respect to attitudes and conceptual learning after 

transitioning to other tools. This dissertation also provides a theoretical contribution in terms of 
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how to think about and evaluate modality as a distinct aspect of a learning environment. 

Additionally, it showed that modality should be thought of as a feature of a learning experience 

that can be designed for, and that features of an interface and the capabilities of a system can 

shape the way the user engages with it. While modality is a characteristic of all representational 

systems, computer science, and computing education research in particular, is especially well 

suited to serve as the context for conducting this work due to the malleability of the medium and 

the blossoming of new languages, modalities, and learning opportunities. 

 Collectively, this dissertation contributes to our understanding of the design of 

introductory programming environments. Given the increasingly digital world that we live in, 

determining how best to prepare today’s learners for the computational futures that await them is 

of critical importance. This work is intended to help push this larger endeavor forward, providing 

methods, evidence, and ideas to contribute to educating the next generation of computationally 

literate citizens. 
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11. Appendix A – Introductory Curriculum 

This section presents the thirteen assignments that the students worked through during the 

five-week introductory portion of the study. This appendix serves as a supplement to Table 3.1, 

which provides a high-level overview. The assignments below are presented in the order that 

were given to students. For each assignment, a text description is given (sometimes with an 

accompanying image) and a brief statement of the goal of the assignment. Next, we include the 

exact text that was given to the students during the study. The assignments were designed by the 

author with the help of the teacher who was participating in the study. The exact format and 

wording of the assignments is that of the teacher, who reformatted the assignments to fit into the 

assignment template she uses in her classes. 

Quilt 

Description 

Students will write a program to draw an image of something that represents them. The images 

they create will then be “stitched” together to form a quilt for the class. A sample quilt patch was 

shown to the class. 
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Figure A.1. The sample quilt shown created by the teacher and shown to the students.  

Goal 

The goal of this assignment is to familiarize students with the Pencil.cc environment, specifically 

how to assemble and run programs and some of the basic movement and drawing commands. 

Text shown to students 

You will be using http://pencil.cc to create a ”quilt,” this should be a drawing that represents you 

and something you care about, you can include multiple things.  

 

To visit an example of a completed quilt go to: http://share.pencil.cc/home/ccsf0-nudavid-quilt 

a. Go to http://pencil.cc, fill in the drop downs and choose quilt for the assignment 

b. Remember, while you are creating your quilt you are still investigating the 

workspace. How do you get your turtle to move forward? If you are not sure where 

can you “quickly” (hint) look?  How do you get the turtle to use a pen (to draw)? 

When you physically draw on paper do you move forward and then pick your pen or 

do you first pick your pen and then move forward to draw? Do you think it is the 

same for coding? Test out both ways and see which works.  
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MadLibs 

Description 

This assignment has students author and implement a short “MadLib”. A MadLib is a text game 

where one person (usually the author of the MadLib) asks the player for a part of speech (“give 

me a proper noun” or “give me an adjective”). These suggestions are then plugged into the story. 

Goal 

This assignment is intended to introduce students to the concept of variables and the basic text 

functionality of Pencil.cc 

Text shown to students 

Part 1: On a scrape piece of paper with a partner, create an algorithm for how to play MadLibs 

You need to gather two adjectives and three nouns.  

Does order matter? How can you store users response? How can you use the users 

response? 

Part 2: As individuals, in pencil.cc, choose the MadLib’s drop down and start to program using 

your algorithm 

How can you store users response? How can you use the users response? 

Tip Calculator 

Description 

This assignment asks students to create a basic tip calculating program that prompts the user for 

a bill amount and a tip percentage, then reports back to the user how much the tip should be. 

Goal 
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This assignment gives students further experience with variables, this time using them to 

store numbers and doing basic mathematical calculations with variables. 

Text shown to students 

Write an algorithm to calculate the tip for a meal based on 20%., you must use variables to 

represent numbers   The result should be the amount of tip (example-4 on a $20 meal) 

Paint by Quadrant 

Description 

In this assignment, students write a program that has the on-screen turtle follow the mouse cursor 

around the screen. As the turtle moves, it leaves a trail behind it. The color of the trail is 

determined by the color. The teacher demonstrated this assignment in class so students could see 

the behavior. 

Example shared in class: 

 
Figure A.2. A static picture of the completed Paint by Quadrant program. 

Goal 

This assignment is intended to introduce learners to conditional logic, using a visual depiction of 

how conditional logic can change the outcome of a program. 

Text shown to students 

[Students are first shown a demonstration of a working program.] 
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Plan of attack? What’s the first thing we should do? 

What does that look like? Write down on scrape piece of paper.  

When directed, open pencil. What blocks/code could you use to complete action? 

Movie Recommendation Engine 

Description 

This assignment asks students to develop a simple movie recommendation engine. The program 

will prompt the user with a pair of questions about their movie preferences and then, based on 

those preferences, recommend a movie to the user. 

Goal 

The goal of this assignment is for the students to gain further experience using conditional logic, 

in this case, comparing user input to predefined values to change the output of their program. 

Text shown to students 

Create an algorithm to suggest a movie to watch on Netflix based on a few (multiple) conditions:  

1) At least two categories to choose from (ie comedy or action or drama or etc…)  

2) Once the category is chosen, the user must choose another sub category ( ie comedy 

would be romantic comedy or comedic parodies…) 

3) End with suggesting a movie (must be school appropriate)  

Grade Ranger 

Description 

This assignment asks student to write a program that will convert a letter grade (like B+) to a 

percentage (87% - 89%).  
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Goal 

This program is intended to serve as a more complex application of conditional logic by having 

multiple nested conditions. 

Text shown to students 

In our program A- , A and A-  (etc.) each have a different value so we need conditionals to help 

sort it out. 

1. Ask the user for a letter (A-D) 

2. Ask the user to enter either a +, -, or = (= for ‘regular A, + would be B+ and – would look 

like A-). 

3. After taking in these two inputs, the program will tell the user what that range of grades is 

using if/else or conditionals.  Here are the grade ranges: So, if the user types in an ‘A’, 

then a ‘+’, the program will say: A+ is from 97-100. 

The grade ranges are: 

A+97-100 
A 93-96 
A-90-92 
Repeat for B, C, D 
F, F- and F+ are all equal to 0-59 

Guessing Game 

Description 

This assignment is a canonical introductory programming activity. Students write a program that 

randomly picks a number between 1 and 100 and then the user has a fixed number of tries to 

guess the number. After each guess, the program tells the user if their guess was too high, too 

low, or correct. 
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Goal 

This assignment introduces learners to iterative logic while also asking them to use conditional 

logic to determine the appropriate feedback. 

Text shown to students 

Part 1: You will be programming a game that stores a number in a variable and allows the user to 

guess the number. Use conditionals to check the two numbers. When the guess is too low, the 

program says “too low”, when the guess is too high, the program says “too high”, when the user 

guesses it, the program says – you got it! Write an algorithm for the program.  

 

Part 2: Change the game so the user only gets 7 guesses, so the program stops when the user 

guesses correctly or if the users uses up all 7 guesses. After the users guesses the number of fails 

in 7 attempts, ask the user if they want to play again, if yes, then let them play again, if not, end 

the game. 

Radial Art 

Description 

This assignment has students create a visual pattern that demonstrates radial symmetry. Students 

were shown the example displayed in Figure A.3. 
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Figure A.3. An example program for the Radial Art assignment. 

Goal 

The goal for this assignment was to built student intuition about iterative logic. 

Text shown to students 

Part1: Draw a geometric picture in pencil.cc, use at least 3 colors.  

Part 2: Use a loop to repeat the picture 

Squiral 

Description 

Students were asked to draw a pair of “squirals” (shown in Figure A.4).  

 
Figure A.4. A pair of squirals. 

Goal 
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This assignment was intended to give students the experience of using loops and variables in 

conjunction. To draw a squiral, the students need to increment a value over time to produce the 

visual pattern shown. 

Text shown to students 

Recreate the following pictures, you may choose either for or while loops and you may pick the 

color. One squiral starts in and moves out, one squiral starts out and gets smaller 

Polygoner 

Description 

In this assignment, students are given a basic function that draws a square and are asked to 

modify the function so that it takes in the number of sides and the length of sides as arguments 

and draws the specified polygon. 

Goal 

This assignment introduces learners to the concept of functions and parameters. 

Text shown to students 

Recreate the code in pencil.cc in the polygoner project (shown in ), test it out.  

What did you notice the program was doing? What is poly? How are sides and len used? What 

does poly (6, 100) do? 
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(Shown to the Text and Hybrid conditions) (Shown to the Blocks condition) 

Figure A.5. Templates for the Polygoner project. 
 
 Working in the polygoner project, first correct the logic so the function draws a polygon 

of sides number of sides. Next, add the option to change the lengths of the sides of the shape 

and the color of the polygon by adding a new parameters. Don’t forget to add this parameter into 

the existing functions being used!!   

Connect 4 

Description 

This project asks students to draw a Connect 4 board (a grid) and then add the ability for users to 

play connect four by rendering a black or red dot where the user clicks. No logic with regard to 

winning or making sure the players followed the rules was required. 

Goal 

The goal of this project was to ask students to define multiple functions and call them inside of 

each other. 

Text shown to students 
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Part 1: Create a function that draws 8 lines that are equally spaced apart, use a parameter that 

will allow the user to make the lines vertical or horizontal.  

 

Part 2: We need to create the code for when the user (player 1) clicks a spot on the grid a black 

dot is created at that spot, when the user clicks again (player two) a red dot appears in the new 

spot.  

You can starts with this function that has already been created.  

Click (e) -> 

 Moveto e 

Brick Wall 

Description 

This penultimate assignment asks students to combine conditional logic, repeating logic, 

variables, and functions. The assignment prompts the user for a number and then draws a brick 

wall with that many rows. Figure A.6 shows an example of what an 11 -row brick wall should 

look like. 

 
Figure A.6. An 11-row brick wall. 

Goal 
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The goal of this assignment is to ask students to combine the four concepts they have learned 

over the five week curriculum into a single program. 

Text shown to students 

a. Create a function to draw a brick.  

b. Next create a second function that creates a row of bricks across your screen.  

c. Create another function that draws an “odd” row of bricks  

d. Create a function that will let the user choose the number of bricks to be drawn 

Final Project 

Description 

For the final project, students are given a week to create a project that incorporates all the 

concepts covered since the beginning of the year. On the last day of the curriculum, students 

share their projects with their peers. Students are given a number of project ideas, including 

making games, interactive stories, or music videos. 

Goal 

The goal is for the students to demonstrate their understanding of the ideas covered in the course. 

Further, like the introductory assignment, this assignment gives students an opportunity to bring 

their own interests into the classroom. 

Text shown to students 

Create a game or program that has the following: 

• 3 functions with parameters 
• for loop 
• while loop 
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• variables 
• variable referencing 
• if/else conditionals 
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12. Appendix B – Attitudinal Survey 

This appendix entry includes the pre attitudinal survey in its entirety as well as the new 

questions added for the Mid and Post survey. The survey was administered online at the 

beginning, middle, and end of the study. The demographic questions (birthday, grade, gender, 

etc.) were only asked on the Pre assessment.  

Pre Attitudinal Survey 

1) Name  
2) Student ID  
3) Programming Class 
4) Birthday  
5) Grade  
6) Gender 
7) Race/Ethnicity (multi-select box with other free response option) 
8) What language (or languages) do you speak at home?  
 

The following questions are asked on a 10-point Likert scale and were asked on all three 

administrations of the survey. 

9) Programming is fun 
10) I will be good at programming  
11) Programming is hard  
12) I know more than my friends about programming 
13) Most women can learn to program 
14) In the future, I would like a job that involves programming 
15) I like programming 
16) Programming is a talent - you either have it or you do not 
17) My family encourages me to learn to program  
18) Knowing how to program is important  
19) My friends like using computers 
20) I can become good at programming 
21) I like the challenge of programming  
22) I think programming will be useful in the future  
23) I cannot learn to program well if the teacher does not explain things well  
24) I plan to take more computer science courses after this one.  
25) Computer Science is all about programming  
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The following set of questions give the student a text field to type in their responses and were 

only asked on the Pre survey. 

26) Why are you taking this course?  
27) What do you hope to learn in this course?  
28) The thing I am most excited about for this class is:  
29) Do you have any friends taking this course? If so, how many?  
30) How did you hear about this course?  
31) To be successful in programming courses, students need to: 

 

The following three questions were asked on all three administrations of the survey 

32) I define programming as:  
33) The most important thing about programming is:  
34) The hardest thing about programming is:  
 

The following questions are asked on a 10-point Likert scale on all three surveys. 

35) I will do well in this course  
36) I am excited about this course  
37) I think learning to program can help me with other classes  
38) I think learning to program will help me with things outside of school 
39) I think about the programs that control the devices I use in my everyday life.  

 

The final set of questions were multiple choice and only asked on the first administration of the 

survey. 

40) How much time do you spend on a computer at home each day?  
a) I don't use a computer  
b) Less then 1 hour  
c) Between 1 and 2 hours  
d) Between 2 and 3 hours  
e) More then 3 hours   

41) What do you do on the computer outside of school?  
42) What types of computational devices do you own/use regularly? Check all that apply.  

a) Laptop computer  
b) Desktop computer  
c) Tablet (iPad, Surface, etc.)  
d) Smartphone (iPhone, Samsun Galaxy, etc)  
e) Portable Media Player (iPod, portable movie player, etc.)  
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f) Game console (Xbox, Play Station, Wii, etc.)  

43) Have you taken any programming courses previously? If so, what coure(s) and when?  
44)  Have you ever used these languages/programming tools? Check all that apply.  

a) Scratch or Snap!  
b) App Inventor  
c) Alice  
d) HTML, CSS or Javascript  
e) Java, C++ or C#  
f) Python, Lisp or Scheme  
g) Pencil Code  
h) Other:   

45) Do you know any professional programmers? If so, who?  

Mid Attitudinal Survey 

This section only includes new questions to the survey. 

1) The thing I learned in Pencil.cc that will be most useful in Java is:  
2) The thing will be the most different about programming in Java compared to 

programming in Pencil.cc is:  
3) The thing I like most about Pencil.cc is:  
4) The thing I like least about Pencil.cc is:  

 
The following questions were asked on a ten-point Likert scale. 

5) What I learned with Pencil.cc will help me learn Java  
6) Pencil.cc has made me a better programmer 
7) I think Pencil.cc was a good use of class time  
8) Pencil.cc is similar to what real programmers do  
9) I will do well in this course 
10) I am excited about this course  
11) What are variables? How are they used in programs?  

 
The last set of questions on the mid survey asked about the concepts covered in the introductory 

portion of the course. Each question starts with a 7-point Likert question followed by a free 

response question. 

12) How easy was it to use variables in Pencil.cc?  
13) What do for loops and while loops do? How are they used in programs?   
14) How easy was it to use loops (for and while) in Pencil.cc?  
15) What do if and if/else statements do? How are they used in programs?  
16) How easy was it to use if and if/else statements in Pencil.cc?  
17) What is a function? How are functions used in programs?  
18) How easy was it to use functions in Penci.cc?  



 399 
Post Attitudinal Survey 

This section includes the new questions added to the survey for the final administration. 

1) The thing I learned in Pencil.cc that was the most useful in Java is:  
2) The thing that is the most different between Pencil.cc and Java is:  
3) Now that I am programming in Java, the thing I miss the most about Pencil.cc is: 
4) Now that I am programming in Java, the thing I miss the least about Pencil.cc is: 

 
The following questions were asked on a 10-point Likert scale. 

5) What I learned in Pencil.cc has helped me in Java   
6) Pencil.cc made me a better programmer 
7) I think Pencil.cc was a good use of class time  
8) Pencil.cc is similar to what real programmers  
9) I will do well in this course  
10) I am excited about what we will be doing the rest of the year in this course 
11) I am more excited about programming now than I was at the start of the year 
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13. Appendix C – The Commutative Assessment 

This appendix includes a full version of the Commutative Assessment. Details about the 

design of the assessment and how it was administered can be found in Chapter 3. Every program 

included in the Commutative Assessment can be displayed in either Pencil Code Blocks, Pencil 

Code Text, or Snap! Blocks. For the appendix, only one version of each script is provided. The 

assessment in its entirety, including the instructions and information about the assessment, is 

presented below exactly as it was shown to students. 

 

Programming Concepts 

Take your time on these questions. If you reach a question you do not know the answer to, please 

make your best educated guess. Your score on this activity will not count towards your grade in 

the class.  

 

For all of the questions below, please assume the all functions exist and behave as the name 

suggests. For example, if there is a program the includes the command: word.getLastLetter(), 

you can assume this function returns the last letter of that word.  

 

Calls to the function "write" will print the value passed in and anything wrapped in ‘’ (single 

quotes) denotes that those words are printed on the screen, so the line: write "Hi!" will print 'Hi!' 

on screen.  

 

A note on the text-based questions  
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a. x is equal to 15; y is equal to 15 
b. x is equal to 10; y is equal to 5 
c. x is equal to 5; y is equal to 10 
d. x is equal to 10, 15; y is equal to 5, 10 
e. x is equal to 'x + 5'; y is equal to 'x' 
f. x is equal to 15; y is equal to 10 
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a. ‘hi and bye and’ 
b. ‘’ [nothing will be printed] 
c. ‘hi bye and’ 
d. ‘hi and bye’ 
e. ‘hi and and bye and’ 

 
 

 
a. This program will cause an error 
b. Prints 'Hello' 5000 times 
c. Prints 'Hello' once after 5 seconds has elapsed 
d. Prints 'Hello' continuously for 5 seconds 
e. Prints 'Hello' once 
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a. Store user entered information 
b. Display text on the screen 
c. Compare two letters to each other to determine if they are the same 
d. Convert letters into numbers and numbers into letters 
e. Create and modify data as a program runs 

 

 
a. ‘’ [nothing with be printed] 
b. ‘apple orange apple orange apple orange’ 
c. It will be different each time you run it 
d. ‘apple apple apple orange orange orange’ 
e. ‘apple orange’ 

 

 
b. 0 
c. 1 
d. 5 
e. 10 
f. 50 
g. It will be different each time you run it 
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a. ‘The word is still too short!’ 
b. ‘The word is just rightthe word is still too short!’ 
c. ‘The word is just right’ 
d. ‘The word it too long!’ 
e. ‘The word is too short!’ 

 

 
a. ‘The word is too short!’ 
b. ‘The word is just right’ 
c. ‘The word is still too short!’ 
d. ‘The word it too long!’ 
e. ‘The word is just rightthe word is still too short!’ 
f. 'The word is too short!The word is still too short!' 

 

 
a. ‘sentence’ 
b. ‘BoysHello Girls’ 
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c. ‘Hello Girls and Boys 
d. ‘y + z + “ and “ + x’ 
e. ‘Hello Boys and Girls’ 

 

 
a. It always sets x equal to 5 
b. This program will cause an error 
c. Makes sure the value of x is less than 5 
d. Makes sure the value of x is not equal to 10 
e. Makes sure the value of x is between 10 and 5 

 

 
True or False: Part F must be the first step in the program 
True or False: It is necessary that part A comes before part B 
True or False: Part C must come before part E 
True or False: Part B is optional; the game will work without it 
True or False: There is only one way to write the code for these six parts of the program so 
that the game works 
 

 
a. E and F 
b. A, B, C, and D 
c. B, C, and E 
d. Only E 
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a. x is equal to 'yes, no'; y is equal to 'yes, maybe'; z is equal to 'yes, no' 
b. x is equal to 'no'; y is equal to 'maybe'; z is equal to 'yes' 
c. x is equal to ‘yes'; y is equal to 'maybe'; z is equal to 'no' 
d. x is equal to 'no'; y is equal to 'maybe'; z is equal to 'no' 
e. x is equal to 'no'; y is equal to 'maybe'; z is equal to 'x' 

 

 
a. ‘I include He and I include !’ 
b. ‘ and I include !’ 
c. ‘’ [nothing will be printed] 
d. ‘I include He and I include three Ls and I include !’ 
e. ‘I include He’ 
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a. it will be different each time you run it 
b. ‘3’ 
c. ‘531’ 
d. ‘31’ 
e. ‘543210’ 
f. ‘31-1’ 

 

 
a. ‘func1 func2 func1’ 
b. ‘func1 func2’ 
c. This program would cause an error 
d. '' [nothing is printed] 
e. ‘write func1 write func2’ 

 

 
a. ‘func3 func3 func1’ 
b. ‘func3 func1 func3’ 
c. ‘func3 func1’ 
d. ‘’ [nothing is printed] 
e. This program would cause an error 
f. ‘func3’ will be printed over and over until the script is stopped 
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a. Makes a and b equal to each other 
b. Rearranges the variables a, b, and tmp 
c. This program do not do anything 
d. Swaps the values of a and b 
e. This script doesn’t do anything 

 

 
a. The steps you follow to match the input period to your stored schedule is incorrect 
b. You are using the wrong command to print words onto the screen 
c. You are reading in the class period incorrectly 
d. You accidentally stored your first period class for every period of the day 

 

 
b. A then B 
c. A then B then C 
d. A then C 
e. Just C 
f. C then D then E 

 
 

a. a_names has fewer or the same number of names in it as all_students 
b. No two students will have the same name 
c. There will be no student names in a_names 
d. If you run the program twice for the same class, you will get a different list of names 

printed out each time 
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a. Set all three inputs to a temporary value 
b. Returns the largest of the three numbers 
c. Randomly returns on of the three numbers 
d. Return the smallest of the three numbers 
e. This program will cause an error 

 

 
a. 0 
b. 1 
c. 5 
d. 10 
e. ‘here’ will be continuously printed until the script is stopped 
f. It will be different each time you run it 

 

 
a. ‘inside the if inside the else all done’ 
b. ‘inside the if’ 
c. ‘inside the if all done’ 
d. ‘all done’ 
e. ‘inside the else all done’ 
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a. x is equal to 8; y is equal to 4; z is equal to 84 
b. x is equal to 8; y is equal to 8; z is equal to 16 
c. x is equal to 8; y is equal to 8; z is equal to 12 
d. x is equal to 8; y is equal to 4, 8; z is equal to 12 
e. x is equal to 8; y is equal to 8; z is equal to ‘x + y’ 

 

 
a. ‘Inside first if’ 
b. ‘Inside first ifInside second if’ 
c. ‘It will be different each time’ 
d. ‘Inside second if’ 

 

 
a. 3 
b. 6 
c. 10 
d. 18 
e. It will be different each time you run it 
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a. ’11’ then ’11’ then ’11’ 
b. ’11’ then ’13’ then ’18’ 
c. ‘’ [Nothing will be printed] 
d. This program will cause on error 
e. ‘x’ then ‘x’ then ‘x + 5’ 
f. ‘18’ then ‘18’ then ‘18’ 

 

 
a. Prints the word one letter at a time in the original order 
b. Prints the word once for each letter of the word (so for a 3-letter word, the whole word is 

printed 3 times) 
c. Prints the last letter of the word that is passed in 
d. Prints the word one letter at a time in reverse order 
e. This program will cause an error 
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a. ‘55’ 
b. ‘5’ 
c. ‘’ [nothing is printed] 
d. ‘10’ 
e. This program would cause an error 

 

 
a. ‘21’ 
b. ‘9’ 
c. ‘81’ 
d. ‘’ [nothing is printed] 
e. This program would cause an error 
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14. Appendix D – Interview Protocols 

 This appendix includes the interview protocols used for the interviews conducted at the 

beginning, middle, and end of the 15-week study. 

Pre Interview Protocol 

Programming and Computer Science Background 

Tell me about your programming experience? 

ECS students: 

• Tell me about ECS 
• What did you like about the class?  
• What didn’t you like? 
• What do you think the goal was? 
• What did you learn? 
• How did it prepare you for this course? 
• Tell me about the projects in the class: 

 
Tell me about your Scratch experience? 

Initial Perceptions of Pencil.cc 

About Pencil.cc 

• Do you have any PencilCode experience? 
• Is Pencil.cc programming? 

o What about it makes it programming?  
o What about it makes it different from ‘real programming’? 

• What is easy about pencil.cc, what is difficult? 
• Why do you think we are starting the year with pencil.cc? 

Program Comprehension 

For this portion of the interview, students are shown a program in the modality they will see in 

their class and asked questions about it. The two programs and subsequent questions are 

presented below. 
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Figure D.1. The first program shown to students in the pre interview. 

• What does it do? 
• Are all the lines necessary? 
• If we wanted to make it print out all the letters twice in a row what would you change? 

(h,h,e,e,l,l,o,o) 
• If we wanted to make it print the word twice in a row, what we would we change? 

(h,e,l,l,o,h,e,l,l,o)? 
 

 
Figure D. 2. The second program shown to students in the pre interviews. 

• What does it do? 
• Are all the lines necessary? 
• If we wanted to add another option where if the number was between 40 and 60 it would 

count down by 15, how we would do that? 

Program Generation 
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The last portion of the interview asks students to write the following program: 

Write a program that prompts the student for their grade and then reports back if the student 

is a underclassman if they enter 9 or 10, and an upperclassmen if they enter 11 or 12. 

Mid Interview Protocol 

Reflection on the Course 
• How has the class been going so far? 
• Did you like working in Pencil.cc 

o What was your favorite thing about it? 
o What was your least favorite thing about it? 

• If a friend of yours asked you to describe what you have done in class so far this year, 
what would you tell them?  

Transition to java 
• You just started working on Java, how has that been going? 
• How is it different that what you did in Pencil.cc in the first 5 weeks of school?  
• Do you think what you learned in pencil.cc is helpful for Java? If so what and how? 
• What has been the biggest difference between Pencil.cc and Java? 

Final Project Discussion 

Ask student to explain their final project and how it works 

Program Generation 

The last activity of the mid interview asks students to write the following program: 

Have the computer pick a random number less that 15 and then print out every multiple of 

that number that is less than 100. So if you pick 8, it would print 8, 16, 24….96. 

Post Interview Protocol 

Reflection on the Course and Java 
• How is the class been going so far? 
• Do you like Java? 
• What have you liked? And what have you not liked? 
• What have you learned so far about programming in Java? 
• What types of things can you do with Java? 
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o What types of things could you do with Pencil Code? 

• What is it important to know to be good at Java? 
• What do you think the easiest thing? 
• Do you like programming in Java? 

o Did you prefer programming with Pencil Code? 
• If a friend of yours asked you to describe what you have done in class so far this year, 

what would you tell them?  

Java Compared to Pencil.cc 
• So how does what you’re doing now in Java compare to what we did at the start of the 

year w/ Pencil Code? 
• What do you think are the big differences between Java and Pencil Code? 
• How is what you have done so far in Java different than what you did in the first part of 

the year in Pencil Code? 
o What is the same between Java and Pencil Code? 

• Do you think the stuff you did in Pencil Code was helpful for what you’re doing now? 
o If so, what and how has it helped?  
o Is there anything from Pencil Code that you think made Java harder? 

• Are there any strategies for programming that you developed while using Pencil Code 
that you now use in Java? 

o Any strategies that are different in Java? 
• You have worked in both java and in Pencil Code 

o Which format do you find easier to read programs in? 
§ Why? 

o Which format do you find easier to write programs in? 
§ Why? 

• Next year do you think we should spent the first 5 weeks using Pencil Code? Why or why 
not? 
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15. Appendix E – Coding Manuals 

 This appendix includes the coding manual for all of the qualitative coding done as part of 

this dissertation. The coding manuals are in order of when the appear in the dissertation. For each 

set of code, the corresponding Figure and section of the dissertation is referenced. All codes were 

applied by a secondary coder with the inter-rater reliability scores included in the text where the 

Figure appears. 

Pencil.cc vs. Java Comparison Coding Manual 

This coding manual was used for Figure 5.1and Figure 5.2 in Chapter 5. 

Code Description 

Visual Layout 
Response mentions the presence or absence of blocks or the blocks-like 
nature of the interface (note: this does not include the visual execution 
or the program) 

Ease of 
Composition 

Response refers to the drag-and-drop programming or explicitly 
mention how it is easier/harder to write programs in one modality. This 
code also includes the need to type in (or not type in) commands 

Browsability 
Response mentions the presence of the on the blocks in the palette and 
the ability to read through them. This also includes mentioning how 
commands do not need to be memorized or remembered 

Prefabricated 
Commands 

Response talks about how blocks can do more than a single command, 
or there not being a block for everything 

Visual 
Outcomes 

Response talks about the visual execution environment (i.e. moving a 
sprite or turtle compared to outputting text) 

Syntax Response references differences in syntax (i.e. semicolons or different 
keywords or a new language) 

In-editor Help Response references in-editor help features such as the help tip that 
appears when hovering over a command or the Quick Reference menu 

Other Response articulate other differences between Pencil.cc and Java not 
captured by the above codes 

What do ____ do? And how are they used in programs? Coding Manuals 

Variables Coding Manual 

This coding manual was used for Figure 6.1 in Chapter 6. 
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Code Description 
Container Response describes a variable as something that holds or stores things 
Placeholder Response describes a variable as a placeholder, a copy of something, or as 

a thing that references or refers to something else 
Pointer Response describes a variable as a thing that points to something else 
Their Own 
Thing 

Response describes a variable as its own thing (a value, a mini-program, a 
thing the computer uses) or is defined relative to itself 

Note: All categories are mutually exclusive. 

Conditional Logic Coding Manual 

This coding manual was used for Figure 6.2 in Chapter 6. 

Code Description 
Decides What 
Gets Run 

Response says that conditional logic is used to control the set of 
commands that will be run. 

Branching 
Logic 

Response includes language saying that conditional statements can be 
used to make one set of command run or another (i.e. either/or feature 
explicitly mentioned) 

Condition to 
Meet 

Response include language saying that a conditional statement includes 
a condition that needs to be met or a condition that decides what will be 
run. It does not includes responses that use event-based language 
("when x happens…") 

Boolean 
Statements Response explicitly includes the words true, false and/or Boolean 
If and If/Else 
Discussed Response defines both if and if/else 

Misconceptions 
Response includes misconceptions or incorrect statements about 
conditional logic. In particular using event-based languages (i.e. "if 
something happens then…") 

Note: Condition to Meet and Boolean Statements are mutually exclusive. 

Iterative Logic Coding Manual 

This coding manual was used for Figure 6.3 in Chapter 6. 

Code Description 
Define For 
Loops 

Response includes a definition (or attempted definition) for what a for 
loop is (i.e. it runs a set number of times) 

Define While 
Loops 

Response includes a definition (or attempted definition) for what a 
while loop is (i.e. it runs until a certain condition is met) 
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Save typing & 
Convenience 

Response includes language saying the loops are used to save typing, to 
make things easier, or to save the programmer from having to repeat 
code 

Temporal 
Explanation 

Response includes language suggesting that loops happen at a certain 
time (i.e. the mechanism is temporal as opposed to sequential) 

No Repetition Response does not include any language about repetition 

Incorrect or 
Misconception 

Response gives an incorrect definition of what either a for loop or a 
while loop, or show a fundamental misunderstanding of their behavior. 
Note: this is mutually exclusive with the temporal explanation category 

Functions (metaphors) Coding Manual 

This coding manual was used for Figure 6.4 in Chapter 6. 

Code Description 

Instruction 
Sets 

Reponses talks about functions as if they are a set of instructions, 
collection of commands, set of actions. It is explicit that the function is 
made up of a collection of things (statements, commands, actions, etc.)  

Equations Response talks about how functions are like equations or expressions 
Variables Response defines functions as variable or a type of variable 

Storage Response talks about functions as a type of storage or a way to store 
things (i.e. store information not store lists of commands). 

A way to Do 
Things 

A function is a singular thing that can be used to do something in a 
program (i.e. an action, a task, a mini-program, etc.) 

Note: All categories are mutually exclusive. 

Functions (features) Coding Manual 

This coding manual was used for Figure 6.5 in Chapter 6. 

Code Description 

Modularization 
 & Convenience 

Response says that functions are used to make programming easier, to 
save the user from typing, can be called repeatedly with different 
inputs or produce different outputs, or to break the program down into 
pieces 

Can be called Response attends to the fact that functions are things that can be called 
or run 

Take Inputs Response includes the fact that functions can take inputs or have 
parameters 

Have Outputs Response includes the fact that functions can (or do) have outputs 

Use Variables Response talks about how functions use variables or a similar to 
variables 

Like Equations Response talks about how functions are similar to equations 

Thing I Learned in Pencil.cc that Will be/Was Most Helpful in Java Coding Manual  
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This coding manual was used for Figure 8.2 and 8.3 in Chapter 8. 

Code Description 
Specific 
Concepts 

Response cites a specific concept or set of concepts (i.e. conditional 
logic, variables, etc.)  

Programming 
Basics 

Response references programming basics, either explicitly or by 
mentioning general programming components, like using blocks or 
commands 

Syntax & 
Format 

Response alludes to the syntax or format of code. This includes specific 
features like semicolons and curly brackets 

Process  Response speaks to some process related to programming (i.e. figuring 
things out step-by-step) 

Order & 
Sequence 

Response speaks to the order in which code is executed or the 
relationship between sequential statements 

Meta 
Programming 
Concepts 

Response speaks to a meta-aspect of programming, like problem 
solving, figuring out the relationship between the code and an outcome, 
or knowing what you want a program to do  

Note Sure Response says they are not sure about what will be useful between the 
two environments or is unable to draw link between Pencil.cc and Java 
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16. Appendix F: Java Compilation Error Parser 

 This appendix presents the code that was used to categorize error reported by the Java 

complier. The bulk of the logic in this program involves the use of regular expressions for 

pattern matching against standardized error messages generated by the compiler. This program 

was used in the analysis presented in the Frequency of Java Errors section of Chapter 8. This 

code was largely written by Connor Bain as part of an independent study organized by Uri 

Wilensky and lead by David Weintrop. 

 
import re 
 
def ErrorTypeIdentifier(theError): 
 
# Incorrect javac call (missing .java) 
    if re.search("Class names, '.*', are only accepted if 
annotation processing is explicitly requested", theError): 
        return "incorrect javac call" 
    if re.search("javac: file not found: (.*)\.java", theError): 
        return "incorrect javac call" 
    if re.search("javac: invalid flag: (.*)$", theError): 
        return "incorrect javac call" 
 
# Class name does not match file name 
    if re.search("class .* is public, should be declared in a 
file named .*\.java$", theError): 
        return "wrong file/class name" 
 
# Incorrect package import 
    if re.search("package (.*) does not exist$", theError): 
        return "wrong package name" 
 
# Missing parenthesis or bracket 
    if theError == "\']\' expected": 
        return "unmatched parenthesis or bracket" 
    if re.search("\'\(\' or \'\[\' expected", theError): 
        return "unmatched parenthesis or bracket" 
    if re.search("\'\)\' expected", theError): 
        return "unmatched parenthesis or bracket" 
    if theError == "'(' expected": 
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        return "unmatched parenthesis or bracket" 
 
# Missing curly brace 
    if re.search("reached end of file while parsing", theError): 
        return "missing curly brace" 
    if re.search("\'{\' expected", theError): 
        return "missing curly brace" 
 
# illegal escape characters 
    if theError == "illegal character: '\'": 
        return "illegal escape character" 
    if theError == "illegal escape character": 
        return "illegal escape character" 
 
# copy and pasted smart quotes 
    if theError == "illegal character: '\u201d'": 
        return "used smart quotes" 
    if theError == "illegal character: '\u201c'": 
        return "used smart quotes" 
 
# variable already defined 
    if re.search("variable (.*) is already defined in method 
(.*)$", theError): 
        return "variable already defined" 
 
# variable not initialized 
    if re.search("variable .* might not have been initialized$", 
theError): 
        return "variable not initialized " 
    if theError == "variable not initialized ": 
        return "variable not initialized" 
 
# Static / Context issues 
    if re.search("Illegal static declaration in inner class 
(.*)$", theError): 
        return "static context issues" 
    if re.search("non-static method (.*) cannot be referenced 
from a static context$", theError): 
        return "static context issues" 
    if re.search("non-static variable (.*) cannot be referenced 
from a static context$", theError): 
        return "static context issues" 
 
# Type issues 
    if re.search("incompatible types: (.*)", theError): 
        return "type mismatch" 
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    if re.search("incomparable types: (.*)", theError): 
        return "type mismatch" 
    if re.search("bad operand types for binary operator 
'(.*)'$", theError): 
        return "type mismatch" 
    if re.search("bad operand type (.*) for unary operator 
'(.*)'$", theError): 
        return "type mismatch" 
 
# Method argument issues 
    if re.search("no suitable method found for (.*)$", 
theError): 
        return "wrong arguments" 
    if re.search("no suitable constructor found for (.*)$", 
theError): 
        return "wrong arguments" 
    if re.search("constructor (.*) in class (.*) cannot be 
applied to given types;$", theError): 
        return "wrong arguments" 
 
    return theError 
 

 


