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A Unified Framework for Robust and Efficient Hotspot
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Given N geo-located point instances (e.g., crime or disease cases) in a spatial domain, we aim to detect sub-

regions (i.e., hotspots) that have a higher probability density of generating such instances than the others.

Hotspot detection has been widely used in a variety of important urban applications, including public safety,

public health, urban planning, and equity, among others. The problem is challenging because its societal

applications often have low tolerance for false positives and require significance testing that is computation-

ally intensive. In related work, the spatial scan statistic introduced a likelihood ratio–based framework for

hotspot evaluation and significance testing. However, it fails to consider the effect of spatial non-determinism,

causing many missing detections. Our previous work introduced a non-deterministic normalization–based

scan statistic to mitigate this issue. However, its robustness against false positives is not stably controlled.

To address these limitations, we propose a unified framework that can improve the completeness of results

without incurring more false positives. We also propose a reduction algorithm to improve the computational

efficiency. Experiment results confirm that the unified framework can greatly improve the recall of hotspot

detection without increasing the number of false positives, and the reduction algorithm can greatly reduce

execution time.
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1 INTRODUCTION

Given a collection of N geo-located point instances (e.g., crime or disease cases, locations of service
centers or facilities) in a spatial domain, the problem of hotspot detection aims to find sub-regions
that have a higher probability density of generating or having such instances compared to the rest
of the space.

Hotspot detection is a critical topic in spatial data mining [4, 37, 38, 46], and has wide and impor-
tant applications in smart cities and communities (e.g., [1, 37, 47]), including public safety, public
health, urban planning, equity, and economics, among others. In public safety, regions with sig-
nificantly high concentration of crime activities can signal the need for administrative inspection
and intervention [23, 26]. Such hotspots can also help police officers locate the places of residence
of serial criminals (e.g., arsonists) [8]. In public health, hotspots of infections indicate outbreaks of
disease [18, 20, 36, 47], which can help officials allocate medical resources and research efforts. In
environmental science, hotspots of pollution (e.g., Escherichia coli contamination) help researchers
identify the cause and improve urban water quality [16, 17]. In urban resilience studies, hotspots
of building permits can be used to evaluate the status of recovery from natural disasters (e.g., hur-
ricanes) [40]. In transportation, roads with significantly high concentration of pedestrian fatalities
indicate unsafe conditions of related infrastructures (e.g., sidewalks) [41]. These are just a few of
many applications of hotspot detection.

The problem is challenging due to the high cost of false positives in urban and smart-city appli-
cations (e.g., [1, 18, 37, 46, 48]). For example, falsely identifying a neighborhood as a hotspot for
robbery may cause unnecessary social anxiety, lower property values, and hurt small businesses.
As a result, statistical significance is often required. In hotspot detection, the statistical distribution
of test statistics (i.e., scores of hotspot candidates) is often unknown and cannot be computed in
closed form [18, 31]. Thus, the p-values of detections require a large number of Monte Carlo trials
to estimate, making the problem computationally intensive.

In related work, the spatial scan statistic [18] is the most widely used approach for hotspot de-
tection, and its corresponding software, SaTScan [3], has received more than 10,000 downloads.
The spatial scan statistic provides a likelihood ratio–based framework for hotspot evaluation and
significance testing. By default, it detects hotspots that have a circular shape. In recent years, most
efforts in the data mining community have focused on extending this framework to detect hotspots
of other geometric shapes (e.g., ring [7, 8], linear [35, 39], rectangle [31, 32], ellipse [21]) to meet
specific domain needs. Meanwhile, many other efforts have also been made to extend the origi-
nal spatial scan statistic to detect multi-variate hotspots [22, 28], spatiotemporal (i.e., emerging)
hotspots [27, 29], and continuous value (e.g., lifespan)-based hotspots [11, 19]. Studies have also
tried to analyze and mitigate the uncertainty (e.g., geographically aggregated data) and inaccu-
racy issues in hotspot detection [24, 25]. Although various extensions exist, they either directly
adopted the likelihood ratio framework provided by the spatial scan statistic (e.g., extensions for
new shapes [7, 8, 21, 32, 39]) or enriched the likelihood ratio specifically for a certain application
scenario (e.g., multi-variate-, temporal-, or continuous value–based hotspots [19, 22, 27, 29]). In
both cases, the methods do not attempt to change the fundamental way that the likelihood ratio
is formulated or defined in the spatial scan statistic.1

As our previous study [48] showed, however, the likelihood ratio definition in the spatial scan
statistic fails to consider the effect of spatial non-determinism (details in Section 3.2). This intro-
duces bias and causes the likelihood ratio values of many false positives to be higher than those of
the true hotspots, leading to missing detections in the output. To mitigate this issue, our previous

1Since the goals of these major extensions are different from ours, we provide a detailed discussion of these extensions in

Section 7 instead of here to avoid diluting the focus.
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Table 1. Novelty of the Proposed Work

Criteria Spatial Scan Statistic NN-scan (conf.) Unified (proposed)

Avoid missing detections
caused by the bias of a
test statistic

No Yes Yes

Stable enforcement of the
significance level

Yes No Yes

work [48] proposed a non-deterministic normalization–based scan statistic (NN-scan, Section 3)
to improve the completeness of the results. However, to model the spatial non-determinism and
make it computationally feasible, NN-scan requires a pre-defined set of hotspot sizes (e.g., radii in
the case of circular hotspots). Although a greater number of candidate sizes can make the enumer-
ation space more complete, through new exploration, we find that NN-scan’s robustness against
false positives decreases as the number of candidate sizes increase (details in Section 3.3).

To address these limitations, we propose a unified framework that integrates NN-scan and the
likelihood ratio–based framework. This unified framework has two major advantages: (1) it re-
moves the need for a pre-defined set of hotspot sizes, and (2) it improves the completeness of
results without any loss of robustness against false positives. We further propose a reduction al-
gorithm to improve the computational efficiency of the new approach. Table 1 shows the novelty
of the proposed work.

Through detailed analytical validation and experiments, we confirm that the unified framework
can greatly improve the recall on hotspot detection without incurring more false positives, and
the reduction algorithm outperforms the baseline algorithm by orders of magnitudes.

1.1 Scope and Outline

Since this article is an extension of our previous study [48], the scope and the problem definition
remain the same. Specifically, we will use circular-shaped candidate regions since circles are still
the most used shape in both research and applications of hotspot detection. In addition, the dis-
cussion will focus on the continuous version of hotspot detection, where statistical population is
proportional to geometric area. This continuous version is also widely used in hotspot detection
(e.g., [8, 16, 17, 23, 26, 40, 41, 45]). Algorithm modifications for the discrete version, in which a
statistical population is available and given as a separate point distribution, are beyond the scope
of this specific extension and will be explored in future work.

In this work, we propose the following main extensions to our previous study [48]. First, we
provide a new analysis of the theoretical limitations of the likelihood ratio–based scan statistics,
and we identify a new instability issue in our previous NN-scan method (i.e., instability in robust-
ness against false positives). Second, we analyze the high-level structures of existing methods and
propose a new unified framework that combines the advantages of the methods while avoiding
their disadvantages. Third, we propose a reduction algorithm to improve the computational ef-
ficiency of the unified framework. Fourth, we present new experiment results that validate the
effectiveness of the proposed methods.

The rest of the article is organized as follows. Section 2 introduces the key concepts and formally
defines the problem. Section 3 provides a brief review of hotspot detection and the NN-scan from
our previous work [48] along with a new analysis of NN-scan’s limitations. Section 4 presents
the proposed unified framework, the baseline algorithm, and the reduction algorithm. Section 5
describes the experiments and results. Section 6 discusses several design decisions of the proposed
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Fig. 1. Homogeneous and biased point processes.

approach. Section 7 provides an extended review of literature on hotspot detection, and Section 8
concludes the article and discusses future work.

2 PROBLEM DEFINITION

2.1 Key Concepts

Point distribution: A collection of N geo-located point instances (e.g., crime cases) in a spatial
domain (i.e., the study area used in a hotspot detection task).

Point process: A statistical process that generates a point distribution. It determines the proba-
bility of each point being located at each location in the study area.

Homogeneous point process (null hypothesis H0): A process whereby the probability density
of generating point instances is identical across all locations in the study area. As shown in
Figure 1(a), the cumulative probability of a point being generated/placed inside the circular candi-
date is pcumu =

pin ·ar eain

pin ·ar eain+pout ·ar eaout
=

ar eain

ar eain+ar eaout
, where pin = pout in a homogeneous point

process.
Biased point process (alternative hypothesis H1): A process whereby the probability density of

generating point instances is higher in some sub-regions (i.e., hotspots) than the others. As shown
in Figure 1(b), the cumulative probability of a point being generated/placed inside the circular can-

didate is pcumu =
pin ·ar eain

pin ·ar eain+pout ·ar eaout
=

2·ar eain

2·ar eain+ar eaout
, where pin = 2 · pout in a biased point

process.
Hotspot: A sub-region within the study area that has a higher probability density of generating

certain instances (e.g., crime cases) than its outside. The existence of hotspots means that the point
process is not homogeneous and is biased toward hotspot regions.

Candidate region: A sub-region that is a hotspot candidate.
Test statistic: A statistical measure that provides a summary value for a candidate region. In this

context, a test statistic value can be considered as a score for a candidate. A higher score means
a higher probability of being generated by the biased point process (i.e., H1). A test statistic (e.g.,
density, likelihood ratio) is needed to compare and rank candidates, which are critical operations
in selecting the best candidate and testing its significance.

2.2 Formal Problem Formulation

The hotspot detection problem is formally defined as follows:
Inputs:

—An N point distribution in a spatial domain,
—A test statistic,
—A significance level α (e.g., 0.01, 0.05);
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Outputs:
—Hotspots (if they exist);

Objectives:
—Solution quality (e.g., precision and recall),
—Computational efficiency;

Constraints:

—False-positive rate is lower than α ,
—Algorithm acceleration guarantees the same solution quality.

There are two objectives in this work. For solution quality, we aim to improve the completeness
of results under the constraint that the false-positive rate is controlled byα (i.e., no detection in (1 −
α ) · 100% of point distributions generated by the null hypothesis). For computational efficiency, we
aim to reduce the computational cost without giving in any solution quality.

3 A REVIEW AND NEW ANALYSIS OF OUR PREVIOUS WORK ON NN-SCAN

In this section, we first briefly review our previous work [48] on the non-deterministic
normalization–based scan statistic (NN-scan). Then, through new analysis, we identify the lim-
itations of NN-scan to show the need for the proposed extension.

3.1 Building Blocks of Hotspot Detection

3.1.1 Overview. At a high level, hotspot detection has three main steps:
Step 1: Enumerate through candidate regions in an input point distribution and identify the best

candidate.
Step 2: Test the significance of the best candidate.
Step 3: Terminate if the best candidate is not significant; otherwise, add it to the output, remove

both its spatial coverage and contained points from the data, and go back to step 1.
The first two steps detect a single hotspot (if it exists) from the input data, and the third step

enables detection of multiple hotspots. In the following, we discuss the three main building blocks
of the overall process in Sections 3.1.2 through 3.1.4.

3.1.2 Candidate Enumeration. Since a hotspot may appear at any location in a study area, we
need to define an enumeration space (e.g., certain types of circles) and go through each candidate
region in that space. The spatial scan statistic uses a two-point circle-based enumeration space,
which covers all circular regions that have one data point at the center and another on the cir-
cumference. For an N -point distribution, this corresponds to a O(N 2) search space. In general,
enumeration spaces are different for detection methods focusing on different shapes (e.g., ring,
linear). As discussed in Section 1.1, we use the circle-based enumeration space given its popularity
in research and applications.

3.1.3 Candidate Evaluation. Candidate evaluation is a step coupled with the enumeration pro-
cess that gives a score for each candidate region. As introduced in the basic concepts, a test statistic
(e.g., density, likelihood ratio) is used to compute this score, and a higher score should correspond
to a higher probability of the candidate being generated by the alternative hypothesis H1.

The score is required to compare and rank candidates to select the best candidate region and
test its significance. Specifically, to test the significance of a detection, we need to check if a same-
quality or better candidate can be generated by the null hypothesis. Thus, the score is necessary
and critical in making the comparison.

3.1.4 Significance Testing. Since there is often no existing statistical model that can be used
to compute the p-value of a candidate in closed form [18, 48], Monte Carlo simulation is used to
estimate the distribution of test statistic values and compute the p-value.

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 17. Publication date: September 2020.
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The Monte Carlo simulation has M (e.g., 1,000, 10,000) trials. In each trial, we generate a random
point distribution using the homogeneous point process (i.e., null hypothesisH0) and run the same
enumeration and evaluation algorithm (i.e., step 1 and step 2 in Section 3.1.1) to find the best
candidate. Then, we insert the score of the best candidate into a table in descending order. Upon
completion of all the trials, we have a table of M best scores. The detected hotspot from the real
input data is significant if its score is among the top α ·M scores, where α is the significance level.

3.2 A Test Statistic with Awareness of Spatial Non-Determinism

Candidate regions may have different areas (e.g., determined by the radii of circular regions) and
different numbers of points, so a direct ranking among them is difficult without a unifying score.
From this perspective, a test statistic can be considered as a normalizing function that generates
such scalar scores and makes candidates with different areas comparable.

An ideal test statistic should guarantee the fairness among candidates of different areas (e.g.,
circular regions with different radii). Because a true hotspot can be of any area, any bias toward
smaller or larger candidates will affect the method’s reliability.

3.2.1 Existing Test Statistics and Their Problems. Since we are interested in finding regions with
significantly high point concentrations, the first test statistic that comes to mind is often density
d = n/a, where n and a are the number of points and the area of a candidate region, respectively.
However, some studies [31, 48] have shown that density has a strong bias toward candidate regions
with smaller areas, limiting its ability to find hotspots of general areas.

To mitigate the strong bias, the spatial scan statistic (e.g., [8, 9, 16, 18, 21, 23, 32, 40]) provides a
likelihood ratio–based test statistic:

LR =
Likelihood (H1)

Likelihood (H0)
=

(n
e

)n (N − n
N − e

)N−n

· I
(n
a
>

N − n
A − a

)
, (1)

whereN and n are the number of points in the entire study area and the candidate region, re-
spectively; e = N · (a/A) is the expected number of points in the candidate region under the null
hypothesis (A anda are the area of the study area and the candidate region, respectively);H1 andH0

are the alternative and null hypotheses; and I () is an indicator function enforcing that the density
inside a candidate region is higher than outside it (i.e., dense rather than sparse).

In Equation (1), the likelihood of H1 represents the probability of generating a candidate region
with n points and an area of a using the biased point process (i.e., H1). Similarly, the likelihood
of H0 represents the probability of generating the same candidate region under the homogeneous
point process (i.e., H0).

Although the likelihood ratio aims to make fair comparisons among candidates with different
areas, our previous study [48] showed that it still has a bias toward smaller candidates, making
chance patterns (i.e., non-significant patterns) able to have better scores than significant patterns.
In that study [48], we provided a theoretical proof that a chance pattern could have an extremely
large likelihood ratio. The proof was based on a single-point-based special case.

For this extension, we conducted new experiments to show that it is common for chance patterns
to have better likelihood ratios than true hotspots. To generate chance patterns and true hotspots,
we created 400 synthetic datasets: 100 using the homogeneous point process (i.e.,H0) and 300 using
the biased point processes (i.e., H1) with three different effect sizes.2 The biased point process
contained a sub-region with a radius r = 1 (in a 10 × 10 study area), whose inside probability
density values were 100%, 150%, and 200% higher than the density outside (Figure 2(b), (c), and
(d), respectively). When the datasets follow H0 (Figure 2(a)) or H1 with not very large effective

2Effect size determines how many times the inside probability density is as high as outside.
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Fig. 2. Log likelihood ratios of best candidates with different areas across 100 datasets following H0 and 300

following H1 with different pin/pout ratios.

sizes (Figure 2(b) and (c)), we can clearly see that the candidates with a smaller area have a much
higher chance of getting high likelihood ratios, which confirms the bias. Especially, there are clear
separations between r = 0.05, r = 0.5, and r = 1 in Figure 2(a). As the inside probability density
increases (Figure 2(b) and (c)), the likelihood ratios for r = 1 (as well as for r = 0.5) start getting
closer to the likelihood ratios for r = 0.05 and become greater than them in a few cases. However,
they are still mostly dominated by the sub-regions with smaller sizes (e.g., r = 0.05) due to the
bias. In fact, by comparing the red line in Figure 2(b) or (c) with the blue line in Figure 2(a) (i.e.,
scores of the chance patterns), we can see that the true hotspots mostly have lower likelihood
ratios than the smaller chance patterns in this example! This means that many true patterns can
be mistakenly removed in significance testing because their scores may not be better than thos
of the chance patterns. Finally, in Figure 2(d), where the probability density values inside the true
hotspots are far greater (i.e., two times more) than the outside, the true patterns start to offset and
overcome the bias, making the true hotspots more likely to be detected.

3.2.2 A Non-Deterministic Normalization Index [48]. The main issue with the likelihood ratio
is that it ignores the effect of spatial non-determinism.

Definition 3.1. Spatial non-determinism is the phenomenon that the location of the best candi-
date with an area a is non-deterministic in a random point distribution.

Definition 3.1 shows that it is not correct to presume that the best candidate of area a will appear
at a specific location loc . However, in the current likelihood ratio, Likelihood (H0) is the probability
of observing n points in a circular region of area a centered at a fixed location (i.e., the same as the
location of the candidate being currently enumerated in the real data) [48]. As a result, it ignores
the probability that a same-quality or better candidate may be generated at another location.

Our previous work [48] addresses this problem by proposing a non-deterministic normalization
index (NNI). For simplicity of illustration, Equation (2) shows a simple instance of the NNI:

NNI =
n

n∗
, (2)
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Fig. 3. Example of the non-overlapping issue in NN-scan.

n∗ = max
x

x , s.t. p (x ,a) ≥ α , (3)

where n and a are the number of points and area of a candidate region, α is the significance level,
p (x ,a) is the probability of observing at least one candidate region of area a with x or more points
(may appear at any location) in a point distribution under H0, and n∗ is the best we can get under
the null hypothesis and significance level α .

The key parameter and difference maker in the NNI isn∗, which gives the best we can get with the
null hypothesis under a desired significance level α . The definition of n∗ (Equation (3)) explicitly
considers the effect of spatial non-determinism.

3.2.3 Significance Testing with the NNI. Since the significance level α is already incorporated
into the definition of the NNI as shown in Equations (2) and (3), we use its value directly to deter-
mine the significance of a candidate [48]. Specifically, a candidate is considered significant if its
NNI is greater than 1; otherwise, it is not significant.

3.3 Limitations of NN-Scan

The main goal of NN-scan is to improve the completeness of results by avoiding the issue of chance
patterns having higher scores than true hotspots. Although it is able to greatly improve the success
rate of hotspot detection when hotspots do exist (i.e., data belonging to H1), our new investigation
finds that its robustness against false positives is not as stable when data belongs to H0.

In NN-scan, the computation of the NNI requires Monte Carlo simulation because n∗ cannot be
computed in closed form, especially considering the effect of spatial non-determinism. In addition,
n∗ is area specific, so it needs to be computed for each different area a. As a result, if we still use
the enumeration space of two-point circles (Section 3.1.2), the Monte Carlo simulation needs to
be performed O (N 2) times in the worst-case scenario, which can be extremely expensive. Thus,
in NN-scan, we reduce the enumeration space by only considering circular regions of k different
radii, which brings the number of Monte Carlo simulations down from O (N 2) to k .

3.3.1 Solution Quality. In our new investigations, we find that the robustness of NN-scan
against false positives can be affected by k . Especially, the robustness becomes unstable for large
k values, making it possible for NN-scan to output false positives in more than 100α% of data
following H0.

The significance level α in the NNI (Equations (2) and (3)) guarantees that less than 100α% of
data following H0 can contain a candidate of area a that has an NNI greater than 1 (we denote

such a candidate asC (a)). However, the 100α% of data that containC (a1),C (a2), . . . , orC (ak ) may
not fully overlap with each other, although in practice there is often a strong correlation between
those different 100α% of data for different areas.3 As a result, this may lead to detections of false
positives in more than 100α% of data, violating the significance level constraint.

Figure 3 shows an example of the preceding analysis, where the significance level α = 0.01. In

the 100 datasets generated byH0, {C (ai )} of 20 different areas spreads over three datasets, resulting

3Increasing the number of points in a candidate at location loc also increases the number of points in the other candidates

(i.e., candidates with bigger and smaller areas) at or near loc .
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Table 2. Pros and Cons of the Two Approaches

Method Pros Cons

Likelihood ratio
based

Does not require significance
testing for multiple areas in a
pre-defined set

Many true hotspots have lower scores
than chance patterns due to bias, causing
many missing detections (Figure 2)

Non-deterministic
normalization
based

Avoids the bias across areas and
improves the completeness of
results

Performs significance testing for each of
the multiple areas in a pre-defined set,
causing unstable control of false-positive
rate (Figure 3)

in a false-positive rate of 0.03 that is above the significance level. Note that some areas may not

have a C (a) in the 100 datasets since the expected number of C (a) for each area is smaller than
α · 100 = 0.01 · 100 = 1 in this specific example. In addition, a larger k is more likely to incur a
false-positive rate that is higher than the significance level. In this extension, we aim to avoid
significance testing across multiple areas to enforce the constraint on the significance level.

3.3.2 Computation. The other limitation is that the algorithm acceleration in our previous
study [48] was specifically designed for significance testing across multiple areas. Its idea is to
use the already-computed n∗ values of a subset of areas to create tight upper and lower bounds on
the n∗ values for the remaining areas so that we may not need to compute exact n∗ values for them.
However, since our improved approach aims to avoid the need for multiple areas, this acceleration
strategy is no longer a fit and new computational enhancements are needed.

4 A UNIFIED FRAMEWORK

We propose a unified framework that takes advantage of the strengths of both likelihood ratio–
based and NNI-based methods while mitigating the limitations of each. In the following, we first
describe the new framework with a baseline two-phase algorithm. Then, we propose a reduction
algorithm to improve the computational efficiency of the unified framework and analyze the time
complexity of the algorithms.

4.1 A Baseline Two-Phase Algorithm

Table 2 summarizes the pros and cons of likelihood ratio–based and NNI-based methods. The main
issue with the likelihood ratio–based approach is its unfairness across areas during significance
testing (e.g., Figure 2), which makes many true hotspots have lower scores than chance patterns
and leads to missing detections. In contrast, the NNI-based approach avoids the bias of likelihood
ratio by separating the tests for multiple areas. However, this leads to instability in its robustness
against false positives, especially when the number of areas considered is large. Based on this
analysis, we aim to develop an approach that

—Avoids the bias across areas and improves the completeness of detection compared to the
likelihood ratio based approach;

—Enforces the constraint on the input significance level and avoids the NNI’s unstable control
of the false-positive rate.

To meet the two criteria, we propose a unified framework that integrates the pros of likelihood
ratio–based and NNI-based methods into two phases of a single approach. Figure 4 shows the key
steps of the two methods, as well as the unified framework. As we can see, the likelihood ratio–
based method mixes up the likelihood ratios of candidates with different areas in both the observed
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Fig. 4. Comparison of the general architectures of the three methods.

(real) dataset and each of the simulated datasets in Monte Carlo simulation. The significance testing
is then performed by ranking the best likelihood ratios from all of the datasets. The NNI-based
method, however, separates the ranking of scores for each different area in both the observed data
and each simulated data. The p-value of each candidate is then computing separately for each area.

Finally, the unified framework uses the likelihood ratio only to select the best candidate in the
observed data. Its significance testing is performed using the NNI, which focuses on a single area
(i.e., the area of the best candidate) and does not mix up candidates of different areas to avoid po-
tential biases. These two phases of the unified framework are detailed in Sections 4.1.1 and 4.1.2. In
addition, as shown in Figure 4, we use a θ -perturbation to further improve the method’s robustness
against false positives. This θ -perturbation will be discussed in Section 4.1.3.

4.1.1 Phase 1: Candidate Enumeration with Likelihood Ratio. In the first phase, we select the
best candidate in the observed (real) point distribution using the likelihood ratio. Specifically, we
enumerate through candidate regions of different areas and compute their likelihood ratio values.
The candidate with the highest likelihood ratio score will be selected as the best candidate.

Since the likelihood ratio–based method does not require a pre-defined set of k areas, the enu-
meration space of this phase can be flexible and not limited to candidates of k pre-defined areas.

In the baseline algorithm, we use the same default enumeration space as the spatial scan statis-
tic, which covers all circular regions that have one data point at the center and another on the
circumference. In other words, for each of the N data points, the algorithm enumerates N − 1 cir-
cular regions using the data point as the center and its distance to another data point as the radius.
This gives an enumeration space of O (N 2).

For candidate evaluation, we need to further compute the number of points in a candidate region
to calculate its likelihood ratio (Equation (1)). This can be done with a brute-force linear scan that
requires anotherO (N ) time. In the baseline algorithm, we make this faster by sorting. Specifically,
for each center point, we sort all of the points in ascending order based on their distances to the
center point. After the sorting, the number of points in each candidate region can be computed in
O (1) time. For example, denote Pc as the current center point and Pr as another point that has a
rank of R in the sorted list (ascending order). Then, the number of points in the candidate region
CR = {center: Pc ; radius: | |Pc − Pr | |2} is R. This brings down the total time complexity fromO (N 3)
to O (N 2 logN ) for phase 1 of the baseline algorithm.

4.1.2 Phase 2: Significance Testing with the NNI. The output of phase 1 is the best candidate in
the observed data. In the second phase, we test the statistical significance of this best candidate
using the NNI.
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Denote n and a as the number of points and area of the best candidate region from phase 1. We
calculate the n∗ value in the NNI (e.g., the NNI instance shown in Equation (2)) using the Monte
Carlo simulation. Again, the best candidate is significant if its NNI > 1; otherwise, not significant.
Since phase 2 only needs to consider a single area a, this significance testing basically checks if
the probability of generating a same-quality or better candidate (i.e., a candidate of area a with at
least n points) in a random data following H0 is smaller than the significance level α .

The time complexity of each Monte Carlo trial in phase 2 is O (N 2), which is smaller than the
complexity O (N 2 logN ) of phase 1 because only one area a (i.e., the area of the best candidate
from phase 1) is considered. With a total of M trials, the complexity of phase 2 is O (MN 2).

Trial parallelization. Given that the trials in Monte Carlo simulation are independent from each

other, we parallelize them across λ CPU cores. This brings the complexity down to O ( M N 2

λ
).

4.1.3 A θ -Perturbation for Robustness Against False Positives. Since phase 2 only performs sig-
nificance testing for a single area rather than multiple areas, it no longer has the non-overlapping
problem described in Figure 3. Although this design seems able to avoid the possibility of an in-
creased false-positive rate, our study finds that it is still not fully sufficient to enforce the signifi-
cance level constraint.

To illustrate the issue, we first discuss a fully unbiased scenario. Suppose we are only interested
in a single area apr e , which is pre-defined before observing the input point distribution. Then, if
we find the best candidate of area apr e in the input data and test its significance using the phase 2
approach, we can guarantee that the false-positive rate is fully controlled by the significance level
α . This scenario is unbiased because apr e is not informed by any knowledge about the input data
and is determined independently. However, this is not the case for the unified framework, in which
the area a used in significance testing is directly determined by the best candidate in the input data.
Unlike the fully unbiased scenario, a test based on this informed area a increases the chance of the
detection getting a low p-value and satisfying the significance level.

Since the level of bias may depend on both the choice of test statistic and the enumeration
algorithm, there is no existing model that can be used to exactly quantify and correct it. In the
unified framework, we reduce the bias by imposing perturbation to the best candidate detected in
the input data. Perturbation has also been found useful in other domains for bias reduction and
robustness enhancement. In earth science and physics, for example, perturbation helps improve
the reliability of forecasts by reducing the bias [43, 44]. Perturbation has also been used in machine
learning methods to modify the training data and improve stability in prediction. In our approach,
we propose a heuristic θ -perturbation, as described by Definition 4.1, to reduce the bias.

Denote Pall = {P1, . . . , PN } as the set of input data points. Denote Z as the best candidate found
in the data, cZ as its center point, nZ as its number of points, and rZ as its radius. The θ -perturbed
version of Z is defined as follows.

Definition 4.1. A θ -perturbed candidate Zθ maintains its center at cZ , and has a perturbed ra-
dius of rθ

Z
= (1 − θ ) · rZ and number of points nθ

Z
= |Pinside |, where θ > 0 and Pinside = {Pi | ∀Pi ∈

Pall , s.t. | |Pi − cZ | |2 ≤ rθ
Z
}.

The main idea of θ -perturbation is to perform the significance testing using a perturbed version
of the best candidate rather than directly using the best candidate itself. According to Definition 4.1,
a perturbed candidate Zθ is a candidate that locates at the same center as the original candidate
but with a different (smaller) radius and number of points. Then, Zθ will be used to calculate the
statistical significance. The intuition is that a small perturbation is likely to have less effect on a
true pattern because the sub-region of a true hotspot still has a higher probability density than its
outside. In contrast, we expect to see larger effects on spurious patterns generated by pure random
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chance in H0, which are more difficult to sustain without the support of higher probability density.
Our experiment results (Section 5) show that θ -perturbation is effective and performs consistently
in different setups.4 Other potential formulations of the perturbation are discussed in Section 6.

Algorithm 1 shows the key steps of the unified framework with pseudocode. Note that the
algorithm shows the process of detecting the best hotspot, which can be used recursively to allow
detection of multiple hotspot as illustrated in step 3 at the beginning of Section 3.1.

4.2 Acceleration: A Reduction Algorithm

In this section, we propose a reduction algorithm to tackle the computational bottleneck on the
Monte Carlo simulation in phase 2.

The inputs of phase 2 in the unified framework are mainly the θ -perturbed number of points n
and area a of the best candidate and the total number of points N in the study area. The idea of the
reduction algorithm is to construct an upper bound of the p-value using only a small proportion
of N (e.g., 0.1%, 1%, 10%). Then, if the upper bound of the p-value is already smaller than the
significance level α , we can skip the Monte Carlo simulation using the full data size N .

Theorem 4.2 shows the upper bound of the p-value (phase 2) using data reduction. Since the
p-value defined in Section 4.1.2 strictly favors candidates with more points for a given area a,
the upper bound is for p-values of dense regions (i.e., the number of points is higher than the
expectation under H0) and not sparse regions.

Theorem 4.2 (Reduction Theorem). The p-value of a candidate Z with area aZ and number of

pointsnZ in aN -point distribution is upper bounded by the p-value of a candidate with area aZ (same)

and number of points �ρnZ � in a 	ρN 
-point distribution, where ρ ∈ (0, 1]. The spatial domains of

the point distributions are the same.

Proof. Since there are no known statistical models that can express the p-value calculation in
closed form [18, 48], we will focus on showing the bounding relationship between the p-values
rather than explicitly writing out their exact probability functions. First, it is easy to write out a
closed-form expression for the probabilitypf ix of observing a same-quality or better candidate at a
fixed location in a random point distribution underH0. We will use the expression to show that the
p-value of the reduced case is higher than the p-value of the original case by showing that pr e

f ix
at

any fixed location in the reduced case is always higher than the corresponding por i
f ix

in the original

case. The por i
f ix

for the original case can be written out using the binomial distribution: por i
f ix
=

1 −∑nZ−1
i=0 ( N

i
)pi (1 − p)N−i , where p is the probability of a single point being randomly placed

into the target candidate region at the fixed location. Similarly, pr e
f ix

for the reduced case is pr e
f ix
=

1 −∑ �ρnZ �−1
i=0 ( 	ρN 


i
)pi (1 − p) 	ρN 
−i .5 According to the central limit theorem, the probability for

each i (e.g., ( N
i

)pi (1 − p)N−i ) can be tightly approximated by a normal distribution.

Thus, for both cases, we have
i−N p√
N p (1−p )

∼ N (0, 1), where N (0, 1) is the standard normal distri-

bution. Then, the only difference between the original and the reduced case is that they represent
different intervals in the normal distribution. Specifically, for the original case, the bounds are 0 and
nZ − 1. For the reduced case, the bounds are 0 and �ρnZ � − 1. Using these bounds, the summations
in the expressions ofpor i

f ix
andpr e

f ix
can be expressed as the cumulative probability inside an interval

of the standard normal distribution. For the original case, the interval is [
−N p√

N p (1−p )
,

nZ−1−N p√
N p (1−p )

]. For

4We recommend small values for θ (e.g., 0.1, 0.05) based on the experiment results.
5The expressions for por i

f ix
and pr e

f ix
basically perform two operations: (1) sum up the probability for each individual event

in which the number of points i is inferior to nZ (or �ρnZ �), and (2) remove the sum from the total probability 1.
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ALGORITHM 1: Two-phase unified framework

Require:

• An array P = [p1,p2, . . . ,pN ] of N points (input data) in a spatial domain D
• Significance level α
• Number of Monte Carlo trials M
• Value of θ in θ -perturbation: vθ

{#Phase-1}

1: Cbest = new candidate(radius: null, center: null, n: null, LR: 0) {#init the best candidate}

2: for pi in P do

3: [Psor t ,dissor t ] = sortPointsByDistanceTo(P , target: pi )

4: for j = 2 to N do

5: LR = computeLikelihoodRatio(n: j, a: πdissor t (j )2, N: N , A: D.area)

6: if LR > Cbest .LR then

7: Cbest .update(radius: dissor t (j ), center: pi , n: j, LR: LR)

8: end if

9: end for

10: end for

{#Transition: θ -Perturbation}

11: Cθ = Cbest .copy()

12: Cθ .update(radius: sel f .radius * (1-vθ ), center: sel f .center, n: 0, LR: null)

13: for pi to P do

14: if | |pi −Cθ .center| |2 ≤ Cθ .radius then

15: Cθ .n = Cθ .n + 1

16: end if

17: end for

{#Phase-2}

18: countbetter = 0

19: for t = 1 to M do

20: Pr = getRandomPointDistributionByH0(N , D)

21: nt = 0

22: for pi to Pr do

23: ni = 0

24: for pj to Pr do

25: if | |pj − pi | |2 ≤ Cθ .radius then

26: ni = ni + 1

27: end if

28: end for

29: nt = max(nt , ni )

30: if nt ≥ Cθ .n then

31: countbetter = countbetter + 1

32: break

33: end if

34: end for

35: if countbetter ≥ αM then

36: return null

37: end if

38: end for

39: return Cbest
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the reduced case, the interval is [
−	ρN 
p√
	ρN 
p (1−p )

,
�ρnZ �−1−	ρN 
p√
	ρN 
p (1−p )

]. As we can see, the interval of the

reduced case is completely contained by the interval of the original case. Since the final probability
is 1 minus the cumulative probability inside each interval, we have por i

f ix
≤ pr e

f ix
. �

Here we give a very simple example to help illustrate the intuition behind the reduction theorem.
Consider an instance for Theorem 4.2 where N = 20, nZ = 20, ρ = 0.1, and aZ = 1 (in a 10 × 10
study area). In this instance, the candidate contains all of the points in the distribution. The theorem
basically says that probability-wise it is easier to observe a 2-point candidate of area aZ = 1 in a
2-point distribution under H0 than to observe a 20-point candidate of area aZ = 1 in a 20-point
distribution under H0. The intuition behind this example is that when the probability of observing
an event is low, the probability of observing it at a larger magnitude is even lower.

Based on Theorem 4.2, we can compute upper bounds of the p-value using a small proportion of
the full data size N . Since the bounds are tighter for a larger proportion ρ, the reduction algorithm
sequentially checks through a sorted list (ascending) of p-values and terminates as soon as an
upper bound passes the significance test. Algorithm 2 shows the high-level steps of the reduction
algorithm.

ALGORITHM 2: Reduction algorithm

Require:

• Total number of points N and the spatial domain D
• Target candidate’s number of points n and radius r
• Significance level α
• Number of Monte Carlo trials M
• List Lρ containing ρ values to consider during reduction (sorted in an ascending order)

1: for id = 1 to |Lρ | do

2: Nr educe = 	Lρ (id )N 

3: nr educe = �Lρ (id )n�
4: is_siдni f icant = MonteCarloTest(nr educe , r , Nr educe , D, α , M) {#returns 0 or 1 using phase 2 scheme}

5: if is_siдni f icant==1 then

6: return is_siдni f icant
7: end if

8: end for

9: is_siдni f icant = MonteCarloTest(n, r , N , D, α , M) {#upper bounds > α , requiring full test}

10: return is_siдni f icant

Since the reduction algorithm focuses on input data transformation, it can be used without
modification with any other acceleration techniques (e.g., indexing) that are potentially useful in
Monte Carlo simulation. We skip detailed discussion of these potential integrations since they are
not the focus or contribution of this work. In addition, the reduction algorithm does not require
any additional data structure and is very easy to implement.

4.3 Complexity Analysis

Denote the total number of points as N , the number of Monte Carlo trials as M , and the number of
CPU cores as λ. To reflect the computational improvement of the reduction algorithm, we denote
the working ρ (Theorem 4.2 and Algorithm 2) as ρ∗, whose value is in the range (0, 1]. Note that
Algorithm 2 terminates as soon as ρ∗ is found. When ρ∗ = 1, it means that the reduction did not
work and the Monte Carlo simulation needs to be executed on the full data size N . In practice,
we find that ρ∗ (if a true hotspot exists) is typically between 1% (when the hotspot has a very low

p-value) and 10%. The total complexity of the baseline algorithm is O (N 2 logN + M N 2

λ
). Since M

λ
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Fig. 5. The overall validation framework.

is much larger than logN in most scenarios, the complexity can be simplified to O ( M N 2

λ
). The

time complexity of the accelerated algorithm (i.e., with the reduction theorem) is O (N 2 logN +
M (ρ∗N )2

λ
), where ρ∗ ∈ (0, 1]. In the accelerated algorithm,

M ρ2

λ
can be potentially smaller than logN

(e.g., when N = 1,000, M = 1,000, ρ∗ = 10%, λ = 10). Note that when the upper bound does not
help, the reduction algorithm may introduce additional overhead. To control the overhead to a
very small amount of time, we recommend limiting the maximum ρ candidate to a small value
(e.g., 10%).

5 VALIDATION

Figure 5 shows the overall validation scheme. The goal of the experiments is to answer the follow-
ing questions:

• Solution quality related:

—Does NN-scan’s robustness against false positives reduce as the number of areas consid-
ered gets larger?

—Is the unified framework able to enforce the input significance level α (i.e., having a false-
positive rate lower than α )?

—Does θ -perturbation improve the unified framework’s robustness against false positives?
—Is the unified framework able to improve the completeness of results compared to the

likelihood ratio–based approach?
—What are the effects of data parameters (e.g., number of points, number of hotspots,

hotspot size) on the solution quality of the methods?
• Computational performance related:

—Does the reduction algorithm improve the computational efficiency compared to the base-
line algorithm?

—What are the effects of parameters (e.g., number of points, number of Monte Carlo trials)
on execution time?

5.1 Solution Quality

Since hotspots have a concrete mathematical definition (i.e., probability density of generating in-
stances is higher within hotspots), the solution quality of hotspot detection can be experimen-
tally evaluated using controlled synthetic data. Specifically, we generated two types of point
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Fig. 6. Examples of successful and unsuccessful detections based on criteria defined in the experiment setup.

distributions: (1) point distributions following a homogeneous point process H0, which does not
contain any hotspot, and (2) point distributions following biased point processes H1, in which we
artificially insert true hotspots so that we know their actual locations and sizes. Data following
H0 evaluates if an algorithm can enforce the significance level so that it is robust against false
positives, and data following H1 evaluates how well an algorithm can detect true hotspots.

Experiment setup. Our experiments covered a variety of parameters for the synthetic data gen-
eration: (1) total number of points N ; (2) effect size es , which indicates how many times the prob-
ability density inside is as high as outside; (3) radius of hotspot r ; and (4) number of hotspots h.
The default parameter values of (N , es, r ,h) were set to (200, 3, 1, 2), respectively. The dimension
of the study area was 10 × 10. Note that we did not specify the exact geo-distance per unit length
for the study area (i.e., the real-world distance represented by 1/10 of the side length of the study
area). Users are free to select their own metric (e.g., meter, kilometer) or scale if visualizations on
maps are needed. To compute the performance statistics (e.g., number of false positives, precision,
recall), we need a measure to determine if a detection is successful. In the case of point distribu-
tions generated by the null hypothesis H0, this is relatively easier because all detections will be
false as there is no true hotspot. For point distributions generated by H1 where true hotspots exist,
we determine the success of detection by comparing the two key circle parameters (i.e., center
location and radius) between the detection and true hotspot. Denote Hd as the detection (i.e., a
circle) with center cd and radius rd , and Ht as the true hotspot with center ct and radius rt . A
detection is considered successful if both the following criteria are satisfied: (1) the detection con-
tains the center of the true hotspot (i.e., Hd .Contains(ct )=TRUE),6 and (2) the difference between
the radii of the detection and true hotspot is smaller than half of radius of the true hotspot (i.e.,
|rd − rt |/rt < 1/2). In general, it is very challenging for a method to precisely capture the center
and radius of a hotspot due to the randomness involved in the data generation process. Figure 6
visualizes several examples of successful and unsuccessful detections based on the criteria. We
used the same criteria to determine the success of detection for all methods in the experiment,
and then we used the results to compute the performance statistics (e.g., precision, recall). In the
final results, each performance statistic was calculated using detection results from 100 synthetic
datasets.

In the following solution quality analyses, the results of the unified framework were obtained
using the accelerated algorithm (i.e., with the reduction technique described in Section 4.2). During
the experiments, we also obtained the results of the baseline algorithm on the same datasets and
the results are almost exactly the same (tiny differences are tolerable because the p-values are

6The center of a spatial hotspot is also considered as a meaningful feature in many applications (e.g., potential source of

water contamination or residence location of a serial criminal). Having the true center contained in a detection may help

refine the scope for subsequent analyses on detected hotspots.
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Fig. 7. Number of random datasets under H0 (out of 100 in total) in which false positives were detected.

Significance level α was set to 0.01.

Fig. 8. Number of random datasets under H0 (out of 100 in total) in which false positives were detected.

Significance level α was set to 0.05.

calculated using the Monte Carlo method, which involves a little randomness). In the plots, we
only show the results of the accelerated version to avoid redundancy (e.g., many overlapping lines).

5.1.1 Robustness Against False Positives. In the context of hotspot detection, false positives are
detections of chance patterns that are created by a homogeneous point process H0. Figure 7 and
Figure 8 show the experiment results on 800 synthetic datasets (100 for each pair of N and α )
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Fig. 9. Precision, recall, and F1-scores with varying number of points N . Note that NN-scan and unified (no

θ -pert.) suffer from reduced robustness against false positives when data followsH0 (Section 5.1.1) and cannot

provide guarantee on satisfying the significance level. In contrast, the likelihood ratio–based approach and

unified (with θ -pert.) can enforce the significance level. Thus, the improvements in completeness achieved

by unified (with θ -pert.) are much more useful and meaningful in real-world urban or smart-city applications

(e.g., [1]), where the cost of false positives is often high both socially and economically.

where point distributions were generated using H0 (i.e., no hotspots). It offers a comparison on
the robustness against false positives across different frameworks (i.e., NN-scan, unified (no θ -
perturbation), unified (with θ -perturbation), and likelihood ratio based). The Y axes in Figure 7
and Figure 8 represent the number of datasets in which false positives were detected by a method.
The significance level for all methods was set to α = 0.01 in Figure 7 and α = 0.05 in Figure 8. Since
100 datasets were used in the evaluation for each pair of N and α , a robust method is expected
to detect false positives in only about one of the 100 datasets for α = 0.01 (Figure 7) and five for
α = 0.05 (Figure 8). The significance levels are visualized using red dashed lines in the figures.
Note that small variations are tolerable since the p-values of the methods are based on the Monte
Carlo method.

Instability in NN-scan’s robustness against false positives. As shown in Figure 7 and Figure 8, NN-
scan detected more false positives than the expected number (i.e., 1 for Figure 7; 5 for Figure 8),
especially when the number of areas k is large. For k = 4 and α = 0.01, the average number of
mistakes is three across the four experiments (i.e., N = 100, 200, 500, and 1,000). This corresponds
to a false-positive rate of 0.03, exceeding the input significance level by 0.02. Under the same α , the
false-positive rate goes up to 0.05 as k increases to 20, exceeding the significance level by 0.04. A
similar trend can be seen in Figure 8. These results show that the robustness of NN-scan is affected
by the number of areas considered, and thus it may not be able to fully enforce the significance
level. In practice, this issue can lead to a greater number of costly false alarms (e.g., falsely declaring
a normal neighborhood as a crime hotspot).

Stabilized robustness with the unified framework and the θ -perturbation. First, we can see that in
both Figure 7 and Figure 8, there is a sharp decrease on the false-positive rate from NN-scan to the
unified framework. For the unified framework without θ -perturbation, the average false-positive
rates drop to 0.02 in Figure 7 and 0.625 in Figure 8 across all data sizes. These are fairly close to but
still above the specified significance levels. After θ -perturbation is applied, we can clearly see that
the number of mistakes is well controlled and the average false-positive rate becomes less than the
specified significance levels in both figures. In addition, the robustness stays stable across different
data sizes. Comparing the three unified frameworks with different θ values, the false-positive rate
also stays stable. Figure 7 and Figure 8 experimentally confirm that the unified framework and
θ -perturbation are very effective in enforcing the significance level constraint.

5.1.2 Improving the Completeness of Results without Instable Control of False-Positive Rates.

Figures 9 through 12 show the precision, recall, and F1-scores achieved by the candidate methods
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Fig. 10. Precision, recall, and F1-scores with varying effect size es .

on the synthetic datasets generated using H1, in which true hotspots were artificially inserted us-
ing controlled parameters. In this context, improving the completeness of results means increasing
the number of true hotspots being successfully detected (i.e., recall). Although NN-scan achieved
the highest recall among all of the methods, our analysis in Section 3.3 and results in Section 5.1.1
showed that it tends to violate the false-positive rate specified by the significance level α for data
following H0. Thus, its higher recall does not come with stable control of false-positive rates, mak-
ing the improvements less interesting.7 In contrast, the unified framework is able to enforce the
significance level and maintain a stable robustness against false positives. This is very important
in urban and smart-city applications in which false positives often have a high cost (Section 1).
In Figures 9 through 11, we can see that all of the methods using the unified framework and θ -
perturbation have a higher recall (i.e., percentage of true hotspots detected) compared to the like-
lihood ratio–based approach. This means that they are able to improve the completeness of the
output results while satisfying the constraint on false-positive rate. Among these robust methods,
the best results are achieved when θ = 0.05. Compared to the likelihood ratio–based approach, its
recall is more than 100% (relative) higher in many scenarios.

5.1.3 Effect of Data Parameters on Solution Quality. Data parameters are those used to generate
the synthetic data as described in the experiment setup. Here we analyze the effect of these data
parameters on the solution quality of the candidate methods.

Effect of total number of points N . Figure 9 shows that the solution quality of all of the methods
gradually improves as the number of points increases. This is expected as it is easier to confirm
the statistical significance of hotspots with more observed samples (i.e., less random effects). For
example, it can be very difficult to observe and be confident about a hotspot if we are only given
one point. The confidence will grow as more point locations are given.

Effect of effect size es and hotspot size (radius) r . We discuss these two parameters together be-
cause the ways they affect the solution quality are very similar. Both effect size es and radius r
determine how likely a point will randomly emerge within a hotspot under either H1 or H0. Since
effect size es represents how many times the inside probability density is as large as the outside
density, it must be greater than 1 for hotspots to exist; otherwise, the point process must be homo-
geneous. For hotspot size r , its size determines its inside cumulative probability for a given es . If r
is small, the cumulative probability may be small even with good effect sizes. In general, it can be
very difficult to detect hotspots and confirm their significance when the value of es or r is small.
This is consistent with the trends shown in Figures 10 and 11, in which the overall solution quality
(e.g., recall) of all methods decreases as es or r gets smaller, showing the increased difficulty for

7Note that we do not know in advance whether an input dataset follows H0 or H1.
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Fig. 11. Precision, recall, and F1-scores with varying radius r .

Fig. 12. Precision, recall, and F1-scores with varying number of hotspots h.

successful detection. On the bright side, however, if hotspots of small sizes are detected, we can
have higher confidence in them because the effect size is likely to be very large and unusual.

Effect of number of hotspotsh. As introduced in Section 3.1 (step 3), detection methods can be used
recursively as sub-routines to detect multiple hotspots. Figure 12 shows that the solution quality of
all of the methods decreases as the number of hotspots increases. When multiple hotspots co-exist,
it becomes more difficult to confirm the significance of a hotspot because the number of points on
its outside increases due to the existence of the other hotspots.

5.1.4 Example Use Case: Urban Crime Data. Since the ground truth for this type of problems
is unknown or cannot be exactly known in uncontrolled scenarios (e.g., in real-world scenarios
where we do not have control over the generation process of points), the purpose here is not to
offer a rigorous comparison between the solution quality of the methods. In addition, it is often
difficult or insufficient to compare the methods using only one or a few datasets, which can be
easily biased. Thus, in this work, the solution quality of the methods is compared using a large
number of controlled synthetic datasets (i.e., more than 1,000) where the ground truth is known
exactly.

The goal of this experiment is mainly to show an example of hotspot detection in a real-world
urban application. The dataset used is the motor-part theft dataset from the Minneapolis Police
Department. The dataset can be considered as a relatively difficult dataset for hotspot detection be-
cause the total number of points is not large, making it harder to confirm using statistical measures
(Figure 9 in Section 5.1.3). Figure 13(a) shows the 124 instances displayed on top of the city map. To
visually identify the dense regions, a useful trick is to compare the distances between neighboring
points at different regions. With that, we can see there is a dense region around the middle of the
map (i.e., covering the downtown area) and another at the bottom right (next to a lake, river park,
and major airport). Figure 13(c) shows that the significance of both regions is confirmed by the uni-
fied framework. Note that the same can also be detected using the NN-scan approach [48] (i.e., the
conference version) because by design it tends to return more detections. However, as discussed
in Section 3.3 and Section 5.1.1, its false-positive rate is not stably controlled by the significance
level, making it more difficult to robustly support critical decision making in urban applications.
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Fig. 13. Example on urban crime data: Minneapolis motor-part theft.

In contrast, the unified framework can strongly enforce the desired significance level, so we can
have more confidence in its detections. As shown in Figure 13(b), the likelihood ratio–based ap-
proach confirms the larger hotspot but does not return the smaller one. This is likely due to its
lower recall according to the results on synthetic datasets (Section 5.1.2). In addition, we expect
the smaller hotspot to have a fairly large effect size based on our analysis on the effect of hotspot
size in Section 5.1.3. Although the likelihood ratio–based approach found the larger pattern but
missed the smaller one, this result does not contradict the bias toward smaller candidates shown
in Section 3.3 and Figure 2. Since the score of a candidate depends on multiple factors such as area
and effect size, the bias does not prevent larger candidates from having greater scores than smaller
ones (e.g., Figure 2(d)).8

Limitation. Note that the risk of motor-part theft is not necessarily uniformly distributed in the
study area, and it may depend on lots of factors such as the density of vehicles, the models of
vehicles (e.g., whether anti-theft alarms are installed), availability of security cameras, and risks
of being noticed (e.g., by vehicles passing nearby), among others. Since these data are often not
collected or publicly available, which is the case for this example, we used uniform distribution
as a rough approximation of the baseline risk distribution and did not attempt to make further
assumptions about it. Thus, the hotspots detected at this stage should be viewed as an aggregated
result of all potential factors (including unknown ones) affecting the distribution of motor thefts.
Moreover, we mainly used the data to show what detection results may look like in real-world
applications, not to suggest any policies or actions without further analysis by domain experts.

5.2 Computational Performance

We analyze the execution time of the proposed algorithms: (1) the baseline algorithm and (2) the
accelerated algorithm using reduction. The goal is to evaluate the effectiveness of the proposed
reduction algorithm and identify its dominance zones. We considered these two algorithms as the
candidates mainly because they are the contributions of this work and have the same solution
quality, allowing an apple-to-apple comparison. The computation and acceleration methods for
the other methods are outside the scope of this work. In addition, their solution quality is different
(e.g., Table 2), which will make an execution time comparison less interesting and meaningful.

8The use of statistical measures in the likelihood ratio, although still having some theoretical limitations, has already greatly

reduced the much stronger bias presented in other measures such as density and density ratio [48].
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Fig. 14. Execution time with varying total number of points N .

5.2.1 Improvement on Computational Efficiency. Figures 14 through 16 show the execution time
(log scale) of the baseline and the accelerated algorithms with varying total number of points N ,
number of Monte Carlo trials M, and effect size es . The default values of (N , M , es) were set to
(1,000, 500, 5). Parallelization was applied to the Monte Carlo trials for both the baseline and the
accelerated algorithms. The experiments were run using a 12-core node with an Intel Haswell
E5-2680v3 processor, and each time was averaged from 10 repeated runs to reduce random effects.

Among the three controlled parameters,N andM are explicit in the time complexity expressions
of the methods. We also consider effect size es because it determines how strong the true hotspots
are, which may impact their corresponding p-values during detection. For a given significance
level α , the p-value upper bounds created by the reduction algorithm have a higher chance of
being under α if the actual p-value is smaller.

As shown in Figures 14 through 16, the reduction algorithm consistently outperformed the base-
line algorithm in the experiments and was orders of magnitudes faster in many of the scenarios.
In general, the speedup increases with increasing number of points N , number of Monte Carlo
trials M, or effect size es . In Figure 16, we can see that the acceleration is small when es = 2. As
discussed earlier, this is because the gap between an actual p-value and the significance level α
tends to be narrower when es is small, making it more difficult for the upper bound to satisfy the
significance level. For hotspots with bigger es , the reduction algorithm is able to greatly reduce
the computational cost.

Note that the reduction algorithm is currently only effective for data with true hotspots and that
its execution time is very similar to the baseline algorithm when data follows H0 (i.e., es = 1).9

5.2.2 Effect of Parameters on Execution Time. Here we analyze the effect of the controlled pa-
rameters, N , M, and es , on the execution time.

Effect of total number of points N . Figure 14 shows the execution time trends of the baseline and
the accelerated algorithms with varying N . We can see that the gap between the two algorithms
increases as N increases. Specifically, the speedup achieved by the accelerated algorithm increases
from about 2 times to about 36 times as N increases from 200 to 10,000. This result indicates that
the working reduction factor ρ∗ gets smaller as N increases. This is expected based on the solution
quality results on N (i.e., Figure 9 in Section 5.1.3). Basically, as N gets larger, it becomes easier to
confirm the significance of true hotspots, which means the p-values of true hotspots are smaller.
As a result, the reduced p-values make it easier for the upper bounds generated by the reduction

9With tiny overheads when maximum ρ is set (Section 4.2).
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Fig. 15. Execution time with varying number of Monte Carlo trials M .

Fig. 16. Execution time with varying effect size es .

algorithm to satisfy the significance level. Similarly, smaller reduction factors also receive higher
chances of success.

Effect of number of Monte Carlo trials M . As shown in Figure 15, the absolute difference in the
execution time between the baseline and the accelerated algorithms increases as M gets larger
(i.e., from less than 10 seconds to more than 100 seconds). Overall, the accelerated algorithm has a
slower increase in execution time compared to the baseline algorithm. For example, the execution
time is about 7 times longer for the accelerated algorithm from M = 100 to M = 2,000. For the
baseline algorithm, this goes up to about 15 times. According to Section 4.3, the time complexity of

the baseline and the accelerated algorithms are O (N 2 logN + M N 2

λ
) and O (N 2 logN +

M (ρ∗N )2

λ
),

respectively, where ρ∗ ∈ (0, 1] is the working reduction factor. Although the complexity of the
Monte Carlo simulation is linear in M for both algorithms, the effect of M may become secondary
in the complexity of the accelerated algorithm when ρ∗ is small (e.g., 0.1). This may make the
total complexity “sub-linear” in M . In contrast, the complexity of the baseline algorithm is mainly
dominated by the Monte Carlo simulation.

Effect of effect size es . Figure 16 shows that the computational saving achieved by the acceler-
ated algorithm becomes greater as the effect size es increases. Specifically, both algorithms have
very similar execution time when es = 2 and then the time for the accelerated algorithm quickly
becomes 10 to 20 times faster than the baseline algorithm as es gets larger. As we analyzed earlier,
higher effect sizes lead to lower p-values of true hotspots, which in turn leads to a higher success
rate for the reduction algorithm. In Figure 16, we can also see that the decrease in execution time
becomes slower after es = 5. This may indicate that the reduction algorithm has already reduced
the computational cost of the significance testing process (i.e., phase 2 of the unified framework)
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to a level at which its time cost becomes secondary compared to the time spent on the observed
data (i.e., phase 1).

6 DISCUSSION

This section discusses three design decisions in the unified framework: significance level, θ -
perturbation, and hotspot shape.

Significance level. The present study considers significance level α as a hard constraint, and the
goal is to improve the statistical power (i.e., recall) while satisfying this constraint. In other words,
the unified framework aims to increase the success rate of finding true hotspots in biased point
processes (i.e., H1) under the constraint that the rate of outputting spurious patterns generated by
a homogeneous point process (i.e. H0) is smaller than α . This hard constraint is mainly favored in
societal applications where false positives tend to have a high economic or social cost. As intro-
duced earlier in Section 1, false claims of crime hotspots can lead to unnecessary negative impacts
such as lowering property values and causing social anxiety. Limited availability of resources (e.g.,
budget) is also a major reason for employing this hard-constraint view. In disease monitoring and
surveillance (e.g., National Cancer Institute [2]), for example, large investments are often needed
in multiple areas (e.g., sanitation, screening, research, infrastructure) to study and control a dis-
ease outbreak. Thus, the inability to distinguish chance patterns from true outbreaks can lead to
a huge waste of limited resources. Similarly, in transportation, new design and construction are
often required to fix unsafe roads with abnormally high rates of accidents, making it critical to
avoid false positives [41].

Nevertheless, we acknowledge that there are many other application areas that may favor a
higher success rate of detection over a strict constraint on the significance level, especially when
the cost of false positives is low. In e-commerce, it may be more effective to send an advertisement
to a clustered customer group that potentially has an interest in it than to be conservative about
chance patterns. In other words, the benefit of true positives (i.e., customers purchasing the recom-
mended products/services) greatly outweighs the cost of false positives (i.e., customers skipping
an advertisement in which they are not interested).

Given the non-trivial conflict between reducing false positives and increasing success rate, it
may be prudent and timely to explicitly investigate this trade-off and explore ways to optimize the
choice of significance level α based on budgetary constraints and quantification of benefits and
costs. For example, in disease surveillance, sometimes losing control of a disease outbreak may
cost more (e.g., cause more fatalities) than wasting resources on some false positives. This makes
it important to develop a more holistic view in which different types of costs can be modeled
simultaneously to better inform decision making.

Choice of θ in perturbation. We have explored θ that have positive values during the perturbation.
This makes the perturbed candidates have a radius smaller than the original versions according to
Definition 4.1. We choose θs with positive values mainly because of the convenience they offer for
a dual perturbation—for instance, simultaneously perturbing both the size of a candidate and the
number of points inside it. Since an original candidate has a point on the circumference, reducing
the radius by a positive proportion will also reduce the number of points by at least 1. When
θ is negative, it is uncertain whether the perturbation will lead to a change in the point count,
especially if the radius is very small. In addition, since the perturbed candidate with a smaller
radius is a sub-region of the original candidate, it maintains the higher inside probability density
when the original pattern is a true hotspot, leading to relatively less effect on its significance result.
A side effect of the current θ -perturbation is that it may reduce the success rate of true hotspot
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detection compared to the unperturbed version.10 Thus, in the future, we will continue to refine the
perturbation method to reduce this side effect without losing its current robustness in enforcing
the false-positive rate. In the following, we list several opportunities for future investigations on
other perturbation formulations. First, a potential richer formulation is a triple-parameter-based
(Δn,Δr ,Δd )-perturbation in which a perturbed candidate must differ from its original form by at
least Δn in points and Δr in radius, and its center must be at least Δd away from the original center.
The perturbation may also be made a random process and used on all candidates instead of just
the best candidate. Moreover, an orthogonal direction worth exploring is to perform perturbations
on the data instead of the hotspot candidates.

Hotspot shape. This work uses a circle as the shape of hotspots. This shape is by far the most
common choice in both literature and applications because it has a simple mathematical represen-
tation and a relatively small enumeration space for computation. Beyond the scope of the present
study, the shape of hotspots can be, in general, determined using knowledge from domain appli-
cations. For example, according to the routine activity theory [8], serial criminals (e.g., arsonists)
often commit crimes neither too far nor too close to their home to reduce the travel expense, as
well as the risk of being recognized by neighbors. Thus, rings are better representations for the
shape of hotspots than circles in this application scenario [8].

7 RELATED WORK

The spatial scan statistic [18] is the most widely used approach for hotspot detection, which defines
a likelihood ratio function to evaluate the score of each potential candidate of hotspot and test its
statistical significance, as introduced in Section 3. In the literature, many efforts have been made
to extend the capacity of the spatial scan statistic in different application scenarios. In this section,
we discuss several major directions of these extensions.

Shape family. The spatial scan statistic by default detects hotspots that have a circular shape.
In recent years, the shape family of hotspots has been extended to include many others, such as
ellipses [20, 21], rectangles [31, 32], rings [7, 8], and linear [13, 35, 39, 41] or arbitrarily shaped
hotspots [49]. These new hotspot shapes have mainly been developed to meet specific domain
needs (e.g., ring-shaped hotspot detection for locating a serial criminal). The corresponding new
techniques provide mathematical definitions of the enumeration space for hotspots of a specific
shape (e.g., four-point-based centric rings [8]), as well as computational models for speeding up
enumeration in the new mathematical space. However, since the main focus of these methods is on
the shape of the hotspot, they are still mostly built based on the likelihood ratio–based framework
provided by the spatial scan statistic.

Emerging hotspots. Temporal extensions have been developed to identify emerging hotspots in
a spatial domain, such as the expectation-based and Bayesian scan statistics [14, 27–29, 30, 33, 42].
Although the goal in spatial scan statistics is to find stationary sub-regions that have significantly
high concentration of events in data accumulated over time, emerging hotspot detection focuses
on the local dynamics in the data and aims to detect sub-regions that are likely to turn into hotspots
in the near future (i.e., the pattern does not necessarily survive over the long term). One example
is the expectation-based scan statistic [27], which models data as a localized time series (e.g., daily
patient visits in hospitals) and computes a different form of the likelihood ratio by comparing the
visits of the present day to the visits of recent days. The Bayesian scan statistic [29] also aims to
detect emerging hotspots. Its main advantage is that it avoids the need for randomization tests

10The unperturbed version cannot stably enforce the false-positive rate constrained by the significance level, so its higher

success rate is less interesting (i.e., at the cost of violating the significance level).
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(i.e., Monte Carlo simulation). However, it does require a correct prior or a near approximation
to make reasonable detections. Although emerging hotspot detection methods have introduced
new variants of test statistics (e.g., different forms of likelihood ratios), these modifications have
a different purpose (i.e., identify emerging hotspots in a local time domain) and are orthogonal to
the likelihood ratio formulation in the spatial scan statistic.

Multi-variate hotspots. There have also been multi-variate extensions of hotspot detection to
allow simultaneous consideration of multiple mutually related events. In disease surveillance, for
example, a single disease can have many different symptoms (e.g., fever, diarrhea), so it may make
sense to integrate a variety of symptom data at the same time to make a more powerful analysis.
Multi-variate scan statistics [22, 28, 29] combine the observations of multiple types of events to-
gether in the calculation of the likelihood ratio to achieve this goal. The focus of these methods is
on the design of integrating multiple likelihoods. They are not intended to modify the fundamental
formulation of the likelihood ratios in univariate spatial scan statistics.

Hotspots of continuous values. The original spatial scan statistic was mainly designed for Boolean
events: a data point (e.g., a crime case) either exists or it does not. In contrast, continuous value–
based hotspot detection focuses on the values (e.g., life span, age, air quality, house price) of points
in different sub-regions rather than the density. Thus, point processes (e.g., homogeneous or bi-
ased) are no longer useful to model the statistical process. Instead, normal spatial scan statistics
[10, 11, 15, 19] were developed to calculate the likelihood ratios and perform the significance tests
using normal distributions. Since these methods no longer care about the density of points across
the study area, the new likelihood ratios are not applicable to the Boolean event–based spatial scan
statistics (e.g., this work). In addition, region-size-based test statistics proposed to find regions with
significant changes in values [50] are also not applicable to the target problem.

Uncertainty. The effect of location uncertainty has also been studied in the context of hotspot
detection [5, 6, 12, 24, 25, 34], especially for disease surveillance, where data are often shared in an
aggregated form for privacy protection purposes, making it important to understand the potential
errors caused by such uncertainty. Methods have been proposed to visualize the effects of data
uncertainty or inaccuracy (e.g., [6, 34]).

8 CONCLUSION AND FUTURE WORK

We first analyzed the theoretical limitations of both the likelihood ratio–based method and our
previously proposed non-deterministic normalization–based method (i.e., the conference version),
showing that the former suffers from missing detections, whereas the latter is unstable against
false positives (i.e., may violate the significance level constraint). To address the limitations, we
proposed a unified framework and θ -perturbation scheme, which can improve the completeness
of detections over the likelihood ratio–based method while still robustly enforcing the significance
level constraint. We also proposed a reduction algorithm to improve the computational efficiency
of the new approach. Through detailed experiments, we confirmed that the proposed approach
can consistently and stably satisfy the significance level constraint while still being able to greatly
reduce the number of missing detections in the likelihood ratio–based approach. In addition, ex-
ecution time results showed that the reduction algorithm can greatly reduce the computational
cost.

In future work, we aim to further extend the unified framework by exploring the opportunities
discussed in Section 6, such as a combined view of precision and recall, new perturbation formu-
lations, and more hotspot shapes. In addition, although the current unified framework is designed
using the continuous version of hotspot detection, we plan to extend it to handle the discrete
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version. Note that phase 1 of the unified framework can mostly stay the same because the likeli-
hood ratio by default handles discrete point processes. The main change that will be needed is in
the enumeration algorithm in the second phase. We also plan to extend the proposed framework
to network space to better handle transportation related datasets (e.g., pedestrian fatalities, road
accidents). Spatiotemporal or other higher-dimensional extensions will also be explored.
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