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Comparing Block-Based and Text-Based Programming
in High School Computer Science Classrooms
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The number of students taking high school computer science classes is growing. Increasingly, these students
are learning with graphical, block-based programming environments either in place of or prior to traditional
text-based programming languages. Despite their growing use in formal settings, relatively little empirical
work has been done to understand the impacts of using block-based programming environments in high
school classrooms. In this article, we present the results of a 5-week, quasi-experimental study comparing
isomorphic block-based and text-based programming environments in an introductory high school program-
ming class. The findings from this study show students in both conditions improved their scores between pre-
and postassessments; however, students in the blocks condition showed greater learning gains and a higher
level of interest in future computing courses. Students in the text condition viewed their programming ex-
perience as more similar to what professional programmers do and as more effective at improving their
programming ability. No difference was found between students in the two conditions with respect to confi-
dence or enjoyment. The implications of these findings with respect to pedagogy and design are discussed,
along with directions for future work.
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1 INTRODUCTION
There is a growing recognition that computing is an essential skill for all students to develop
in order to fully participate in an increasingly digital world. In response to this identified need,
new initiatives are underway seeking to bring computer science courses into high schools around
the world. The movement to bring computing to a growing number of students has resulted in
new curricula for high school classrooms using the latest generation of introductory program-
ming environments. Many of these curricula are choosing to use block-based environments to
serve as students’ initial introductions to the practice of programming. For example, the Exploring

Authors’ addresses: D. Weintrop, Department of Teaching & Learning, Policy & Leadership, College of Education and
College of Information Studies, University of Maryland, 2226D Benjamin Building, College Park, MD 20742; U. Wilensky,
Departments of Learning Sciences & Computer Science, Northwestern University, 337 Annenberg Hall, 2120 Campus Drive,
Evanston, IL 60208.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
© 2017 ACM 1946-6226/2017/10-ART3 $15.00
https://doi.org/10.1145/3089799

ACM Transactions on Computing Education, Vol. 18, No. 1, Article 3. Publication date: October 2017.

https://doi.org/10.1145/3089799
https://doi.org/10.1145/3089799


3:2 D. Weintrop and U. Wilensky

Computer Science Curriculum (Goode et al. 2012), the CS Principles course (Astrachan and Briggs
2012), and the materials produced by Code.org for classrooms, all incorporate the use of various
block-based programming tools. Despite the rise in prominence of block-based programming in
formal settings, open questions remain as to the strengths and drawbacks of this programming
modality when used in the classroom. Notably, relatively little comparative work has been done
evaluating block-based programming interfaces against more traditional text-based alternatives
in high school classrooms. This includes both questions of learning outcomes and attitudinal and
perceptual effects from using such tools. This article seeks to address this gap in the literature by
answering the following three-part research question:

How does block-based programming compare to text-based programming in high
school introductory computer science classes with respect to learning outcomes, at-
titudes, and interest in the field of computer science?

To answer this question, we conducted a 5-week quasi-experimental study in which two classes
at the same school worked through the same curriculum using either a block-based or text-based
interface for the same programming environment. Pre- and postcontent assessments were admin-
istered along with attitudinal surveys, semistructured clinical interviews, and classroom observa-
tions. This study design provides the data to answer the stated research question and shed light
on how the design of introductory programming tools affects learners in high school classrooms.
In the next section, we review the prior work this study is built upon, specifically reviewing re-
search on the design of introductory programming environments and the relationship between
representations and learning. Next, the methods used in this work are presented; this includes
a discussion of the programming environment used, the curriculum students followed, and in-
formation about the school and students who participated in the study. Following the methods,
we present the data and outcomes from a comparative analysis of the block-based and text-based
conditions of the study. The article concludes with a discussion of these findings, potential impli-
cations, and the limitations and future work needed to more completely understand the role of
modality in introductory programming classrooms.

2 LITERATURE REVIEW
2.1 Block-Based Programming
The block-based approach of visual programming, while not a recent innovation, has become wide-
spread in recent years with the emergence of a new generation of tools, led by the popularity of
Scratch (Resnick et al. 2009), Snap! (Harvey and Mönig 2010), and Blockly (Fraser 2015). These
programming tools are a subset of the larger group of editors called structured editors (Donzeau-
Gouge et al. 1984) that make the atomic unit of composition a node in the abstract syntax tree
(AST) of the program. Giving authors the ability to work directly on nodes in the AST is in con-
trast to providing smaller element (i.e., a character) or larger conceptual chunks (a fully formed
functional unit). In making these AST elements the building blocks and then providing constraints
to ensure a node can only be added to the program’s AST in a valid way, the environment can
protect against syntax errors. Block-based programming environments leverage a programming-
primitive-as-puzzle-piece metaphor that provides visual cues to the user about how and where
commands can be used as their means of constraining program composition. Programming in
these environments takes the form of dragging blocks into a scripting area and snapping them
together to form scripts. If two blocks cannot be joined to form a valid syntactic statement, the
environment prevents them from snapping together, thus preventing syntax errors but retaining
the practice of assembling programs instruction by instruction. Along with using block shape to
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Fig. 1. Four sample block-based programming languages: (a) BridgeTalk, (b) LogoBlocks, (c) Scratch, and
(d) Alice.

denote usage, there are other visual cues to help programmers, including color coding by concep-
tual use and the nesting of blocks to denote scope (Maloney et al. 2010; Tempel 2013).

Early versions of this interlocking approach include LogoBlocks (Begel 1996) and BridgeTalk
(Bonar and Liffick 1987), which helped formulate the programming approach that has since grown
to be used in dozens of applications. Alice (Cooper et al. 2000), an influential and widely used en-
vironment in introductory programming classes, allows learners to program 3D animations with a
similar interface and has been the focus of much scholarship evaluating the merits of the approach.
Agentsheets is another early programming environment that helped shape the block-based para-
digm through its approach of providing users with an intermediate level of abstraction between
high-level building blocks and low-level text-based language commands that alleviates the burden
of syntax for novice programmers (Repenning 1993). Figure 1 shows programs written in a number
of block-based programming tools.

In addition to being used in more conventional computer science contexts, a growing number
of environments have adopted the block-based programming approach to lower the barrier to
programming across a variety of domains. These include mobile app development with MIT App
Inventor (Wolber et al. 2014) and Pocket Code (Slany 2014); modeling and simulation tools in-
cluding StarLogo TNG (Begel and Klopfer 2007), DeltaTick (Wilkerson-Jerde and Wilensky 2010),
NetTango (Horn and Wilensky 2012), and EvoBuild (Wagh and Wilensky 2012); creative and artis-
tic tools like Turtle Art (Bontá et al. 2010) and PicoBlocks (The Playful Invention Company 2008);
and game-based learning environments like RoboBuilder (Weintrop and Wilensky 2012), Lightbot
(Yaroslavski 2014), and Google’s Made with Code initiative. Further, a growing number of libraries
are being developed that make it easy to develop application- or task-specific block-based lan-
guages (Fraser 2015; Roque 2007). This diverse set of tools and the ways the modality is being used
highlight its recent popularity and speak to the need for more critical research around the affor-
dances and drawbacks of the approach (Shapiro and Ahrens 2016; Weintrop and Wilensky 2015a).
Designers are also looking beyond conventional block-based interfaces. There are a growing num-
ber of environments that support novices converting block-based programs to textual languages
(e.g., Alice’s Java Bridge (Dann et al. 2012) and Blockly’s code generator feature (Fraser 2015)), as
well as others that blend block-based and text-based programming approaches (e.g., Pencil Code
(Bau 2015), Tiled Grace (Homer and Noble 2014), and Greenfoot’s Frame-based editor (Kölling et al.
2015)).
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2.2 Evaluating Block-Based Programming Environments
A variety of methodologies have been used to evaluate programming environments for novices,
including heuristic evaluation, controlled laboratory studies, computational analyses of learner-
created programs, and studies in classrooms and coding camps concerned with ecological validity.
In evaluating the challenges of transition from block-based to text-based languages, researchers
identified a number of features of the block-based approach to programming that facilitate novices,
such as being more readable, relaxing the need to memorize commands or syntax, and easing the
burden of typing by supporting dragging and dropping of commands (Kölling et al. 2015; Weintrop
and Wilensky 2015b). Related efforts also identified drawbacks to block-based tools, such as not
scaling well to larger programs and becoming cumbersome when defining commands with many
components, such as mathematic formulae or complex Boolean statements (Brown et al. 2015).
However, block-based tools generally score well on measures related to easing novice program-
mers’ early struggles. A recent study applied three sets of heuristics to compare a block-based
environment (Scratch) with two text-based languages, Java (in the Greenfoot environment) and
Visual Basic, finding Scratch to have the fewest (or tied for the fewest) number of problems iden-
tified (Kölling and McKay 2016). These heuristics evaluate features of the programming tools such
as engagement, clarity, learner-appropriate abstractions, and error avoidance.

Shifting to research evaluating block-based tools used in classrooms, we focus on Scratch (and
Scratch derivatives) and Alice, as these two tools have the widest use in contemporary computer
science education of the block-based environments listed previously. While both Alice and Scratch
have been used in formal education environments, it is important to keep in mind that the two
projects initially had different goals and different target age groups. Scratch, from its inception,
was focused on younger learners and informal environments (Resnick et al. 2009), while Alice
was targeted at more conventional computer science educational contexts and, as such, has been
the focus of more initiatives to evaluate student learning of programming concepts (Cooper et al.
2000).

We begin by reviewing literature on Scratch, investigating its use as the language of choice in
formal computer science environments. Ben-Ari and colleagues have conducted a number of stud-
ies on the use of Scratch for teaching computer science. Using activities of their own design (Ar-
moni and Ben-Ari 2010), Meerbaum-Salant et al. (2010) concluded that Scratch could successfully
be used to introduce learners to central computer science concepts including variables, conditional
and iterative logic, and concurrency. While students did perform well on the posttest evaluation
from this project, a closer look at the programming practices learners developed while working
in Scratch gave pause to the excitement around the results. The researchers claimed that students
developed unfavorable habits of programming, including a tendency for extremely fine-grained
programming and incorrect usages of programming structures, as a result of learning program-
ming in the Scratch environment (Meerbaum-Salant et al. 2011). Grover et al. (2015) conducted a
classroom study with middle school learners, asking students to work through their Foundations
of Computational Thinking (FACT) curriculum. The researchers found that students working with
a block-based programming environment showed significant learning gains in algorithmic think-
ing skills and a mature understanding of computer science as a discipline (Grover et al. 2015;
Grover et al. 2016), while also identifying misconceptions and challenges associated with intro-
ducing novices to programming (Grover and Basu 2017).

There is also a growing body of research on elementary-aged learners using Scratch and Scratch-
inspired environments such as Snap! (Harvey and Mönig 2010), LaPlaya (Hill et al. 2015), and
Scratch Jr. (Flannery et al. 2013). This work has identified design features early learners find help-
ful (e.g., using accessible language in the blocks (Harlow et al. accepted)), features that can be
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challenging for learners (e.g., the inclusion of advanced mathematics concepts such as negative
numbers and decimals (Hill et al. 2015)), and is starting to delineate a developmental trajectory
for early programming instruction (Franklin et al. 2017). Other work looking at comparing block-
based to text-based programming using Scratch has similarly found that Scratch can be an effective
way to introduce learners to programming concepts, although it is not universally more effective
than comparable text languages (Lewis 2010). Given Scratch’s intention of being used in infor-
mal spaces and its emphasis on introducing diverse learners to programming, it is important to
highlight Scratch’s success in generating excitement and engagement with programming among
novice programmers (Malan and Leitner 2007; Maloney et al. 2008; Tangney et al. 2010; Wilson
and Moffat 2010).

Compared to Scratch, the Alice programming environment has a longer history of serving as
the focal programming tool in introductory programming courses. Much of the motivation for us-
ing Alice in courses is based on findings that Alice is more inviting and engaging than text-based
alternatives and improves student retention in CS departments (Johnsgard and McDonald 2008;
Moskal et al. 2004; Mullins et al. 2009). Alice has also effectively been used by instructors who
adopt an object-first approach to programming as it provides an intuitive and accessible way to
engage with objects with little additional programming knowledge needed. Part of Alice’s suc-
cess and relatively widespread use is due to the fact that the creators of Alice have authored a
number of empirically backed textbooks and curricula that can serve as texts for an introductory
programming course (Dann et al. 2011; Dann et al. 2009).

A small but growing body of research is conducting systematic comparisons of block-based
and text-based environments. In a study using the Snap! programming environment, Weintrop
and Wilensky (2015) found that students perform differentially on questions asked in block-based
form compared to the isomorphic text alternative. These differences were not universal, however,
but instead were influenced by the concept under question, with students performing better on
block-based questions related to conditional logic, function calls, and definite loops and finding no
differences on questions related to variables, indefinite loops, and program comprehension ques-
tions. Another study investigating learning outcomes in isomorphic block and text environments
found little difference in learning outcomes, but did report that students completed activities in
the block-based environment at a faster rate (Price and Barnes 2015). This suggests that while the
same learning can be achieved, it happens more quickly in block-based environments.

2.3 Representation and Learning
“The tools we use have a profound (and devious!) influence on our thinking habits, and, therefore, on
our thinking abilities” (Dijkstra 1982).
As stated by the Turing Award–winning computer scientist Edsger Dijkstra in the above quote,
the tools we use, in this case the programming languages and development environments, have
a profound, and often unforeseen, impact on how and what we think. diSessa (2000) calls this
material intelligence, arguing for close ties between the internal cognitive process and the external
representations that support them: “we don’t always have ideas and then express them in the
medium. We have ideas with the medium” (diSessa 2000, p. 116, emphasis in the original). He
continues: “thinking in the presence of a medium that is manipulated to support your thought
is simply different from unsupported thinking” (diSessa 2000, p. 115). These symbolic systems
provide a representational infrastructure upon which knowledge is built and communicated (Kaput
et al. 2002). Adopting this perspective informs why it is so crucial to understand the relationship
between a growing family of programming representations and the understandings and practices
they promote.
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In focusing on the relationship between the programming representations used in instruction and
the learner, we take inspiration from similar work from the physics education community. Sherin
(2001) investigated the use of conventional algebraic representations as compared to programmatic
representations in physics courses and found that different representational forms have different
affordances with respect to students learning physics concepts and, as a result, affects their concep-
tualization of the material learned. Sherin (2001) summarizes this difference as follows: “Algebra
physics trains students to seek out equilibria in the world. Programming encourages students to
look for time-varying phenomena and supports certain types of causal explanations, as well as the
segmenting of the world into processes” [p. 54].

Wilensky and Papert (2006, 2010) give the name “structuration” to describe this relationship
between the representational infrastructure used within the domain and the understanding that
infrastructure enables and promotes. While often assumed to be static, Wilensky and Papert show
that the structurations that underpin a discipline can, and sometimes should, change as new tech-
nologies and ideas emerge. In their formulation of Structuration Theory, Wilensky and Papert
document a number of restructurations, shifts from one representational infrastructure to another,
including the move from Roman numerals to Hindu-Arabic numerals (Swetz 1989), the use of the
Logo programming language to serve as the representational system to explore geometry (Abelson
and DiSessa 1986), and the use of agent-based modeling to represent various biological, physical,
and social systems (Wilensky et al. 2014; Wilensky and Rand 2014; Wilensky 2001). This work high-
lights the importance of studying representational systems, as restructurations can profoundly
change the expressiveness, learnability, and communicability of ideas within a domain. The de-
velopment and adoption of new programming modalities, representations, and tools demand that
such analyses be conducted to better understand the effects of these emerging approaches to teach-
ing, learning, and using ideas within the domain of computer science. Having reviewed relevant
literature, we now continue with a description of the study design and methods.

3 METHODS
In this section, we present details on how, when, and with whom the study was conducted. We
begin by detailing the design of the study, then present the two modes of the introductory pro-
gramming environment used, then conclude this section with information about the participants
and setting.

3.1 Study Design and Data Collection Strategy
This study uses a quasi-experimental setup with two high school introductory programming
classes. The study follows each classroom for the first 5 weeks of a yearlong introduction to
programming course. Each of the classes used a different variant of the same programming en-
vironment called Pencil.cc (a customized version of the Pencil Code environment). The difference
between the two versions of the environment is in how programs are represented and authored.
One class used a block-based interface, and the second used a text-based modality; further de-
tails about Pencil.cc are presented in Section 3.2. The study began on the first day of school with
students in both classes taking preattitudinal surveys and content assessments.

The Commutative Assessment (Weintrop and Wilensky 2015) was used for the content assess-
ment. The Commutative Assessment is a 30-question multiple-choice test that covers the concepts
students encounter during the 5-week curriculum: variables, loops, conditionals, and functions.
The assessment also includes algorithm and comprehension questions. Each question on the Com-
mutative Assessment takes the form of a short program, followed by five multiple-choice options,
and asks the question: “What will the output of the program be?” The key feature of the Commu-
tative Assessment is that the short program snippets in each question are presented in one of three
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Fig. 2. The three forms programs may take in the Commutative Assessment.

modalities: Snap! blocks, Pencil Code blocks, or text (Figure 2). The comprehension questions are
like the content questions, except that they ask: “what does this program do?” and challenge the
student to go beyond just output to figure out its behavior and potential uses. Finally, the algo-
rithm questions were posed in plain text and asked students to identify the order of steps in an
algorithm or identify potential missing steps. Each assessment included a mix of modalities so
students answer questions in all three forms for each content area. There were three versions of
the assessment given at each time point, so every question was answered in each modality at each
time point. This counterbalance design ensures an even distribution of modality, concept, and con-
dition (i.e., every question was answered in each modality by students from both the blocks and
text classes).

The attitudinal survey was loosely based on questions from the Georgia Computes project
(Bruckman et al. 2009) with specific questions being added for this study. It included 10-point
Likert scale questions and short response questions. At the conclusion of the study, students again
took the attitudinal survey and Commutative Assessment. The post-content assessment was com-
posed of the same questions as the preassessment, just in a different order and with different
modalities for questions, while the attitudinal survey was largely the same, with the exception of
a few additional reflection questions. The surveys were administered online during class time on
consecutive days so as to minimize testing fatigue. The attitudinal survey took students around 20
minutes and the content assessment took close to 25 minutes. The assessments were given on the
same day in both classes.

A number of qualitative data sources were also gathered as part of this study to complement the
quantitative data just discussed. The major qualitative data source for this study was semistruc-
tured clinical interviews with students, which are included sparingly to supplement the quantita-
tive findings presented in this article. These interviews occurred outside of class time throughout
the 5 weeks of the study. Full versions of both of these instruments, as well as interview protocols,
can be found in Appendices B, C, and D of Weintrop (2016).

3.2 Pencil.cc and the Curriculum
This study used a custom-designed programming environment called Pencil.cc. Pencil.cc is based
off of the Pencil Code environment (Bau et al. 2015). Pencil Code is an online tool for learning to
program. Its interface (Figure 3) is split into two panes: on the left is the code editor, while the
right side is a webpage that can visually run the program the learner creates. The unique fea-
ture of Pencil Code that made it an ideal choice for this study is that the editor supports both
block-based (Figure 3A) and text-based (Figure 3B) authoring. The block-based interface provides
a visual overlay on top of the text interface. This means the block-based and text-based versions
of the programs are the same with respect to the actual characters and commands in the program,
but the block-based form has the visual characteristics typical of block-based programming and
supports drag-and-drop composition. In this way, the block mode and text mode are completely
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Fig. 3. The Pencil.cc interface. One class in this study used the block-based mode (A), while the other class
used only the text-based mode (B).

isomorphic, and the two interfaces have the exact same semantics, syntax, and set of capabilities.
The only thing that differs is how programs are composed and visually rendered. The major dif-
ference between Pencil Code and Pencil.cc is that in Pencil Code, the learner can freely navigate
back and forth between the block and text modalities; however, given the questions being pursued
in this study, Pencil.cc restricts students to a single modality, either the blocks modality or the text
interface.

The blocks-only version of Pencil.cc includes many of the features that have been identified by
learners as useful in block-based environments, such as the browsability of blocks in the palette and
the ease of composition through the drag-and-drop interaction (Weintrop and Wilensky 2015b).
Students in the text-only condition never saw the block-based interface and instead had to type
all of their commands in character by character. The text editor does include syntax highlighting
as well as basic compile-time error checking (this took the form of a red X to the left of the line
number when students typed invalid commands). CoffeeScript was chosen as the programming
language for this study as it is syntactically lightweight, a professional programming language
lending authenticity to the activities, and supports Pencil Code’s Turtle.js library, enabling Logo-
style activities.

The 5-week curriculum for the introductory course is loosely based on the Beauty and Joy of
Computing course (Garcia et al. 2015), along with an assortment of other introductory computing
activities grounded in the constructionist programming tradition developed by Papert and others
around the Logo programming language (Papert 1980; Harvey 1997). An emphasis of this design
is giving students creative freedom within each assignment. Over the course of the 5 weeks, four
major conceptual topics are covered: variables, conditional logic, looping logic, and procedures.
Throughout the curriculum, care was taken to blend visually executing programs (like traditional
Logo graphics drawing assignments or Scratch-style creative projects) and number or text pro-
cessing activities that do not have a graphical component. Every concept had at least one visual
and one text-only activity. The goal of this design was to not prioritize activities that are more
conducive to one modality over the other. The curriculum was largely designed by the first au-
thor, but the teacher contributed ideas and lessons and customized the activities while teaching
them. A full copy of the curriculum can be found in Appendix A of Weintrop (2016).
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3.3 Setting and Participants
This study was conducted at a large, urban, public high school in a midwestern American city,
serving almost 4,000 students. The school is a selective enrollment institution, meaning students
have to take an exam and qualify to attend. In this school district, students are selected based on
their performance on the admissions test relative to other students from their school (as opposed
to all other applicants). As a result, students attend this school from across the city and there
is equal representation of students from underresourced schools as from schools in more afflu-
ent neighborhoods. The student body is 44% Hispanic, 33% white, 10% Asian, 9% black, and 4%
multiracial/other. A majority of the students in the school (58.6%) come from economically disad-
vantaged households, with the student body also including second language learners (0.6%) and
diverse learners (4.5%).

The experiment was conducted in an existing Introduction to Programming course. Historically,
the class spent the entire year teaching students the Java programming language. To accommodate
the study, Java instruction began in the sixth week of school, after the conclusion of the 5-week
curriculum presented earlier. Each class had 30 students and each student was assigned a laptop
computer, which they used every day for the duration of the study. Students sat in individual
desks that were on wheels that allowed them to move around the room. The same teacher taught
both sections of the course in the same classroom in back-to-back periods (seventh period for
blocks and eighth period for text), allowing us to control for teacher effects. The teacher holds an
undergraduate degree in technical education and corporate training. The year she participated in
the study was her eighth year of teaching, and third at this school.

The computer science course used for the study is an elective class but historically has attracted
students from a variety of racial backgrounds and been taken by both male and female students.
A total of 60 students participated in the study across all 4 years of high school (nine freshman,
nine sophomores, 16 juniors, and 26 seniors). The self-reported racial breakdown of the partici-
pants was 41% white, 27% Hispanic, 11% Asian, 11% multiracial, and 10% black. The two classes in
the study were composed of 11 female students (five in blocks, six in text) and 49 male students
(25 in blocks, 24 in text). This gender disparity is problematic, but as recruitment for the courses
was out of the control of the researchers, there was little that could be done to address this. Of the
students participating in the study, almost half (47%) speak a language other than English in their
households.

4 FINDINGS
Next we present our analysis of the data collected in this study. This section begins with a statis-
tical analysis of student performance on the Commutative Assessment. These findings are then
discussed with respect to modality and concept. Next, we shift to perceptions, beginning with
perceived ease of use of the tools, then doing a systematic presentation of student responses to
questions from the pre- and post-attitudinal survey.

4.1 Learning Outcomes by Condition
The first objective of this section is to show there is no difference between the two conditions in
their performance on the first administration of the assessment that might skew later findings. On
the pre-content assessment, the mean scores by condition were 54.3% (SD = 12.2%) for blocks and
51.6% (SD= 14.5%) for the text condition. Running a t-test on these two scores shows them to not be
statistically different from each other: t(57) = 0.78, p-value = 0.44, d = 0.20 (note: when calculations
show a number of participants below 60, it is due to student absence on the day of the survey or
test). This lack of difference means that the two classes are not different from each other with
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Fig. 4. Student Commutative Assessment scores by condition over time.

respect to their incoming programming knowledge. With that established, we now move forward
with our analysis of learning gains by condition. Figure 4 shows average scores for students across
the two conditions on the pre- and post-Commutative Assessment administrations.

On the postassessment, the mean score for the blocks condition was 66.6% (SD = 13.4%), while
the text condition had a mean score of 58.8% (SD = 14.6%). The positive slope for both conditions
between the pre- and postassessments means that, in aggregate, students in both classes performed
better on the postassessment than they did on the preassessment. Given that this was an intro-
ductory class, this is not surprising, but still noteworthy and an encouraging sign given that these
two conditions cover most of the modalities used to introduce learners to programming. For both
conditions, the improvement on test scores from the pre- to the postassessment was significant
(blocks: t(24) = 6.11, p < .001, d = .96; text: t(26) = 3.70, p = .001, d = .50). While the improvements
are significant, the blocks condition saw a larger absolute gain.

Running a t-test comparing the scores on the postassessment reveals a statistically significant
difference in scores between the two groups: t(52) = 2.03, p-value = 0.041, d= 0.58. This means that
students who spent 5 weeks working in a block-based programming environment, in aggregate,
performed better than students working in an isomorphic text-based environment. As a reminder,
the study design controls for teacher effects, time on task, setting, and the set of activities used.
This leads to the conclusion that the design of the programming interface affects student learning;
in other words: modality matters.

4.1.1 Condition by Modality. To better understand the learning gains found in the previous
section, we now take a closer look at the data to try and understand the source of these learning
gains, in hopes of attributing these findings to the modalities used in the introductory learning en-
vironments. We do this by first looking at differences in outcomes by the modality of the question
being asked, and then by looking at differences by concept. Figure 5 shows mean student scores
on the postadministration of the Commutative Assessment grouped by modality and condition. In
other words, for the two conditions (blocks and text), how did students perform on questions that
presented their code as Pencil Code text (Figure 2C), Pencil Code blocks (Figure 2B), and Snap!
blocks (Figure 2A)?
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Fig. 5. Student scores on the Commutative Assessment grouped by modality and condition.

The first thing to note from Figure 5 is that across all three modalities that questions were asked,
the blocks students outperformed the students who had used the text-based interface. Of these
three modalities, only the difference on the Pencil Code blocks questions is statistically significant
(Pencil Code blocks: t(52) = 2.72, p = .008, d = .73; Pencil Code text: t(52) = 1.52, p = .134, d =
.41; Snap! blocks: t(52) = 1.17, p = .246, d = .32). Despite the lack of significance across all three
groups, we can still draw some conclusions from this data. First is the fact that the blocks condition
outperformed the text condition in all three modalities, including, most surprisingly, the Pencil
Code text questions. In other words, students in the blocks condition scored higher on a modality
they had not used, compared to students who had just spent the previous 5 weeks using that
modality. This finding suggests that the understanding that forms in one modality is not tightly
coupled to that modality. An alternative interpretation of this finding is that the ability to make
sense of programs developed in the block-based modality is not tightly coupled to that modality.
This suggests a potential form of near transfer from the block-to-text modality, similar to findings
from related work (Grover et al. 2015). A second conclusion we can draw from this data is that
students performed comparably across the three modalities, as opposed to seeing a pattern where
students perform the strongest in the modality they have been using most recently. This is a second
piece of data showing that learners’ emerging understandings are not tightly bound up with the
modality they used. Finally, the fact that students in the text condition scored higher on the Snap!
block questions suggests there are additional affordances to the Snap! presentation of blocks over
the Pencil Code blocks, some of which can be seen in Figure 2, like the natural language commands
and a larger variety of slots and block shapes. A further investigation of the Snap! versus Pencil
Code blocks difference is outside of the research questions being pursued in this article but is an
intended avenue of future research.

4.1.2 Condition by Concept. The next analysis of this data investigates differences in concep-
tual understanding by condition. In doing so, we answer the question: does modality affect how
students learn specific concepts? In other words, are certain concepts more easily learned through
working in one modality versus another? Figure 6 shows student performance across the six con-
cepts assessed on the post-Commutative Assessment.
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Fig. 6. Student performance on the midpoint administration of the Commutative Assessment grouped by
condition and concept.

As with the previous analyses looking at performance by modality, when looking at perfor-
mance by concept, the students in the blocks condition, in aggregate, outperform students in the
text condition in every category. Running a t-test calculation on each concept category shows only
a significant difference between the two conditions for the comprehension questions: t(52) = 3.21,
p = .002, d = 86. The lack of significant differences in the other five categories, but the pattern
of the blocks condition scoring higher than the text condition, suggests that learning in a given
modality does not help with a specific concept as much as it is generally useful across all concepts.
The finding that students scored particularly low on the comprehension questions echoes similar
work looking at the relationship between modality and conceptual understanding (Weintrop and
Wilensky 2015) and matches prior work on students’ difficulties in drawing larger meaning and
purpose when reading programs (Robins et al. 2003). That the scores on these questions were the
most different suggests that comprehension may be one place that learning with a specific modal-
ity may be helpful. One possible explanation is that when composing programs with block-based
tools, the learner is working with compositional units that match larger cognitive building blocks
(the command itself) as opposed to needing to assemble those blocks one character at a time. As
such, the blocks modality requires less cognitive effort to be expended on the implementation of
that idea, giving the learner more practice thinking at a conceptual level.

4.2 Perceived Ease of Use of Concepts by Condition
Along with actual performance on the Commutative Assessment, we are also interested in how
students perceive the ease of use of the two modalities. Specifically, we are interested in how
students view each concept in the two modalities. The goal of this line of inquiry is to understand if
some concepts are viewed as easier in one modality versus the other, and then, whether or not these
perceptions match students’ performance on the content assessment. This shift toward perceptions
serves as a bridge between the previous section on learning outcomes and the sections to follow
on attitudinal outcomes from the study. On the attitudinal assessment given at the conclusion of
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Table 1. Distribution of Ease-of-Use Responses

Variables Loops Conditional Logic Functions
Blocks Text Blocks Text Blocks Text Blocks Text

Li
ke

rt
Re

sp
on

se

1 (Very Easy) 13 10 11 3 14 8 5 2
2 7 4 6 7 8 6 6 5
3 4 5 3 9 2 6 9 7
4 2 4 3 4 0 2 3 6
5 0 2 1 3 2 3 1 2
6 1 2 3 1 0 2 1 3

7 (Very Hard) 0 1 0 1 1 1 2 3

the study, there were a series of 7-point Likert scale questions about perceived ease of use of the
various programming concepts covered. The distribution of responses to the Likert questions is
shown in Table 1. Each cell in the table reports the number of students that chose that Likert scale
value.

For all four conceptual categories, students in the blocks condition viewed the concept under
question as easier to use than students in the text condition, as can be seen by the larger quantities
in the blocks columns in the top rows of Table 1. Running a Mann-Whitney-Wilcoxon test for
each conceptual category finds two of the four concepts to be statistically different between the
two groups: Conditional Logic, U = 252.5, p = .03, and Iterative Logic, U = 266, p = .05 (Functions
U = 275, p = .08, and Variables U = 283, p = .10 fail to reach statistical significance at the p = .05
level). Due to the study design, these aggregate differences between blocks and text conditions are
best explained by the modality itself. This means that students found using conditional logic and
iterative logic in the drag-and-drop blocks modality to be easier than the all-text condition.

Comparing Table 1, which shows the ease of use of concepts, and Figure 6, which shows scores
by concept and modality, for the four concepts that overlap, there is a correlation between how
easy a concept is perceived to be and how well students did on questions on that topic. Running a
Spearman rank-ordered correlation returns a value of rs = .81, showing a high correlation between
students’ perceived ease of use of a concept and their performance on the assessment of that
concept. This suggests that students’ own perceptions of ease of use match their ability to answer
questions about that concept.

4.3 Perceptions and Attitudes by Condition
To understand how students’ attitudes and perceptions were affected by the modality, we turn
to responses from the attitudinal assessment. This survey included a number of questions asked
on a 10-point Likert scale. In this section, we look at four dimensions of students’ attitudes and
perceptions of computer science: confidence, enjoyment, perceived difficulty, and interest in future
computer science learning opportunities. Please note, in this section, we report both significant
and nonsignificant findings as there are times the lack of significant results is counter to commonly
held beliefs. When comparing the blocks and text conditions to each other, a Wilcoxon Rank Sum
test is used (reported as a U statistic). This test is appropriate as the two samples are independent
and the underlying data is nonparametric and ordinal in nature. In cases where the analysis looks
at changes within a group between the pre- and postsurveys, a Wilcoxon Signed Rank test is used
(reported as Z statistic). This test is appropriate given the ordinal nature of the Likert responses
and because it is a nonparametric test used to compare paired samples.
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Fig. 7. Mean aggregate confidence score for students by condition.

4.3.1 Confidence in Programming Ability. To calculate a reliable measure of confidence, student
responses to the following two Likert scale statements were averaged together: I will be good at
programming (or I am good at programming on the posttest) and I will do well in this course.
These questions show an acceptable level of correlation, having Cronbach’s α scores of .82 on the
presurvey and .80 on the postsurvey, which are right at the .8 threshold commonly used to define
an acceptable level of reliability. The aggregated confidence measure at the pre- and post-points
in time are shown in Figure 7. Please note that all figures in this section are on the same scale but
do not cover the same range, so they can be compared relatively, but not absolutely. Also, please
note that the y-axis on each of these figures does not start at 0; this is done to make the chart more
readable.

The mean confidence scores at the outset of the study was M = 7.92 (SD = 1.47) on a 10-point
Likert scale, which is rather high and can be attributed, in part, to the fact that this was an elective
course. The difference in scores between conditions on the presurvey is not statistically significant
(U = 307.5, p = .09). After spending the first 5 weeks of school working in Pencil.cc, the overall
average confidence scores inched up to M = 8.13 (SD = 1.62), a change that is also not statisti-
cally significant (U = 268.5, p = .08). Looking at differences by condition, we find no statistically
significant difference in levels of confidence between students who spend 5 weeks working in the
text-based version of the environment versus the block-based interface (U = 395, p = .78). Focusing
on the changes in levels of confidence between the pre- and posttest within the two conditions,
we do see a significant gain for the blocks condition (Z = 46, p = .05), but not for the text condition
(Z = 98.5, p = .82). Given the positive slope of the change in the blocks condition, this difference
can be interpreted as showing that students in the blocks condition saw a significant increase in
their confidence in their own programming abilities, which cannot be said for students in the text
condition. This outcome matches prior working comparing confidence in block-based and text-
based environments (Price and Barnes 2015).

The significant change in confidence for the blocks condition is consistent with other noncom-
parative studies that suggest that the block-based programming interface is effective in increasing
students’ confidence in their own programming ability (Maloney et al. 2008; Smith et al. 2014). The
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Fig. 8. Aggregate levels of students’ enjoyment of programming by condition at three points in the study.

lack of a positive trend for the text condition can be interpreted in a few ways. One explanation is
that the text modality does not improve students’ confidence in programming, for which a num-
ber of possible explanations could be given (e.g., they find it difficult or did not feel successful in
their time with it). A second plausible explanation for these data is that there was a ceiling effect,
meaning the students started with a high level of confidence, so there was little room for them to
become more confident, which was less the case in the blocks condition. As with other conclusions
drawn from the study, this finding indicates that future work needs to be done with students who
have less initial confidence in their programming ability.

4.3.2 Enjoyment of Programming. The second attitudinal dimension is whether or not students’
enjoyment of programming differed based on the modality they used. To calculate a measure of
enjoyment, responses to the following three Likert statements from the pre- and postsurveys were
averaged I like programming, Programming is fun, and I am excited about this course. These three
questions were found to reliably report the same underlying disposition at both time points (pre-
Cronbach’s α = .88, post-Cronbach’s α = .80). Figure 8 shows the aggregated enjoyment scores for
students across the two conditions at the beginning and end of the study.

As can be seen by Figure 8, there was little difference in students’ enjoyment of programming
based on modality. There was no statistical difference between the two conditions at the outset
(U = 399, p = 0.75) or the conclusion of the study (U = 408, p-value = 0.62). Likewise, neither
condition saw a significant difference in their reported levels of enjoyment between the pre- and
post-surveys (blocks: Z = 70.5, p = .20; text: Z = 93.5, p = .68). This lack of significant finding by
condition suggests that modality plays a relatively small role with respect to perceived enjoyment
of programming. An alternative explanation is that some other characteristic of the class, such
as the teacher or curriculum, played a much larger role in terms of student enjoyment. Either
way, this finding suggests that the narrative of block-based programming being more fun than
text-based programming does not hold for high-school-aged learners in formal classrooms.

4.3.3 Programming Is Hard. The attitudinal survey included the Likert statement: Programming
is hard. Initially, this was intended to be part of the confidence aggregate score, but ended up not
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Fig. 9. Average responses to the Likert statement: Programming is hard.

correlating with the other two confidence questions (pre-Cronbach’s α = 0.48, post-Cronbach’s
α = 0.57) so is treated independently. Figure 9 shows the pre- and postscores for students grouped
by condition for this question.

Unlike the last two questions, on the question about perceived difficulty of programming, we
see a significant difference between the two conditions after the 5-week curriculum. On the preat-
titudinal survey, we find a difference between the two conditions’ average reported score, but not
one that reaches statistical significance (U = 521, p = .11). On the postsurvey, that gap between
the two conditions grows to reveal a statistically significant difference in perceived difficulty (U =
524.5, p = .01). Looking at changes within the conditions, both groups saw programming as harder
on the postsurvey, but only the blocks condition’s responses were statistically significant (blocks:
Z = 42, p = .02; text: Z = 96, p = .51).

This finding is interesting given the fact that students in the blocks condition performed sig-
nificantly better than students in the text condition on the post-content assessment. In other
words, those who did better on the posttest also thought programming was more difficult. This
means that this perceived difficulty of programming does not match the blocks students’ per-
formance on the assessments. One possible explanation for this outcome is that students see a
difference between what they were doing in the block-based interface and the “programming”
that the question is asking about. It is worth noting that this view might not be specific to modal-
ity as the text condition also viewed programming as more difficult after programming in text
in Pencil.cc for 5 weeks, despite improved scores on the content assessment. This suggests the
perception is also shaped by other aspects of the environment, including the graphical execution
and the browser-based interface, both of which differ from the conventional view of programming.

4.3.4 Interest in Future CS. The last attitudinal category we present looks at whether or not
the modality used in the introductory programming environment affected students’ interest in
enrolling in future computer science courses. More specifically, students were asked, on a 10-point
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Fig. 10. Average responses to the Likert statement: I plan to take more computer science courses after this
one, grouped by condition.

scale, how much they agreed (10) or disagreed (1) with the following statement: I plan to take more
computer science courses after this one. Figure 10 shows the average response for students grouped
by condition.

At the outset of the study, there was no difference between the two conditions with respect to
interest in taking future computer science courses (U = 444.5, p = .70). Students in both groups
reported a relatively high interest in future coursework in the field, with students in the blocks
condition reporting an average of M = 7.93 (SD = 3.1) out of 10 and text students reporting an
average of M = 8.03 (SD = 2.2) out of 10. After 5 weeks working in the Pencil.cc environment,
student-reported levels diverge, with blocks students reporting a higher level of interest in future
courses (M = 8.59 out of 10, SD = 2.1), while text students were less interested (M = 7.18 out of
10, SD = 2.7). This difference in average scores is significant (U = 491.5, p = .04). Looking within
the conditions, neither the positive change for blocks students nor the negative change for text
students is statistically significant at the .05 level (blocks: Z = 25, p = .15; text: Z = 110, p = .29).

This result shows that students became more interested in computer science after working in a
block-based programming environment and less interested in computer science after working in
a text-based interface. After starting with a similar predisposition to future programming course-
work at the start of the study, the two student populations had different levels of interest after
working in the different modalities. This suggests that modality does have an impact on students’
interest in future computer science coursework. This finding matches other work showing that
block-based approaches to programming can help with student retention (Moskal et al. 2004) and
has implications with respect to creating environments that are intended to broaden participation
in computing and encourage students to start and continue with computer science instruction.

4.4 Perceptions of Introductory Environments
Along with pre-/postsurvey questions pertaining to student-held attitudes toward programming,
the postsurvey also included a pair of questions asking students to reflect on the effectiveness and
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authenticity of the introductory environment they used during the 5-week study. After 5 weeks
of working in Pencil.cc, students were asked respond to the following prompt: Pencil.cc is simi-
lar to what real programmers do. Responses were given on a 10-point Likert scale. The intention
of this question was to understand perceived authenticity of the two environments, as previous
work on block-based programming with high school students has found authenticity to be a draw-
back recognized by some high-school-aged learners (Weintrop and Wilensky 2015b). For students
working in the text condition, the average reported response to this question was M = 6.71 (SD =
1.82), while students in the blocks condition had an average response of M = 5.89 (SD = 2.22).
Despite the difference in values, a Wilcoxon Rank Sum test does not show these two scores to be
significantly different from each other: U = 448.5, p = .23. The survey also asked students how
effective they found Pencil.cc to be in terms of improving their programming ability. Specifically,
the 10-point Likert prompt read: Pencil.cc made me a better programmer. The average response
for students in the text condition was M = 7. 79 (SD = 1.85), while students in the blocks condition
had a slightly lower average score: M = 7.44 (SD = 2.23). These two scores are also not statistically
different from each other (U = 400, p = .71).

While these numbers do not report statistically significant findings, by drawing on other data
sources, particularly the free response questions on the postsurvey, we can get a fuller sense of
whether students’ perceived authenticity and effectiveness are salient for some students. For ex-
ample, one student, in reflecting on his time with the introductory environment and projecting
forward to what was to come, said: “I feel like Java will be more useful in the long run than what
(Pencil.cc) could offer me.” This view was echoed by another student who said in his post interview:
“(Pencil.cc) is a bit too limiting for someone who goes into this class thinking I’m going to make
something that is going to be used in industry.” In these quotes, the students’ long-term plans with
programming can be seen and how Pencil.cc does not necessarily fit into them. Taken together,
these data suggest differences may exist, particularly with respect to the question of authentic-
ity, but these views may not be universally held. Instead, students with more prior experience or
more serious intentions for future computer science instruction appear to be more critical of the
authenticity and utility of block-based introductory tools. The takeaway from this analysis is that
perceptions of modality by high school students appear to differ by student, but more work needs
to be done to understand this dimension of student perceptions of introductory tools.

5 DISCUSSION
The first contribution from this study is the finding that students using a block-based modality
showed significantly higher learning gains after 5 weeks of classroom instruction compared to
their text-based peers. It is important to keep in mind that for this study, students worked through
the same curriculum, with the same teacher, in the same classroom, and had the same time on
task, meaning that, as much as possible, external factors beyond the modality were controlled for.
Digging into this finding revealed a consistent pattern of students in the blocks condition outper-
forming their text-based peers. When looking at performance by the modality of the question being
answered, students from the blocks condition performed better for all three code formats (Pencil
Code blocks, Pencil Code text, and Snap! blocks). This was surprising as it meant the students in
the blocks condition did better on the Pencil Code text questions than the students who had ex-
clusively been using the text interface of Pencil.cc for the previous 5 weeks. Likewise, the blocks
condition did better on the Snap! questions, which used an interface neither condition had seen.
There are a few possible ways to interpret these numbers. One interpretation is that there is some
form of near transfer occurring from the Pencil.cc blocks interface both to another blocks inter-
face (Snap!) and to a similar (or syntactically identical) text interface (Pencil Code text). A slightly
different interpretation is that the learning that happened by students in the blocks condition is
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not so tightly coupled to the interface that it cannot be used across languages. The distinction be-
tween these two interpretations is whether the learning that occurred was about the modality or
the underlying concepts. This suggests one direction for future work that will be discussed later.

Just like with the questions-by-modality finding, students in the blocks condition outperformed
their text counterparts in all six content categories on the postassessment. This means that the
utility of learning to program in a block-based interface is not confined to one specific concept
or another. This is further evidence in support of the finding that block-based programming does
provide learning supports for novices in introductory contexts. That last clause “introductory con-
texts” is important, as we do not yet know how these advances will support novices as they transi-
tion to more conventional programming languages like Java or Python. This means that stronger
claims about the power of block-based tools beyond the context and programming environment
in which they are situated cannot yet be made.

This article also reports on learners’ perceptions of ease of use of programming constructs by
modality. Here again the blocks condition outperformed the text condition across all four concepts,
meaning that students in the blocks condition found various programming concepts easier to use
than students who had used the text-based interface. This suggests that the benefits of block-based
interfaces extend beyond comprehension to include compositional dimensions of programming.
The pattern observed for questions relating to ease of use did not persist as we investigated other
attitudinal questions, where the findings were less clear.

Our analysis of attitudinal survey results found that, after spending 5 weeks working in the in-
troductory modalities, students using the block-based interface reported higher levels of interest
in future computing courses as well as a higher reported score for the perceived difficulty of pro-
gramming. On questions of enjoyment and confidence, we found no difference by modality. The
finding of no difference in confidence and enjoyment runs counter to the traditional narrative and
some prior work (Lewis 2010), a difference that could potentially be explained by the shift in age
(middle school to high school) as well as setting (informal to formal contexts).

Taken together, the findings that students using a block-based modality performed better on
content assessments and also showed a higher level of interest in taking future computer science
classes suggest that block-based tools are a productive strategy for introducing learners to the field
of computer science. At the same time, the finding that students in the blocks condition viewed
programming as more difficult suggests that a gap still exists between what the students view
themselves as doing in the block-based tools and the broader world of programming—a gap that
will be confronted should they continue in the field of computer science.

5.1 Implications for Learners with Differing Prior Experience
A complicating aspect of modality choice in formal education spaces is the fact that students are
entering their first computer science learning opportunities with an increasingly diverse set of
prior programming experiences. In this study, some students had never programmed before, while
others had just spent the summer trying to learn professional software development frameworks.
Given that all students in the same class usually learn with the same environment and are asked to
complete the same set of assignments, keeping advanced learners engaged while also not leaving
true novices behind is a challenge. Modality choices made to support one type of learner may neg-
atively affect the other. This came up a few times in this study, when advanced students lamented
having to use a block-based modality, instead wanting to go straight into learning Java. Modality
does not inherently make a language more or less powerful; instead, it just shifts how one interacts
with it. However, as this study shows, modality does influence perceptions, suggesting that work
does need to be done to engage more advanced students should they be asked to use block-based
tools for instructional purposes. Further, much of computer science is less concerned with syntax
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and details of a programming language and instead focuses on issues related to problem solving
and critical thinking. Modality choice directly impacts learners, but through framing and carefully
selected activities, the drawbacks of advanced learners using modalities designed for novices may
be mitigated without sacrificing the benefits they hold for the novices they were designed for. This
suggests that pedagogy plays a key role in framing the introductory tool as well as shifting focus
from surface features of the environment or language toward the underlying concepts and leads
to another audience impacted by this choice, the teacher.

5.2 Implications for Teachers
The choice of modality will have a large impact on the experience of the teacher and their expe-
riences in the classroom. Modality can influence classroom culture and pedagogical approaches
and, in part, shapes the curriculum that is followed (Weintrop and Wilensky 2016). In choosing a
given modality, the teacher is defining various aspects of the course and his or her own position in
it. As just discussed, modalities designed to support novices in programming independently will
impose different challenges on the teacher compared to a modality with fewer beginner-oriented
features. A teacher’s preference for direct instruction versus letting learners discover and explore
on their own should be taken into account when choosing a modality. When working in a modality
designed for beginners, the learners’ reliance on the teacher for guidance is decreased, and thus
the teacher can spend more time in one-on-one support. At the same time, if students are better
able to make progress on their own, there is less potential for teachable moments—instances when
students ask questions that lead to productive class discussion. This point was made salient by
the teacher who, in reflecting on her experience teaching in the block-based modality, said: “the
point of the environment is that it shouldn’t generate a whole lot of questions, like ‘how do I do
this?’—it’s more intuitive.” The teacher went on to explain that while this is empowering for the
learner, it results in fewer opportunities to engage in student-prompted productive discussions on
different aspects of programming.

Just as modality choice shapes the role of the teacher in the classroom, it can also shape the
curriculum. Modalities designed to facilitate exploration and creativity allow for different types of
assignments compared with modalities designed for efficiency or clarity. If a teacher prefers every
student to author a program that looks the same, choosing a modality that makes discovery easy
may prove counterproductive to the teacher’s desired form of assignment. There are also class
management and grading considerations in choosing a modality. If assignments are open ended
or assigned in a modality that makes it easy for students to go beyond what has been covered in
class, the teacher is more likely to encounter a variety of solutions or solutions that include extra
features beyond what was asked. This was a frequent occurrence during this study, especially
among more advanced students who sought to challenge themselves on assignments they were
able to complete quickly.

Along with impacting students and the role of the teacher, modality can also shape classroom
culture. As our teacher pointed out: “(Block-based programming) creates a different feel to the
room . . . Blocks take away the foreign feel, it looks friendly, and it’s something you can do right
away, and because of that, the culture in the room is different, kids are more prone to talk to their
neighbors, more prone to feel OK about joking around.” While modality is not the only contributor
to a classroom culture, more inviting and playful tools can help shape a certain set of classroom
norms.

A final, potential afterthought for a teacher in choosing a modality is considering the larger
technological infrastructure of the class. Are assignments going to be submitted in a specific online
format? Is the teacher planning on running all of the students’ programs to make sure they work
and meet the requirements of the assignment? The environments used in the introductory portion
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of this class were all browser based, which made it tricky for students to submit their work as they
did not have a local copy of their program to submit to the teacher. Instead, the teacher did her
grading by walking around the room asking students to show her their work. While this worked
for the purposes of this teacher, it had its limitations as the teacher could only spend a few seconds
on each program and did not have a way to give detailed or written feedback to students.

5.3 Limitations and Future Work
While this study provides insights into the relationship between modality and learning in the
domain of computer science, it does have limitations with respect to the claims that can be made.
This section reviews the limitations and discusses potential future directions that may be taken to
try and address them.

The first limitation of this study relates to the specific languages and materials that were used.
For this work, Pencil Code’s blocks editor was used to represent the block-based modality, while its
text interface served as the canonical text editor. In the case of the blocks editor, other block-based
modalities, like Scratch and Snap!, include additional features not supported by Pencil Code. This
includes displaying different-shaped slots for each argument type (i.e., ovals for numerical inputs
and hexagons for Boolean inputs) and having text labels closer to natural language (as can be
seen in Figure 2). Likewise, Pencil Code’s text editor included some built-in scaffolds like syntax
highlighting and automatic indentation, but not others that are common in text-based coding tools
like auto-complete. Also, the choice of CoffeeScript to serve as the underlying language in the
introductory condition is only one of many possible ways such instruction could take place. In
choosing one tool or language over another, we are naturally constraining the generalizability of
the findings, but this study makes a contribution toward a more complete understanding of the
block-based modality. The exploration of different languages and different underlying syntaxes
is a natural next step and is work that is actively being pursued. Just as the choice of language
and specific modality influence the findings, so too does the programming paradigm used and
the design of the curriculum. The fact that roughly half of the introductory assignments relied
on drawing or Logo-inspired Turtle Geometry activities in some capacity does change the way
students interact with the modality. This fact necessarily constrains the generalizability of this
study to this set of materials used (or similar materials). Further work is needed to generalize the
findings beyond the specifics of this study.

The second limitation of this study is related to the students who participated in the two
conditions. The school where the study took place was a selective enrollment institution. This
means that all of the students who participated in the study have historically been successful
in formal educational contexts. Thus, the findings of this article do not necessarily apply to un-
derperforming students who have not had success in conventional classroom settings. A second,
similar limitation is the fact that this study took place in an elective class. This means the students
who participated in the study had chosen to take part in a computer science learning opportunity,
suggesting they showed a predisposition for being more interested or placed a higher value on
the concepts being taught. The effects of this decision can be seen in the relatively high values
reported on the preadministration of the attitudinal survey. A final participant-related limitation
of the study has to do with the gender breakdown of the study. In this study, female students made
up less than one-third of the students in the class. The gender breakdown was beyond the control
of the researchers as student recruitment for the classes was outside of the scope of the study, but
is nonetheless not representative of the greater student population. All three of these limitations
can be addressed by conducting future iterations of the study at different schools where these
limitations are not necessarily true. In some school districts around the country, computer science
is becoming a graduation requirement for high school. Conducting a similar version of this study
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at a nonselective enrollment school where all students must take the class would directly address
all of these limitations and is one intended future direction for this work.

A final set of limitations of this study relate to the teacher. Finding a teacher who was willing to
teach the same curriculum using different modalities was difficult. Any teacher willing to take on
such a challenge will have a level of confidence and experience that is rare among in-service com-
puter science teachers. Understanding how modality affects less experienced and less confident
teachers is an open and important question to answer. Just as the way to address the student-
related limitations of this study was to replicate the study at a different site, the solution to the
generalizability of the findings due to the teacher can similarly be addressed this way. Working
with a less accomplished and experienced teacher (or set of teachers) is another direction of fu-
ture work that goes hand in hand with working with a different population of students and is an
intended avenue of future work.

Along with the future work directions suggested by the limitations of this study, there are also
other major outstanding questions to answer. First among them is the question of if and how these
tools helped prepare learners for the transition to text-based languages. Does the fact that students
in the block-based condition performed better on the content assessment mean they will continue
to perform better in a professional text-based language like Java? Alternatively, do students who
spend time working in a low-threshold text-based tool have an easier transition to a language
like Python? Work has started to investigate this question of transitioning from blocks to text
(e.g., Dann et al. (2012) and Armoni et al. (2015)), but many questions remain. A related question
speaks to the potential of hybrid block/text programming tools. A growing number of tools allow
learners to program in either block-based or text-based interfaces (Matsuzawa et al. 2015; Bau
et al. 2015; Homer and Noble 2014), while others seek to blend blocks and text features into a
single tool (Kölling et al. 2015; Mönig et al. 2015). How do these approaches compare to single-
modality environments? A parallel question to these is how does the tool relate to pedagogy and
curriculum? How can teachers and curriculum developers take advantage of the affordances of
tools designed to be intuitive and accessible to novices? These are questions that we and others
are actively pursuing.

A final avenue of future work is to look at the impact of modality on different types of students.
Do struggling students see more, less, or different benefits from working in a specific modality
compared to students who have excelled in academic settings? We have some data to start to
answer this question, but given the relatively small sample size of each condition, further divisions
of the students into subpopulations leaves us with little statistical power to make the claims we
hope to. As such, we hope to address this as we seek to replicate this work on a larger scale.

6 CONCLUSION
This article presents a systematic, classroom-based, comparative study of how programming
modality impacts learners. It shows how modality affected students’ attitudes, perceptions, and
conceptual learning. Thus, it supports the claim that modality has a direct impact on learners’
experiences with programming and their early computer science classroom learning outcomes.
Understanding the relationship between modality and learning is consequential with respect to
deciding what tools to use in classrooms and to inform the design of future introductory program-
ming environments. Given the increasing presence of computer science in K-12 education and the
growing ecosystem of educational programming environments and curricula, findings from stud-
ies such as this one are essential to ensure we are best serving the current generation of learners.
While many open questions remain and there is much work to do, this study helps to fill in one
piece of the larger puzzle on how best to introduce today’s students to essential computing con-
cepts. As enrollment in computer science learning opportunities grows, it is our hope that research

ACM Transactions on Computing Education, Vol. 18, No. 1, Article 3. Publication date: October 2017.



Comparing Block-Based and Text-Based Programming 3:23

such as this continues to advance our understanding of the relationship between environment and
learner, and that those findings can inform the next generation of tools, curricula, and classroom
practice. In taking on this challenge, we can prepare learners for the computational future that
awaits them, in the classroom and beyond.
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