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Abstract

Given an agricultural watershed containing a set of spatial
units, and a set of land management practices, the Geodesign
Optimization (GOP) aims to find a land management practice
for each spatial unit that optimizes overall water quality im-
provements in the watershed under both budget constraint and
spatial constraints (e.g., minimum contiguous area, shape)
arising from farm equipment operation practicalities. GOP is
important for redesign of agricultural watersheds in Midwest-
ern US to mitigate soil and water quality degradation and loss
of habitat. The problem is computationally challenging as
a large-scale combinatorial problem (NP-hard) under spatial
constraints. Existing optimization techniques do not address
spatial constraints, and lead to impractical solutions requir-
ing frequent farm equipment reconfiguration. In this paper,
we formalize the spatially-constrained GOP and propose a
novel spatial optimizer which explores optimal solution with-
out constraint violations. Our approach is further validated
through a Geodesign case study at Seven Mile Creek water-
shed in Midwestern US.

1 Introduction

Given an agricultural watershed composed of a set of grid
cells, and a set of land management practices, Geodesign
Optimization problem (GOP) aims to find a choice of land
management practice (LMP) for each grid cell that opti-
mizes overall water quality in the watershed, in order to im-
prove sustainability of food and clean water production.

Societal motivation: Rising human population and de-
creasing poverty require that the world produce enough food
to feed another 3 billion people by 2100 (United Nations
2015). Incentives for growing crops have depleted water re-
sources (e.g., Aral Sea, Ogallala aquifer) and affected water
quality (e.g., dead zone in Gulf of Mexico) (Eftelioglu et
al. 2016). Furthermore, soil erosion which brings sediments
and fertilizer residues into rivers also imposes challenges on
agriculture, which consumes over 65% of surface fresh wa-
ter in US (Pimentel et al. 2004). Current agricultural land-
scape in Midwestern US has led to severe soil and water
quality degradation and loss of habitat (The Guardian 2014).
Due to the water quality issues, Minnesota has enacted a new
state law to enforce vegetative buffers with at least 50-feet
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width on average along public waters (Laws-Of-Minnesota
2016) (e.g., grass buffers along rivers, lakes). An opportu-
nity exists to better balance food production and environ-
mental benefits by reallocating land management practices.
Geodesign Optimization (GOP) aims to address this land al-
location problem, and it has been recognized by stakeholders
and domain scientists as important for improving landscapes
in agricultural watersheds (Schively et al. 2016). For the ease
of farm equipment operations, the solution needs to avoid
spatial fragmentation after reallocation of land management
practices. For example, each patch of allocated land manage-
ment practice should be large enough so that farm equipment
can operate smoothly without frequent reconfigurations.

Challenges: GOP is NP-hard (proved in Sec. 3) and is
spatially constrained. The problem is computationally chal-
lenging due to large number of decision variables needed for
real-world watershed.

Related work: In traditional agriculture, land manage-
ment decisions are mostly made at individual or community
level through farming experience. In the worst case scenario,
choices of land management practices are made randomly
or voluntarily. In case of pollution (e.g., water pollution),
changes are heuristically targeted at locations (e.g., steep
slope near water bodies) which produce the highest amount
of pollution (Galzki, Birr, and Mulla 2011). In addition, ex-
isting optimization techniques either cannot address the hard
spatial contiguity constraints or yield outcomes far from op-
timal. Space partitioning techniques (e.g., R-TILE) are also
not readily applicable to GOP. Details are discussed in Sec.
4.

Contribution: First, we formulate GOP that honors spatial
constraints. Second, we prove GOP is NP-hard. Third, we
propose a novel spatial optimizer that heuristically explores
optimal solution with no violation of hard spatial constrains.

Validation: A case study at Seven Mile Creek watershed
(Minnesota, US) shows our proposed spatial optimizer nar-
rows down the gap to upper-bounding optimal solution with
all spatial constraints addressed.

Outline: Sec. 2 defines the Geodesign Optimization prob-
lem (GOP). Sec. 3 analyzes the hardness of GOP. Sec. 4
summarizes related work on optimization within a spatial
context. Sec. 5 presents a novel spatial optimizer to solve
the spatially constrained GOP and Sec. 6 evaluates the pro-
posed approach via a detailed case study.
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Figure 1: Examples of input and output of GOP.

2 Problem statement

2.1 Basic Concepts

Watershed: A watershed (Fig. 1(a)) is a drainage basin,
where all surface water converges to a single outlet.

Land management practice (LMP): Land management
practice is an agricultural choice on a piece of land. Ex-
amples of land management practices include conservation
tillage, low phosphorous, switch grass, etc (Fig. 1(c)). A land
management practice has many implications, including cost
of investment, change in water quality, etc.

Soil and Water Assessment Tool (SWAT): SWAT model
(Gassman, Reyes, and et al. 2007) operates on a watershed-
scale and offers a quantitative approach to simulate the ef-
fects of land management practices on environmental qual-
ity under a range of conditions (e.g., soil, slope, weather).
Inputs of SWAT model include physical information on cli-
mate, topography and soil (e.g., raster data layer of soil) as
well as land management practices. In this paper, SWAT is
used to quantify water quality in the watershed.

InVEST model: InVEST model (Nelson et al. 2009)
uses ecological production functions and economic valua-
tion methods to estimate the values of LMPs at different
locations. In this paper, InVEST model is used to quantify
economic cost of changing LMPs in the watershed.

Grid partition: The study area is discretized into grid-
cells. Each cell can only have a single LMP in the output. A
grid cell has two coefficients for each LMP choice: 1) cost of
investment (cost c), and 2) water quality improvement (ben-
efit b). The coefficients are precomputed for all LMP choices
across all grid cells using SWAT and InVEST models. Each
grid cell gij = (i, j) is identified by its row i and column j.

Tile: A tile is a rectangular region consisting of a group
of adjacent grid cells. All grid cells in each tile share the
same LMP. Each tile t = (i0, j0, i1, j1) is identified by its
bottom-left grid cell (i0, j0) and top-right grid cell (i1, j1),
where i1 > i0, j1 > j0. Cost c and benefit b of each tile are
aggregated from all contained grid cells by summation.

Tiling scheme: A tiling scheme is a tile-partition of the
study area. Tiles in a tiling scheme must not have overlaps.

Fig. 1(d) shows a sample output of GOP with a tiling scheme
and LMP assignments by legend colors in Fig. 1(c).

2.2 Scope and approximation

Grid Partition. Data (e.g., elevation, soil property) col-
lected from site samples or satellites/UAVs require space
discretization. Thus, the study area is approximated by its
grid partition and all inputs and outputs are expressed by this
discretization. Spatial constraints. In a map of LMP deci-
sions, adjacent cells with the same LMP form a patch. In
GOP, spatial constraints are imposed on each patch for farm
operation practicality. Minimum area constraint is used to
avoid spatial fragmentation of LMP. Shape constraint is used
to make sure the boundary of each patch is regular in shape.
Since farm equipment is normally operated to scan farmland
in straight lines and the shape of farmland is often rectan-
gular as shown in Fig. 1(e), the shape constraint used in this
paper is set as rectangle as an approximation. This constraint
may not be appropriate for farms using central pivot irriga-
tion systems (e.g., circular shaped farms in Kentucky, US),
which may be explored in future work. We assume that some
land cover types within a watershed are not changeable (e.g.,
roads, water bodies). The boundaries of these unchangeable
places and the boundary of the watershed are often irregu-
lar in shape. In this paper, the spatial constraints are relaxed
at the boundary of these places. Rectangular study area.
Finally, to simplify the problem definition and method illus-
tration, the study area used in this paper is rectangular in
shape. For watersheds with irregular boundaries, the study
area used is either a rectangular bounding box or a rectangu-
lar sub-region of the watershed. To deal with empty variables
in the rectangular study area (e.g., grid cells outside the wa-
tershed or within unchangeable lands), their coefficients are
all set to 0 to eliminate their impact on the result. The empty
variable effects can also be removed through preprocessing.

2.3 Optimization problem definition

The spatially-constrained GOP is formally formulated as:
Inputs:

– A rectangular study area and its grid partition G, which is
a collection of grid cells {gij};

– A list L of choices of land management practices
{LMPk};

– A list T of all possible tiles with each choice of LMP:
T = {tm = (i0, j0, i1, j1, k)|∀(i0, j0), (i1, j1) ∈ G, k ∈
L, (i0, j0) �= (i1, j1)}. Tiles with the same (i0, j0, i1, j1)
are adjacent in T in ascending order of k;

– A three dimensional matrix CMAT of cost cijk (cost of
investment) for each grid gij with LMP k; and a matrix
BMAT of benefit bijk (water quality improvement);

– A budget ε, minimum tile area α, minimum tile width β.

Output: A tiling scheme with LMP assignment, denoted by
a binary vector S, where each element sm corresponds to
tm in T . If tm is chosen, sm = 1; otherwise sm = 0.

Objective: Find the binary vector S that maximizes
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overall benefit:

max
S

|S|∑
m=1,m∈S

bm · sm (1)

where bm =
∑i1

i=i0

∑j1
j=j0

bijk, and i0, j0, i1, j1 are defined
by tile tm, and k = mod(m+ |L| − 1, |L|)+1, which is the
LMP index of mth element ("m+ |L| − 1" is used to cover
m that is a multiple of |L|). |L| denotes the length of L.
Constraints:

– Binary value constraint on elements in S:
sm ∈ {0, 1} (2)

– Total cost is less than ε:
|S|∑

m=1,m∈S

cm · sm � ε (3)

where cm is computed in the same way as bm in (1).
– Each tile tm has a minimum area α and width β:

i1 − i0 � β, i1, i0 ∈ tm (4)
j1 − j0 � β, j1, j0 ∈ tm (5)

(i1 − i0) · (j1 − j0) � α, i1, i0, j0, j1 ∈ tm (6)
– There is no overlap among tiles:

∀t1, t2 ∈ (T ∩ S), t1 ∩ t2 = φ (7)

– The study area is covered by all tiles:
∀gij , ∃tm ∈ (T ∩ S), s.t.gij ∈ tm (8)

Constraints (4) to (8) are spatial constraints imposed on
tiles for practicality concerns (e.g., ease of farm equipment
operation and farm scanning). Constraints (4) to (6) are tile-
specific constraints, whereby each valid tile must satisfy a
minimum area α and width β constraint. For implementa-
tion, these constraints can be imposed by preprocessing in-
puts. For example, before optimization, if a tile tm in T does
not satisfy the area and width constraint, it is removed from
list T . Constraints (7) and (8) are spatial constraints imposed
on a group of tiles. These constraints are not independent for
each tile and there are mutual interactions among tiles. (7)
and (8) are expressed at a conceptual level for simplicity.
Their exact mathematical formulations are the following.

Constraint (7) requires any pair of tiles t1 and t2 in T are
disjoint in grid partition G. t1 and t2 are disjoint only if no
vertex of one tile falls within the other. Thus, for each vertex
(i, j) of tile t1 and the region (i0, j0, i1, j1) defined by t2,
the following constraints are added:

(i− i0) · (i− i1) > 0 (9)
(j − j0) · (j − j1) > 0 (10)

Constraint (9) shows i is either smaller than i0 or greater
than i1, and constraint (10) does the same for j. For con-
straint (8), it is detailed by the following constraint:

∑|S|
m=1,m∈S(i

m
1 − im0 ) · (jm1 − jm0 ) = (imax − imin) · (jmax − jmin) (11)

In (11), im{0,1}, jm{0,1} represent i{0,1}, j{0,1} for tile tm,
and i{max,min}, j{max,min} define the boundary of the
study area. A combination of (10) and (11) guarantees the
study area is covered by all tiles.

Figure 2: Reduction of MCKP to GOP.

3 Challenges

NP-hardness. The NP-hardness proof follows the well-
known result of the multiple choice knapsack problem
(MCKP)(Kellerer, Pferschy, and Pisinger 2004).
Definition 1 (Multiple choice knapsack problem). Given m
classes P1, P2, ..., Pm of items to pack in a knapsack of ca-
pacity ε. Each item xij ∈ Pi has two coefficients, a benefit
bij and a cost (e.g., weight) cij . The MCKP problem is to
choose one item from each class so that the overall benefit is
maximized without exceeding the cost capacity ε.

max
x

m∑
i=1

∑
j∈Pi

bij · xij (12)

subject to,
m∑
i=1

∑
j∈Pi

cij · xij � ε (13)

∑
j∈Pi

xij = 1, i = 1, 2, ...,m (14)

xij ∈ {0, 1}, i = 1, 2, ...,m, j ∈ Pi (15)
Theorem 1. No polynomial-time algorithm exists for
Geodesign Optimization if P �= NP .

Proof. Assume P �= NP , and the number of items is l in
each class Pi of MCKP. We construct a mapping from this
MCKP problem to a special instance of GOP, in which we
assume all input tiles in list T satisfy all the spatial con-
straints (4) to (8) as inputed (e.g., tiles in T are spatially the
same as the optimal tiling scheme but LMP choices remain
unknown). Given a MCKP (P, x, b, c), the special instance
of GOP can be constructed in polynomial time by assigning
all bij , cij in MCKP to BMAT , CMAT in GOP, so that
each xij ∈ Pi is translated to a LMP choice on a tile. If GOP
can be solved in polynomial time, this special instance can
also be solved and we get the optimal vector S. The optimal
solution of MCKP can be then constructed by mapping each
LMP decision to each item in class Pi, which means MCKP
is solved in polynomial time. Since we assume P �= NP ,
GOP cannot be solved in polynomial time (Fig. 2).

Spatial constraints. More than MCKP, GOP requires ad-
ditional combinatorial work on space tiling under the spatial
constraints. Constraints (4)-(6) are tile-independent and can
be preprocessed to remove tiles in T . Constraints (7) and
(8) are global constraints that consider relationships among
tiles. The mutual influence each tile has on another poses
a challenge to satisfy these constraints. For example, dur-
ing optimization, the replacement of a tile may be necessary
to improve benefit. However, replacing one tile will directly
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lead to violations of constraint (7) (or (8)). To resolve the vi-
olations, new replacements are necessary but they may lead
to further violations. This tight mutual impact among tiles
make spatial constraints challenging to address.

Large scale watershed. GOP needs to be performed on
large scale watershed (e.g., over millions of grid cells). Con-
struction of T as an input is necessary in order to math-
ematically formulate spatial constraints. Suppose the grid-
partition has a dimension of p by q, and the length of LMP
list is l. The length |T | of T is (p · q · l)2. For (p, q, l) =
(1000, 1000, 5), |T | = 2.5 × 1013. More challengingly, the
number of spatial constraints required can be magnitudes
greater than the number of variables.

4 Related work
Fig. 3 shows a classification tree on related optimization
work. Two previous efforts on Geodesign have been ex-

Figure 3: Related work of GOP.

plored: 1) assisted stakeholder-collaborative geodesign (CG)
(Schively et al. 2016) and 2) conventional mixed integer pro-
gramming (MIP) (Lodi 2010) method without spatial con-
straints. CG provides a visualization tool that helps multi-
ple stakeholders negotiate the inevitable trade-offs that arise
when changes in policy, planning or management are intro-
duced to an agricultural watershed. Through the CG visu-
alization tool, stakeholders can set performance goals (e.g.,
water quality improvement), evaluate several hand-crafted
design scenarios, compare tradeoffs and work towards con-
sensus. Fig. 4 shows design maps from CG (F,G,H,I) and
MIP (A,B,C,D,E). Solutions from MIP were computed un-
der different budget constraints (e.g., $1 million). In Fig.
4, water quality improvements is measured by sediment re-
duction. The CG solutions yield practical designs for farm
equipment operation but water quality achieved are far from
optimal. On the contrary, MIP algorithms without spatial
constraints, yield optimal water quality but the solution map
is spatially fragmented and stakeholders are not willing to
implement it.

Spatial constraints are studied in forest harvest scheduling
problems (FHSP) (McDill, Rebain, and Braze 2002). The
spatial constraints imposed in FHSP enforce spatial repul-
sion among harvest sites (Murray and Weintraub 2002). Dif-
ferently, GOP enforces spatial contiguity of all types of land
management practices. Thus, FHSP techniques currently are
not applicable to GOP. It is worth mentioning in FHSP, chal-
lenges are also mainly posed by spatial constraints, which
tend to be exponential in number of variables.

Rectangular partitioning problems (e.g., R-TILE, R-
PACK) have also been studied in optimization (Muthukrish-

Figure 4: Solutions from CG (left: F,G,H,I) and MIP (right:
A,B,C,D,E). LMPs are colored by legend in Fig. 1(c).

Figure 5: Space tiling frameworks.

nan, Poosala, and Suel 1999; Berman et al. 2001). These
problems and variants only have one value for each grid
cell, and all values are included in the solution, which means
there is no multiple choice to make on grid cell level. Thus,
techniques in R-TILE or R-PACK, which mainly utilize this
single-choice characteristic, cannot be directly applied to
GOP. In addition, rectangular partitioning problems do not
consider minimum area and width constraints.

5 Geodesign Optimization (GOP)

We introduce two novel approaches for GOP: 1) dynamic
growth tiling framework (DGTF) and 2) spatial optimizer.

5.1 Dynamic growth tiling framework (DGTF)

There are three classes of rectangular space tiling frame-
works in general (Fig. 5) (Muthukrishnan, Poosala, and Suel
1999), namely 1) arbitrary; 2) hierarchical; and 3) p × q.
For GOP, the optimal tiling scheme can be arbitrary. Al-
though the optimal solution is not expected to be found
within tractable time, it is still ideal to guarantee it is within
the potential search space of the optimizer.

For p × q tiling framework, the output has p rows and q
columns. In this case, it does not cover tiling schemes that
have more than p rows or q columns at places, as well as
those with a prime total number of tiles. For hierarchical
tiling framework, straight lines are used in each iteration to
bi-partition a rectangular region. Suppose the study area has
height h and width w. At the root level, a straight line is
used to partition the entire study area into two halves. The
length of this split line is at least min(h,w). More gener-
ally, at level lv (root level lvroot = 1), the length of the
split line is at least min(h,w)

2lv−1 . In an arbitrary tiling scheme,
there may not exist a straight line (formed by adjacent tile
sides) with such long lengths. As the minimum area and
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Figure 6: Example steps of DGTF.

width constraints get smaller, it may get harder to form these
long straight lines in a tiling scheme.

Arbitrary tiling framework is ideal for this case. To the
best of our knowledge, there is yet no systematic approach
that is able to reproduce any arbitrary tiling scheme that
satisfies spatial constraints. Thus, we propose a dynamic
growth tiling framework (DGTF), which gives a procedural
way that can produce any arbitrary tiling schemes.

DGTF contains two phases: 1) initialization and 2)
growth. In initialization phase, one side of the rectangular
study area is set as the global baseline linebase for growth.
The direction of linebase is considered as horizontal and
height of linebase is minimal (hmin = 0). The height at
the opposite side of the study area is maximal (hmax). In
growth phase (Fig. 6), individual constrained tiles are iter-
atively growed to fill up the study area in a sequential man-
ner from "low to high". A new term, base-segment segbase,
denotes a horizontal line segment formed by adjacent tile
boundary parts (including linebase part) that is not yet cov-
ered by any tiles. Minimum base-segment segmin denotes
the base-segment with the lowest height (hseg

min). The growth
phase works as follows. Step 1: Find the current segmin. If
dl = length(segmin) ≥ β, dh = (hmax − hseg

min) ≥ β and
dl · dh ≥ α, go to Step 2-1; otherwise go to Step 2-2; Step
2-1: Grow a constrained tile at the left vertex of segmin.
The tile is constrained means it satisfies the minimum area
α and width β constraints. Step 2-2: Expand an adjacent
constrained tile of segmin to fill up segmin or the vertical
space left, depending on which part violates α or β. Step 3:
Update the set of segbase to reflect the new growth, and then
terminate if hseg

min = hmax after update, or otherwise con-
tinue with Step 1. Fig. 6 provides a toy example illustrating
the steps of DGTF.

Theorem 2 shows DGTF can be used to generate any ar-
bitrary tiling schemes. This does not mean DGTF will form
the optimal arbitrary tiling scheme but it guarantees this op-
timal tiling scheme is contained in its potential search space.
In other words, following the sequential procedure of DGTF,
any arbitrary tiling scheme can be reproduced, which cannot
be done with hierarchical and p × q tiling frameworks. In
real implementation, how each tile is growed in Step 2-1 is
determined by a specific user-specified guidance function.

Theorem 2. All arbitrary tiling schemes are contained by
the potential search space of DGTF.

Proof. Define a stage variable v (integer) of DGTF, which
increases by 1 each time a new tile is growed. Given a spa-
tially constrained tiling scheme, DGTF reproduces it by se-
quentially adding tile t on segmin at each stage v. If a tiling
scheme cannot be reproduced, then there must be a stage

vu, such that the next tile tu+1 cannot be put onto current
segmin. If vu exists, then any tile tu′≤u that contains segmin

(or part of segmin) as a side must have no adjacent tile shar-
ing segmin in the given tiling scheme. Since the study area is
entirely covered by tiles, segmin must have hseg

max = hmax.
Thus, the next tile tu+1 must not exist which contradicts the
original set up. Thus, vu does not exist.

5.2 Spatial optimizer

The spatial optimizer is a heuristic optimizer built on top
of DGTF, which tackles the large combinatorial problem by
heuristically generating constrained tiles to form output vec-
tor S. The spatial optimizer has three major components: 1)
linear programming (LP) relaxation; 2) DGTF-based space
tiling; 3) land management practice (LMP) rearrangement.

LP relaxation. Due to the hardness of GOP, it is not ex-
pected to find the optimal solution sol∗. However, an up-
per bound ¯sol∗ on the optimal solution can be efficiently
computed (e.g., interior point method (Karmarkar 1984))
through a relaxation on spatial and binary integer constraints
({0, 1} set to [0, 1] interval). To grow a tile in DGTF, a
guidance function f(i1, j1, k) (k is a LMP choice) is neces-
sary to determine which (i1, j1, k) yields the locally optimal
tile for the current growth step anchoring at (i0, j0). ¯sol∗
is used in f(i1, j1, k) to give global-based hints to DGTF.
DGTF-based space tiling. The growth of each tile t starts
at a fixed vertex (i0, j0). A set of candidate tiles defined by
(i1, j1)s need to be enumerated to determine which maxi-
mizes f(i1, j1, k):

f(i1, j1, k) =
B(i1, j1, k)/B

∗(i1, j1)
C(i1, j1, k)/C∗(i1, j1)

(16)

where B(i1, j1, k) =
∑i1

i=i0

∑j1
j=j0

b(i, j, k)

and C(i1, j1, k) =
∑i1

i=i0

∑j1
j=j0

c(i, j, k) are
the sums of benefit and cost for the candidate
tile, and B∗(i1, j1) =

∑i1
i=i0

∑j1
j=j0

b∗(i, j) and
C∗(i1, j1) =

∑i1
i=i0

∑j1
j=j0

c∗(i, j) are sums of benefit and

cost from ¯sol∗ for the same candidate. b∗(i, j), c∗(i, j) are
the benefit and cost achieved at (i, j) in¯sol∗.

The guidance function f(i1, j1, k) is a normalized ratio
of benefit

cost = B(i1,j1,k)
C(i1,j1,k)

of a candidate tile using hints from
¯sol∗. For each candidate corner grid cell (i1, j1), f(i1, j1, k)
increases monotonically as B(i1, j1, k) increases and de-
creases as C(i1, j1, k) increases. The normalization with
B∗(i1, j1) and C∗(i1, j1) is used to avoid B(i1, j1, k) and
C(i1, j1, k) derailing far from that of ¯sol∗. The local opti-
mal (i1, j1, k) selected is:

(i1, j1, k) =

⎧⎪⎨
⎪⎩

arg max
i1,j1,k

f(i1, j1, k), ∀ C(i1, j1, k)

C∗(i1, j1)
≤ 1

arg min
i1,j1,k

C(i1, j1, k), otherwise

(17)
In Eq. (17), the condition is used to control the overflow

on cost. Since ¯sol∗ is obtained using LP relaxation, its cost
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is expected to be tightly under budget given solution is feasi-
ble. Thus, confining C(i1, j1, k) by bound C∗(i1, j1) helps
keep overall investment within budget during optimization.
If there exists no (i1, j1, k) satisfying this local cost con-
straint, the one with minimum cost is selected.

To efficiently compute the summations in f(i1, j1, k), in-
tegral images (Viola and Jones 2004) are precomputed in
linear time to evaluate each summation (e.g., B(i1, j1, k))
in O(1) time.

LMP rearrangement. In this final 2-phase step, the out-
put solDG of DGTF-based tiling scheme generation is used
as an initial seed. Phase 1 - Constraint violation elimina-
tion: In this phase, budget violation, if any, is eliminated
by tile-level LMP adjustment. Denote costDG, beneDG

as the total cost and benefit achieved by solDG, and de-
note cost(t, k), bene(t, k) as the cost and benefit of a
single tile t in solDG with LMP choice k. If k is the
same as the LMP choice in solDG, it is denoted as kDG.
In each iteration a single tile (t, k) is selected: (t, k) =
argmaxt,k beneDG + bene(t, k) − bene(t, kDG), where
(t, k) ∈ settk = {(t, k)|cost(t, k)/cost(t, kDG) < 1}.
The selected tile t and alternative LMP choice k on t guar-
antees the adjusted benefit is maximized given that total
cost is reduced by this tile-level adjustment. The adjust-
ment terminates as soon as the budget constraint is satis-
fied. If settk = φ and budget constraint ε is still violated,
the solution is not feasible given solDG. Phase 2 - Pair-
wise trading: In this phase, the spatial optimizer explores
pairs of tiles (t, t′) in the current solution, and potential
change of LMP assignments on t and t′ in order to fur-
ther improve the objective function without violation of bud-
get constraint ε. For a pair of tiles, reassigning their LMPs
create a pairwise trading of cost and benefit. In each itera-
tion, a pair of tiles (t, t′) and their LMP choices (k, k′) are
selected. Denote settt′kk′ as a set of (t, t′, k, k′)s that can
improve the total benefit while keeping the total cost un-
der budget ε. The (t, t′, k, k′) is selected as: (t, t′, k, k′) =
argmaxt,t′,k,k′ [bene(t, k)−bene(t, kDG)]+[bene(t′, k′)−
bene(t′, k′DG)], where (t, t′, k, k′) ∈ settt′kk′ . Pairwise
trading terminates when settt′kk′ = φ.

6 Validation
We evaluate the performance of the proposed spatial opti-
mizer through a detailed case study at Seven Mile Creek wa-
tershed in Midwestern, US. The watershed drains directly to
the Minnesota River, which is a tributary of the Mississippi
River. Although the watershed has an average slope of less
than 2%, its flat upland transitions quickly into a ravine-zone
before draining into the Minnesota River. The current crop
landscape in the Seven Mile Creek watershed is mostly corn
and soy bean, similar to landscape across Midwestern US
agricultural areas. Conventional LMP choices on this land-
scape does not produce a well-balanced design between pro-
ductivity and environment quality, and has led to soil and
water quality degradation, as well as loss of habitat.

Experiment setup. The study area is a rectangular 5760-
acre subset of the Seven Mile Creek watershed, and is par-
titioned into 30×30 square-foot grid cells. The dimension
of the grid is 680×410, which has a quarter million grid

cells. Five land management practices (LMP) are consid-
ered: conservation tillage, low phosphorous, prairie grass,
switch grass and stover (all selected by local agricultural
scientists). Water quality improvement (WQI) is measured
by percentage of sediment reduction in water. WQI (benefit
bijk) and cost of investment (cost cijk) are calculated from
detailed Soil and Water Assessment Tool (SWAT) modeling.

The minimum area α and width β constraints are varied
in the case study to show the trend of water quality improve-
ment as α and β increase. Unit of α and β is in grid-cell.
Seven sets of (α,β) are tested (Fig. 7). For better visualiza-
tion, adjacent tiles sharing a common boundary are merged.
The budget for all experiments is $100,000. Fig. 7(a) shows
the result of LP relaxation, in which the LMP choice colored
for each grid cell is the one with the largest value. We can see
the tiling schemes generated by DGTF attempt to approxi-
mate the original distribution of LMP patches in ¯sol∗ with
all spatial constraints satisfied. When (α, β) is set to (8, 2),
which is about (800m2, 20m), WQI shows only a 1.99%
gap to ¯sol∗ (63.61% to 65.60%), which is an acceptable
difference considering 65.60% is a relaxed upper bound.
The reduction of water quality improvement is gradual as
(α, β) increases. As α and β increase, more LMP choices
are forced to be made at non-optimal locations (expensive in
this case study) due to the extended spatial contiguity con-
straints. There is a big decrease from Fig. 7(g) to 7(h), which
makes the water quality improvement of 7(h) below half of
¯sol∗. One explanation is the difficulty to include more con-
strained tiles which can improve the water quality without
exceeding the budget limit due to large (α, β) values.

Runtime is measured on a 64-bit Window 8 laptop with
CORE i7 (Fig. 7). The longest runtime is 201.3 seconds for
(α = 8, β = 2). Runtime is mainly affected by total num-
ber of growth in DGTF, and the size of search space of each
growth step. The search space of each growth is limited by
the length of segmin (Fig. 6). As α increases, total num-
ber of growth and number of tiles in LMP rearrangement is
reduced. As β increases, segmin tends to increase which en-
larges the search space. Since both α and β are increasing,
the runtime shows multiple peaks that reflects the interplay
of the two variables.

7 Conclusion and Future Work

In this paper, we formulate the spatially constrained GOP as
a combinatorial optimization problem. The problem is im-
portant for landscape redesign towards improving the sus-
tainability of food and clean water production in agricultural
watersheds, which has triggered broad interests among real
stakeholders and domain scientists. GOP is computationally
challenging as a NP-hard problem with a huge volume of
decision variables. We propose a spatial optimizer which ap-
proaches the upper-bounding optimal solution without vio-
lation of hard spatial constraints. In a case study, the spatial
optimizer is able to narrow the gap to the upper bound of the
optimal solution.

The future work includes: 1) explore tighter upper bound
and lower bound on solution quality to evaluate the perfor-
mance of spatial optimizer more accurately; 2) explore ac-
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Figure 7: Results on water quality improvements (WQI) and runtime of the spatial optimizer with varying spatial constraints.

celeration of exact algorithms to solve special cases of GOP
in feasible time and reach global optimality; and 3) explore
acceleration of the proposed spatial optimizer to solve GOP
on a larger scale (e.g., big data).
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