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Abstract 
Automatic figure captioning is widely useful for improving 
the readability and accessibility of figures. Despite recent 
advances in figure question answering and parsing figure 
elements that enable machines to accurately read informa-
tion from figures, the machine learning community still lacks 
sufficient understanding of this problem, on what contents 
are important to include in a caption and how to make it 
sound natural. In this work, we crawled, annotated, and an-
alyzed a corpus of real-world human-written figure captions. 
Our study results show that real-world captions usually con-
sist of a finite set of caption units and that automatic figure 
captioning should be formulated as a multi-stage task. The 
first stage is to generate caption units with high accuracy 
and the second is to stitch together the units with diverse 
stitching patterns, to form a natural caption. 

Author Keywords 
Figure captioning; text generation; data visualization. 

CCS Concepts 
•Human-centered computing → Natural language inter-
faces; 

Introduction 
Figures are visual representations of data to communicate 
patterns such as trends, comparisons, and rates. Scien-
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Figure 1: An example figure 
created from Microsoft Excel and 
to generate a caption with. 

tific papers, business reports, websites, and other docu-
ments include them to supplement the textual contents. 
Common figure types include line charts, bar charts, pie 
charts, and scatter plots.1 Figures are often displayed along 
with a caption summarizing their key information to improve 
their readability and accessibility. A descriptive caption can 
be used as the alternative text, enabling visually impaired 
users to read the figure [27, 28], improving search engine 
indexing, or allowing busy users to skim read a report. 
Despite the importance of figure captions, human-written 
captions can sometimes be trivial, non-informative, or ab-
sent altogether [2]. The arising call for web accessibility [3] 
inspired us to explore automatic figure captioning, which 
could be potentially useful to existing publishing tools such 
as WordPress, Google Web Designer, and Adobe Acrobat. 

To automatically generate captions, machines need to 
parse figure elements, reason over their relationships, 
then describe in natural language. Recent progress in 
figure question answering [15, 16] and parsing figure ele-
ments [22, 24] demonstrated machines’ capability in these 
processes, making figure captioning an emerging “last mile” 
problem. However, to formulate the problem and provide a 
viable solution, the machine learning community still lacks 
sufficient understanding of what contents are important to 
include in a caption that helps readers to know about a fig-
ure and how to make a caption sound natural. 

We seek to fill this gap by providing design implications and 
guidelines toward designing accurate and natural figure 
captioning systems. We began by crawling a corpus of 95 
real-world human-written figure captions that were written 
by expert tutors and considered as high-quality captions. 
Then, to understand which caption contents are important 

1In this paper, we focus our discussion on the four common types. 

and investigate how different content categories are per-
ceived by readers, we recruited nine annotators to serve 
the role of caption readers and annotate the corpus from a 
set of tags representing different types of information. 

Our analysis found that real-world captions are composed 
of caption units from a finite set of types that are naturally 
stitched together. Correspondingly, system designers shall 
consider formulating the problem of figure captioning as 
a multi-stage task. The first stage focuses on generating 
caption units of specific types with high accuracy, and the 
second stage stitches together the caption units with di-
verse stitching patterns to form a natural caption. Our direct 
contributions are: 

• A summary of a formative study that crawled, anno-
tated, and analyzed a corpus2 of real-world human-
written figure captions. 

• A discussion on design implications and guidelines 
toward designing accurate and natural figure caption-
ing systems. 

Related Work 
Previous research on rule-based figure captioning and vi-
sual question answering for figures inspired our work. 

Parsing Figures and Rule-based Figure Captioning 
Previous work studied parsing and extracting elements from 
figures [6, 22, 24]. This work did not transform extracted el-
ements into natural language descriptions. A few corpus 
studies examined the communicative goals behind single-
sentence figure captions [10, 11, 19]. Rule-based figure 
captioning systems such as PostGraphe [12], SAGE [20], 
and SelTex [8] applied text planning on figure attributes to 

2Available at bit.ly/figcap-corpus-analysis. 
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Figure 2: The annotation interface. This model answer corresponds to Figure 3. 

Figure 3: A figure being annotated. 

Tag Definition 

Title 
Describing or 
paraphrasing the title 

Label name 
Mention of text labels, 
(axis, legend, etc.) 

Value 
Specifying the value of 
an element in the figure 

Min/max 
Specifying the maximum 
or the minimum element 

Compare 
Comparing the value 
of two elements 

Trend 
Describing a high-level 
trend in the figure 

Table 1: Single tag definitions. 

create captions of pre-defined categories. Our analysis fo-
cuses on real-world captions that are more comprehensive 
and have multiple sentences and communicative goals. We 
aim to generate natural captions beyond pre-defined rules. 

Figure Question Answering 
Figure question answering (FQA) [4, 15, 16] is the visual 
question answering [1, 25] (VQA) task on figures. FQA has 
unique challenges, including handling figure-specific vocab-
ulary and visual-semantic alignment [15]. Figure captioning 
can benefit from FQA challenges and solutions to accu-
rately read information from figures. Existing figure caption-
ing work [5] proposed a model to generate caption para-
graphs, trained from aggregated figure question-answer 
pairs [16]. In comparison, we take one step back to under-
stand what characterizes as useful captions that are also 
feasible for machine learning tasks, whether FQA datasets 
could help, and how to evaluate. 

Corpus Analysis 
To understand what contents are important in a figure cap-
tion, and how to make it natural, we crawled and annotated 
a corpus of real-world, human-written figure captions. 

Corpus Details 
The corpus consists of 95 model answers to an academic 
writing task in the IELTS Test.3 The task requires ESL stu-

3The task is officially called as the Academic Writing Task 1, as in 
www.ielts.org/en-us/about-the-test/test-format. 

dents to summarize the most important and relevant infor-
mation in a given figure. The corpus is directly available, 
high-quality descriptions of figures, which are ideal outputs 
for our system. All model answers have at least 150 words, 
written by anonymous tutors from a public test prepara-
tion website.4 They cover four common figure types (line, 
bar, pie charts, and scatter plots) and discuss topics in eco-
nomics, environment, and education. 

Participants and Procedure 
To categorize caption contents and to investigate how dif-
ferent caption categories are perceived by caption readers, 
we recruited nine annotators to serve the role of caption 
readers and annotate the model answers. The annotators 
(P1-9) include five males and four females, aged 20-35 (M 
= 25.6, SD = 2.95). Six are graduate students in university 
research labs, and three are working professionals in the 
industry. All are based in the US, having graduate degrees 
and professional working proficiency in English. 

An example annotation is shown in Figure 2. We deployed 
the interface as a Heroku app based on the doccano text 
annotation tool [21]. Each annotator followed the guide-
line to annotate 30 model answers on their PC remotely. It 
took, on average, 2.5 hours to complete. Each annotator 
received a $40 Amazon gift card at a rate of $16/hr. 

4www.ielts-exam.net/academic_writing_samples_task_1/ 
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Figure 4: Tagging sequences of 
eight random model answers. 

Group Simple Complex 

Fleiss’ κ 0.623 0.505 

Table 2: We divide commonly 
annotated sentences into two 
groups, simple and complex, based 
on the simple heuristic of whether 
the sentence contains a comma. 
Simple sentences have higher 
Fleiss’ kappa value. 

At a high-level, the annotation guideline asks annotators to 
select spans of words from the model answer, and choose 
corresponding tags for the spans based on the types of 
information being covered. If no existing tag fits, they are 
strongly encouraged to add new tags. 

The annotators and the authors jointly determined the guide-
lines in more detail. First, the authors drew inspirations from 
tagging tasks such as named entity recognition [18, Chap-
ter 18] and dialog act recognition [26], where one single 
label tags each text instance. The authors piloted ten ex-
ercises and, until saturation, generated a set of six single 
tags in Table 1. Each tag represents one type of information 
in captions. Annotators gave email consent to this tag set. 
One annotator further proposed the minimum length for a 
span as no shorter than a clause.5 This requirement allows 
spans to be semantically meaningful and independent units 
to users and are amenable to modeling. Accordingly, we 
limit the maximum length for a span as not exceeding the 
sentence boundary. Then, the tag set expanded to include 
compound tags. They are combinations of multiple single 
tags, to adapt to some clauses that cover multiple types of 
information. The multiple types in those clauses are inter-
twined, which cannot be separately tagged. For example, 
the clause the bar chart shows the number of social media 
covers both figure type and title. The initial tag set became 
six single tags and seven compound tags. 

Results 
Results suggest that captions can be tagged into spans of a 
finite set of types, which we define as “caption units.” A cap-
tion unit is a span of words that cover one specific type of 
information about a figure. Caption units are not isolated 
from each other in captions. Instead, they are naturally 
stitched together in diverse patterns (“stitching patterns”). 

5A clause contains a subject and a predicate, and can stand by itself. 

Figure 4 shows the tagging sequences for eight random 
model answers by one random annotator (P1). 

Inter-annotator agreement: We calculate it on a common 
set of 20 model answers, at the sentence level, based on 
the tag sequence. Each sentence has a tag sequence from 
all spans that are being tagged in the sentence. We treat 
two tag sequences by different annotators as the same, if 
one tags “[Compound] Trend + Value” as a whole while the 
other tags “[Single] Trend” then “[Single] Value” for each 
clause. The Fleiss’ kappa value [13] is 0.551 (moderate).6 

The current level of agreement is promising despite two 
challenges in the annotation. First, annotators reported 
that trend and compare tags are sometimes ambiguous. 
Both are reasonable for sentences such as the number of 
books read by men increased steadily between 2011 and 
2012, and air pollution was a bigger problem in the early 
20th century than it is now . Merging the two tags improves 
the Fleiss’ kappa value to 0.651 (substantial). This ambigu-
ity also inspires us to create distinctive training data for the 
machine learning tasks on trend and compare. 

Second, when sentences get more complicated, it becomes 
more challenging for annotators to make full sense of writer 
intent. Table 2 shows that annotators have higher agree-
ment on simple sentences than complex ones. They some-
times failed to notice the major or other minor types of in-
formation or multiple clauses that should be separately 
tagged. One sentence in contrast, the price of fresh fruits 
and vegetables rose significantly throughout this period 
connects to previous sentences using words like “in con-
trast”. Annotators chose the tag compare based on this 
connection that is more secondary and high-level than the 

6We also calculate Fleiss’ kappa at the word level as 0.516 (moder-
ate). However, word-level calculation is strict. For the above example, all 
words are considered as having different tags. 
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Figure 5: Counts for each tag 
(excluding new tags from P5). 

major type trend conveyed in the rest of the sentence. We 
attribute high-level connections as “stitching patterns” later. 

Tag statistics and “blank spans”: Tagged spans are 
more and longer than “blank spans.” For each model an-
swer, there are 9.89 tagged spans with 17.53 words on av-
erage. For any consecutive sequence of words not being 
tagged, we treat them as “blank spans.” Each model an-
swer has an average of 5.92 blank spans, where each span 
has 2.73 words. All except one (P5) annotators solely used 
the initial tag set. P5 added four new compound tags that 
combine among compare, min/max, trend, and value. 

Analyzing tag frequency shows us important ones to model 
as machine learning tasks. Figure 5 shows the counts for 
each tag. Single tags ranked by frequency are trend, value, 
compare, min/max, label name, and title. For compound 
tags, analyzing the combinations of different types shows 
us the most meaningful combinations to model as stitching 
patterns (e.g., figure type does not stand alone as a single 
tag but always associates with other single tags like title). 
For “blank spans,” Figure 6 lists the top 10 unigrams, bi-
grams, and trigrams among all “blank spans.” These “blank 
spans” fall into two major categories: determiners (e.g., 
“the,” “this”) and conjunctions (e.g., “and,” “but”). 

Stitching patterns: Analyzing “blank spans” and their 
surrounding tagged spans (which we refer to as “caption 
units”) shows how humans stitch together different caption 
units to make captions natural (“stitching patterns”). There 
are three major ones. The first is co-reference. When one 
caption unit follows another, humans replace duplicated 
subjects or objects with co-reference. In the sentence this 
decreased by 0.3% in 2014, “this” refers to percentage of 
unemployed women mentioned in the previous sentence. 

The second is subordination, where humans strengthen 

a subjective statement (e.g., compare) with a subordi-
nate clause on supporting evidence (e.g., value). Relative 
clauses are one type of subordination, where determiners 
(e.g. “which,” “that”) often lead those clauses. An example 
is the only subject where boys’ results were better than girls 
was Geography, where they achieved a pass rate of 30.4%. 

The third is conjunction. Humans add proper conjunction 
to connect values in two caption units, such as “however,” 
“but,” and “on the other hand.” Depending on different re-
lationships, the conjunction words can be “while” in food 
came in 2nd place in Japan while in Malaysia the propor-
tion was the third , or “contrast” in in stark contrast to this, 
for 2015, being underweight was only a problem among 
20–29-year olds. The three patterns can happen in various 
scopes: caption units are stitched together into sentences; 
sentences are stitched together into captions. 

Implications and Guidelines 
We summarize our findings as three implications below. 

Implication 1: Accurate Units Make Accurate Captions 
Captions are composed of caption units. The first stage is 
to accurately generate caption units. One basic modeling 
formulation is controllable image captioning [9]. Given a 
figure and a caption type, the model outputs a sequence of 
words as a caption unit for that type. Our study identified 
two additional formulation variations. 

First, metadata information is a useful model input. Meta-
data has been shown effective in visual reasoning tasks 
for regular images [29]. For figures, metadata informa-
tion includes the bounding boxes and values of figure el-
ements and text labels. They could often be accurately 
extracted [14] or obtained (e.g., from Vega-lite [23] or Mi-
crosoft Excel), which could offload model burden without it 
doing feature extraction but only focusing reasoning. 
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Figure 6: Top 10 unigrams 
(purple), bigrams (red), and 
trigrams (orange) among all 
“blank spans”. 

Second, we can define slots and values [18, Chapter 24] 
within ground-truth caption units and add them as additional 
outputs to the model, which can help us measure and im-
prove the accuracy in system-generated caption units. In a 
system output 60 is the accuracy of the SVM model , “60” is 
a wrong value for the slot “SVM”. Correspondingly, models 
could have additional objective functions that optimize the 
accuracy in predicting slots and values. 

Implication 2: Pattern Stitching Makes a Caption Natural 
Once the system generates a set of accurate caption units, 
the next stage is to stitch them together to make a natural 
caption. System designers shall consider simulating the 
three stitching patterns from our corpus analysis results: 
co-reference, subordination, and conjunction. Besides, it 
needs to revisit caption units generated by the system and 
correct unnatural cases. We exemplify two unnatural cases. 

First, figure captions for accessibility shall avoid abbrevia-
tions and be as explicit as possible. A screen reader might 
speak an abbreviated caption word (e.g., “ETA”, estimated 
time of arrival) like a regular English word (“eta,” the Greek 
letter), which is confusing. Punctuation is another unnatural 
case to be corrected. For example, the title of Figure 3 is % 
of people using multiple social networking sites. In Figure 2, 
it was corrected during stitching as the bar chart shows the 
number of social networking sites visited by..., where “the 
number of” replaces “%”. Doing these corrections prevents 
unnatural units from cascading into later stage. 

Implication 3: Keep Human in the Loop 
We identified two avenues where humans could help im-
prove the system. First, system developers may consider 
involving crowd-workers in the stitching task. Although our 
corpus covers figures of varying complexity, the three stitch-
ing patterns identified in the study may not cover all corner 
patterns on how humans write a natural caption. Gather-

ing extra data from crowd-workers may improve the results. 
Second, developers may consider deploying a premature 
system to overcome the cold-start problem. The system 
could generate a caption and ask the figure author to ac-
cept, modify, or reject as feedback. With sufficient volume, 
the feedback can serve as additional training data. The sys-
tem could also choose which figure caption to query users 
in an active learning manner. 

Conclusion and Future Work 
Automatic figure captioning is promising for improving the 
readability and accessibility of figures. In this paper, we col-
lected and annotated a corpus of real-world figure captions 
written by expert tutors. Through an analysis of the corpus, 
we identified three design implications and guidelines for 
designing accurate and natural figure captioning systems. 

In future work, we plan to release a figure captioning bench-
mark dataset for the research community. The dataset will 
include pairs of figures and caption units. One option to 
create it is by converting three existing figure question an-
swering (FQA) datasets [4, 15, 16]. We will integrate figure 
metadata, convert question-answer pairs into caption units, 
and then categorize them into different types. A pilot study 
showed substantial overlaps between the types of question-
answer pairs and our caption unit types in Table 1. Another 
option is to crawl figure-caption pairs from real scientific pa-
pers using PDFFigures 2.0 [7], categorize the captions, and 
parse figure metadata using FigureSeer [24]. We will de-
velop a system from the dataset to demonstrate our design 
guidelines. We propose to integrate figure metadata infor-
mation as additional system inputs. Sequence-to-sequence 
models on table-to-text applications [17] could be one inspi-
ration, to encode the structured metadata information and 
decode a natural language caption unit. 
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