
22 COMMUNICATIONS OF THE ACM | AUGUST 2019 | VOL. 62 | NO. 8

V
viewpoints

form of dragging-and-dropping pro-
gramming instructions together. If two
instructions cannot be joined to pro-
duce a valid statement, then the envi-
ronment prevents them from snapping
together. In this way, block-based pro-
gramming environments can prevent
syntax errors while still retaining the
practice of authoring programs by as-
sembling statements one-by-one.

While the visual cues and mitiga-
tion of syntax errors are key ingredi-
ents in supporting novices in having
early programming success, there
are additional features of block-
based programming that support
beginners. For example, block-based
programming environments present
the available set of commands to the
user in the form of an easily browsed
blocks palette from which the user
can drag the command into their
program (left-hand side of Figure
1a). Within the palette, the blocks

B
LOCK-BASED PROGRAMMING IS

increasingly the way that
learners are being intro-
duced to the practice of pro-
gramming and the field of

computer science more broadly. Led
by the success of environments like
Scratch (see the figure appearing later
in this column) and initiatives like
Code.org’s Hour of Code, block-based
programming is now an established
part of the computer science educa-
tion landscape. While not a recent
innovation (for example, LogoBlocks
has been around since the mid-1990s),
the last decade has seen a blossoming
of new toys, games, programming en-
vironments, and curricula that incor-
porate block-based programming fea-
tures. Given this growing presence, it
is important that we as a community
look critically at the block-based pro-
gramming modality to understand its
affordances, drawbacks, and identify

how best to use it as a means to wel-
come people into the discipline of
computer science and support them
as they grow and learn.

What Is Block-based
Programming?
Block-based programming has a num-
ber of key features that make it dis-
tinct from conventional text-based
programming and other visual pro-
gramming approaches. Block-based
programming uses a programming-
primitive-as-puzzle-piece metaphor as
a means of providing visual cues to the
user as to how and where commands
may be used. Figure 1b shows a block-
based program written in Scratch.
Block-based programming environ-
ments have been designed for children
as young as five years old but most
environments are designed for kids
ages eight to 16. Writing a program in
a block-based environment takes the

Education
Block-based Programming
in Computer Science
Education
Considering how block-based programming environments and tools
might be used at the introductory level and beyond.

• Mark Guzdial, Column Editor

DOI:10.1145/3341221 David Weintrop

http://dx.doi.org/10.1145/3341221

AUGUST 2019 | VOL. 62 | NO. 8 | COMMUNICATIONS OF THE ACM 23

viewpoints

V
P

H
O

T
O

 B
Y

 J
E

F
F

 G
R

I
T

C
H

E
N

/D
I

G
I

T
A

L
 F

I
R

S
T

 M
E

D
I

A
/O

R
A

N
G

E
 C

O
U

N
T

Y
 R

E
G

I
S

T
E

R
 V

I
A

 G
E

T
T

Y
 I

M
A

G
E

S

welcoming learners from popula-
tions historically underrepresented
in computing fields.1 These numbers
reinforce the idea that block-based
programming is playing a significant
and important role in introducing
youth to programming.

To understand how learners
make sense of the block-based mo-
dality and understand the scaffolds
that novice programmers find use-
ful, I conducted a series of studies
in high-school computer science
classrooms. As part of this work, I
observed novices writing programs
in block-based tools and interviewed
them about the experience. Through
these interviews and a series of sur-
veys, a picture emerged of what the
learners themselves identified as
being useful about the block-based
approach to programming. Students
cited features discussed here such as
the shape and visual layout of blocks,
the ability to browse available com-
mands, and the ease of the drag-and-
drop composition interaction. They
also cited the language of the blocks
themselves, with one student saying

are conceptually organized and color
coded. This allows users to browse
the set of available commands to see
what is possible rather than need-
ing to know before-hand what can
be done in the language. At the same
time, the drag-and-drop composi-
tion approach removes the challenge
of typing and finding uncommon
punctuation marks on the keyboard,
making programming more acces-
sible for people who struggle with
typing. Another notable feature of
block-based programming environ-
ments is that the graphical presenta-
tion of each programming statement
makes it possible to use natural lan-
guage to describe the behavior of the
command. For example, increment-
ing the value of a variable, which in
a programming language like Java
would look like this: x=x+1;, can
be accomplished with a command
that reads: change x by 1. Given the
myriad of supports present in block-
based environments, it is important
to understand if, how, and why this
approach is an effective way to intro-
duce novices to programming.

The Case for Block-
based Programming
A good place to start the discussion of
the benefits of block-based program-
ming is with the most successful
(to date) block-based programming
environment: Scratch.2 The goal of
Scratch was to create a programming
environment with sufficient scaf-
folds for novices to start to program
with little or no formal instruction
(low threshold) while also being able
to support sophisticated programs
(high ceiling). At the same time, it
was important that the environment
support a variety of types of program-
mers and programs (wide walls) and
provide a means for programmers
to share the programs they authored
and participate in a larger communi-
ty of programmers. Since its launch,
over 35 million users have created
accounts on the Scratch website and
almost 40 million projects have been
shared with a majority of users be-
ing under the age of 14. Further, re-
search has shown block-based tools
like Scratch and Looking Glass Alice
can be an effective environment for

Students working on Scratch projects during a summer algebra camp in Irvine, CA, USA.

24 COMMUNICATIONS OF THE ACM | AUGUST 2019 | VOL. 62 | NO. 8

viewpoints

an experienced programmer may be
able to see the conceptual equivalence
between the repeat block in Scratch
and a for loop in Java, the same is not
necessarily true for beginners. As part
of my classroom interviews, some
students expressed concerns over
the authenticity of block-based pro-
gramming. For example, one student
stated: “if we actually want to program
something, we wouldn’t have blocks,”
which calls into question the poten-
tial utility of block-based tools. Stu-
dents also expressed concern over the
expressive power of block-based envi-
ronments, saying things like “blocks
are limiting, like you can’t do every-
thing you can with Java, I guess. There
is not a block for everything.” While
this statement is not necessarily true
of all block-based environments (for
example, there are numerous block-
based interfaces for Java), the fact that
students perceive this difference is a
challenge educators face.5

A second open question surround-
ing block-based programming is
whether or not block-based tools
help learners with transitioning to
text-based languages. There have
been some documented examples of
students learning concepts in block-
based environments and successfully
transferring those ideas to a text-based

“Java is not in English it’s in Java lan-
guage, and the blocks are in English, it’s
easier to understand.” I also surveyed
students after working in both block-
based and text-based programming
environment and they overwhelm-
ingly reported block-based tools as
being easier.5 These findings show
that students themselves see block-
based tools as useful and shed light
as to why this is the case.

To investigate learning outcomes
associated with block-based pro-
gramming, I conducted a quasi-ex-
perimental study in two high school
computer science classrooms. The
two classrooms used the same pro-
gramming environment with one dif-
ference: one environment presented
the code in a block-based interface
while the other had a text-based in-
terface. The underlying program-
ming language was the same between
the two meaning anything that could
be done in one modality could also
be done in the other. Starting on the
first day of school, the two classes
spent five weeks working through the
same curriculum and were taught by
the same teacher. The study was de-
signed to control for as many factors
as possible aside from the program-
ming modality. After the five-week
introduction, students in the block-

based condition scored significantly
high on content assessments than
their text-based peers.6

Challenges and Open Questions
While research has shown the poten-
tial of block-based environments,
there are still challenges and open
questions related to the role of block-
based programming in introductory
computing contexts. One significant
question relates to perceptions of
block-based tools and whether or not
dragging-and-dropping colorful and
playful programming commands con-
stitutes “real programming.” While

It is worth thinking
about what role
block-based
languages
might play in
the design of
computational tools.

The Scratch programming environment (a) and a block-based program written in Scratch (b).*

(a) (b)

a In early programming work with the Logo language (from which Scratch is based), students would
draw square spirals that came to be called squirals: the image (and program) reflects that history.

AUGUST 2019 | VOL. 62 | NO. 8 | COMMUNICATIONS OF THE ACM 25

viewpoints

language, however, my own research
has not replicated these results. In a
continuation of the quasi-experimen-
tal classroom study discussed above,
after students finished their five-week
introduction to programming in the
block-based and text-based introduc-
tory environments, all students tran-
sitioned to the Java programming lan-
guage. After 10 weeks of learning Java,
I readministered the content assess-
ment. Despite students in the block-
based condition scoring significantly
higher after the introductory portion
of the course, there was no significant
difference in scores between students
in the two conditions. This means
the gains associated with the block-
based introduction did not translate
to students being further ahead when
learning Java but also did not hamper
their transition.3 Understanding how
to better scaffold learners moving be-
tween modalities, and the role of the
teacher in this processes is a direction
of future work for the field.

What the Future Block-based
Programming Might Be
So, what is next for block-based pro-
gramming? First, as the research
described in this column suggests,
the literature shows block-based
programming should have a home
in computer science education. One
version of that is in the role it is cur-
rently playing, that of introductory
tools designed to welcome novices
to the field, either in upper elemen-
tary grades (ages 10 to 14) or high-
school (up to age 18). As to what ex-
actly that looks like and how such
environments can support learners
in moving beyond block-based tools
is an open question. One potential
direction is hybrid and bidirectional
programming environments that
blend block-based and text-based
tools, giving the learners agency for
deciding how and when to switch
programming representation. This is
one active and exciting area of design
research in the area of introductory
computing.

Looking beyond introductory con-
texts, there is a larger question about
the potential role of block-based
tools in the world of computer sci-
ence. Currently, there is an assump-
tion that block-based tools serve as

an entry point with the expectation
that learners move beyond it to con-
ventional text-based programming
languages. However, as the Com-
puter Science for All movement pro-
gresses and programming becomes
a more universal literacy, it is worth
thinking about what role block-based
languages might play in the design of
computational tools. If it is possible
to do significant, non-trivial tasks in
block-based environments, should
we still expect all learners, even those
not likely to pursue a degree in com-
puter science, to learn text-based
programming? For example, we cre-
ated a block-based interface for con-
trolling industrial robots and found
it be easier for adult novices to use
than existing robotics programming
environment.4 Given the success of
this design, it becomes easy to imag-
ine a world with countless domain-
specific block-based programming
tools that put the power of comput-
ing at the fingertips of those who are
proficient with block-based program-
ming. This is not to say this is what
the future holds but instead I put this
forward as a way to think about new
possible end-points for computing
education and a more expansive view
of the potential of block-based pro-
gramming in the technological world
that awaits.

References
1. Kelleher, C., Pausch, R., and Kiesler, S. Storytelling

Alice motivates middle school girls to learn computer
programming. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(2007), 1455–1464.

2. Resnick, M. et al. Scratch: Programming for all.
Commun. ACM 52, 11 (Nov. 2009), 60.

3. Weintrop, D. Modality Matters: Understanding the Effects
of Programming Language Representation in High School
Computer Science Classrooms (Ph.D. Dissertation).
Northwestern University, Evanston, IL, 2016.

4. Weintrop, D. et al. Evaluating CoBlox: A comparative
study of robotics programming environments for adult
novices. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems 366, (2018),
1–12; https://doi.org/10.1145/3173574.3173940

5. Weintrop, D. and Wilensky, U. To block or not to
block, that is the question: Students’ perceptions
of blocks-based programming. In Proceedings of
the 14th International Conference on Interaction
Design and Children (2015), 199–208; https://doi.
org/10.1145/2771839.2771860

6. Weintrop, D. and Wilensky, U. Comparing block-
based and text-based programming in high school
computer science classrooms. ACM Transactions on
Computing Education (TOCE), 18, 1 (2017), 3; https://
doi.org/10.1145/3089799

David Weintrop (weintrop@umd.edu) is Assistant
Professor in the College of Education and the College of
Information Studies at the University of Maryland, College
Park, MD, USA. .

Copyright held by author.

Advertise with ACM!

Reach the innovators
and thought leaders

working at the
cutting edge
of computing

and information
technology through

ACM’s magazines,
websites

and newsletters.

Request a media kit
with specifications

and pricing:

Ilia Rodriguez
+1 212-626-0686

acmmediasales@acm.org

◊◆◊◆◊

