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ABSTRACT

Visualization recommendation is important for exploratory analysis

and making sense of the data quickly by automatically recommend-

ing relevant visualizations to the user. In this work, we propose the

first end-to-end ML-based visualization recommendation system

that leverages a large corpus of datasets and their relevant visualiza-

tions to learn a visualization recommendation model automatically.

Then, given a new unseen dataset from an arbitrary user, the model

automatically generates visualizations for that new dataset, derives

scores for the visualizations, and outputs a list of recommended

visualizations to the user ordered by effectiveness. We also describe

an evaluation framework to quantitatively evaluate visualization

recommendation models learned from a large corpus of visualiza-

tions and datasets. Through quantitative experiments, a user study,

and qualitative analysis, we show that our end-to-endML-based sys-

tem recommends more effective and useful visualizations compared

to existing state-of-the-art rule-based systems.

CCS CONCEPTS

• Information systems → Recommender systems; • Human-

centered computing → Visualization systems and tools.
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1 INTRODUCTION

Visualization recommendation is the problem of automatically gen-

erating, scoring, and recommending the most relevant visualiza-

tions for a dataset of interest to the user, and can improve pro-

ductivity by reducing the time required by analysts to first find

interesting insights and then visualize them. Previous end-to-end

visualization recommendation systems are rule-based, leveraging
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a small set of rules hand-crafted by domain experts to score the

generated visualizations [41, 43]. As such, these rule-based sys-

tems have many issues that our proposed ML-based visualization

recommendation approach addresses. First, these systems often

have quality issues, limiting the utility and usefulness of the recom-

mended visualizations. Second, many of the visualizations receive

the same exact score, and therefore, these rule-based systems are

unable to appropriately differentiate between the visualizations

receiving the same heuristic score. Finally, they are not data-driven

nor automatic, and therefore unable to adapt automatically based

on changing visualization and data preferences of the user. Instead,

adding rules is a tedious and costly manual process.

Some recent work has explored the use of machine learning for

subtasks of visualization recommendation. For instance, VizML [14]

usedmachine learning to predict the type of a chart (e.g., bar, scatter)
instead of a complete visualization, and Draco [26] used a model to

infer weights for a set of manually defined rules. However, there are

no systems yet that use machine learning for end-to-end visualiza-

tion recommendation of complete visualizations for any arbitrary

new unseen dataset of interest to a user.

In this work, we propose the first end-to-end ML-based visualiza-
tion recommendation system that automatically learns a modelM
from a large training corpus {X𝑖 ,V𝑖 }𝑁𝑖=1 of 𝑁 training datasets and

the corresponding 𝑁 sets of user-generated visualizations. Given

a new user-selected dataset of interest, the learned modelM can

automatically score and recommend the top-k most relevant visu-

alizations for that dataset. The approach is completely automatic,

fully data-driven, flexible, and effective. It is able to learn a gen-

eral recommendation model M from a large corpus of datasets

and their visualizations, which can then be applied for scoring and

recommending visualizations for any other arbitrary dataset.

We first formalize the ML-based visualization recommendation

problem and describe a general learning framework for it. To learn

a visualization recommendation model from a large corpus of train-

ing visualizations, we decompose a visualization into the subset of

attributes selected from one of the datasets in the training corpus

and a visualization configuration that describes the design choices

and types of attributes required. In particular, the proposed notion

of a visualization configuration represents a data-independent ab-

straction where the data attributes used in the design choices are

replaced by their general type. Both provide us with everything

required to characterize a visualization. Next, we propose a wide-

and-deep learning model [4, 12] for visualization recommendation

based on this problem formulation that learns from the attribute

selections and their visualization configurations. The wide compo-

nent learns from sparse attribute meta-features and sparse visual-

ization configuration features, whereas the deep component learns

from dense representations of the meta-features of the attributes
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and visualization configurations. Scores from both components are

then combined to obtain the final score of a complete visualiza-

tion. We also describe a framework for quantitatively evaluating

learning-based systems and provide a sound and appropriate rank-

based visualization evaluation metric for quantitatively comparing

such systems. The evaluation framework will be useful for making

further progress in developing better and more accurate end-to-

end visualization recommendation systems that leverage machine

learning. Finally, we demonstrate the effectiveness and utility of

the proposed end-to-end ML-based visualization recommendation

system through a set of comprehensive experiments.

A summary of the main contributions of this work are as follows:

• ML-based Problem Formulation: We formally introduce the

end-to-end ML-based visualization recommendation problem,

and present a generic learning framework for it.

• Wide & Deep ML-based Visualization Recommender: We

propose a wide-and-deep approach that learns a model M from

a training corpus of datasets and relevant visualizations. The

model can then be used to automatically recommend the most

relevant visualizations for arbitrary unseen datasets of interest.

• Effectiveness:We demonstrate the effectiveness of our approach

through a comprehensive set of experiments including quantita-

tive evaluation of the visualization recommendations (Sec. 5.1), a

user study comparing ourML-based system to the state-of-the-art

rule-based system (Sec. 5.2), and a case study (Sec. 5.3).

2 RELATEDWORK

Rule-based systems such as Voyager [37, 41, 43], VizDeck [28],

Draco [21, 26] and DIVE [15] incorporate visual encoding rules to

assist user data exploration [7, 18, 24, 25, 31, 36]. Rule-based sys-

tems have many limitations that our work addresses. For instance,

rule-based recommendation systems rely entirely on a large set of

manually defined rules from domain experts [24], which are costly

in terms of the manual labor required, and may miss many impor-

tant rules that would provide users with significantly more effective

visualizations for their datasets of interest. Such approaches are

clearly not data-driven and difficult to adapt as one would need

to routinely incorporate new rules in a manual fashion, which is

costly in terms of the time and effort required by domain experts

to maintain such systems. Further, rules for such systems need

to be manually defined for each domain of interest. For instance,

visualizations for data scientists, or scientific domains are likely

different from visualizations that journalists prefer or those that

would work well for elderly populations. Therefore, new rule sets

would likely be required to effectively recommend visualizations

for each group. As user study has been a prevailing evaluation ap-

proach in visualization [13, 15, 17, 23, 27, 32, 34, 35], many systems

require experimenting with human users to validate the manually

defined rules. In comparison, our work learns a visualization rec-

ommendation model M directly from a large corpus of training

data, in a fully automatic data-driven fashion. The trained model

M can then be used to recommend entire visualizations from any

arbitrary unseen dataset of interest. We also propose an evalua-

tion framework (Appendix Sec. A) to validate the effectiveness of

ML-based visualization recommendation models.

A body of related work proposed techniques for sub-tasks in in-

teractive visualization recommendation systems, such as improving

expressiveness or perceptual effectiveness [24], matching user in-

tents [10], displaying trends and outliers [20], etc. These sub-tasks

can generally be divided into two categories [18, 42]: whether the

solution focuses on recommending data (what data to visualize),
such as Discovery-driven Data Cubes [33], Scagnostics [39], Auto-

Vis [40], AutoPartition [2], Foresight [6], SpotLight [11], ScagEx-

plorer [5], VisPilot [19], VizDeck [28] and MuVE [9] or recommend-

ing encoding (how to design and visually encode the data), such as

APT [24], ShowMe [25], BDVR [10], SeeDB [38], Draco–learn [26],

and LQ
2
[44]. While some of those are ML-based [14, 19, 26, 28],

none recommends entire visualizations, and thus does not solve

the visualization recommendation problem that lies at the heart of

our work. VizML [14] used machine learning to predict the type

of a chart (e.g., bar, scatter, etc.) instead of complete visualization.

Another work Draco [26] used a model to infer weights for a set of

manually defined rules. VisPilot [19] recommended different drill-

down data subsets from datasets. Data2Vis [8] learned a seq2seq

model based on Vega-specs for a few datasets, and captured mostly

the design choices (as opposed to the data attributes as well, as

done in our work). Instead of solving simple sub-tasks such as pre-

dicting the chart type of a visualization, we focus on the end-to-end
visualization recommendation task where the goal is to automati-
cally recommend users the top-k most effective visualizations as the
output, given an input dataset from the user. This paper fills the gap
by proposing the first end-to-end ML-based visualization recom-

mendation system that is completely automatic and data-driven. A

preprint of this work first appeared in 2020 [30].

3 ML-BASED PROBLEM FORMULATION

In this section, we formally introduce the ML-based visualization

recommendation problem, and present a generic learning frame-

work for it, which includes two key parts:

• Model Training (Sec. 3.1): Given a training visualization

corpus 𝒟 = {X𝑖 ,V𝑖 }𝑁𝑖=1 consisting of 𝑁 datasets {X𝑖 }𝑁𝑖=1
and the corresponding 𝑁 sets of visualizations {V𝑖 }𝑁𝑖=1,

1

we first learn a model M from the training corpus 𝒟 that

best captures and scores effective visualizations highly and

assigns low scores to ineffective visualizations.
2

• Recommending Visualizations (Sec. 3.2): Given a new

(unseen) dataset Xtest ∉ 𝒟 of interest, our learned visualiza-

tion recommendation modelℳ is used to generate, score,

and automatically recommend the top most insightful and

effective visualizations for this new dataset.
3

The visualization recommendation training data𝒟 = {X𝑖 ,V𝑖 }𝑁𝑖=1
can be general and collected from a variety of different sources.

For instance, the corpus may consist of datasets and visualizations

collected from websites (e.g., by crawling the web) or from a visual

analytic platform such as Tableau and Power BI where users upload

datasets and created corresponding visualizations. Depending on

the corpus, the definition of an effective visualization learned by

1V𝑖 is the set of visualizations associated with the 𝑖th dataset X𝑖 .
2
The learned model M not only captures simple visual rules, but is able to learn

complex high-dimensional latent characteristics behind effective user-generated visu-

alizations from the training corpus along with the latent characteristics of the data

(subset of attributes) that are associated with the visualizations.

3
Note each visualization uses a subset of the attributes from the dataset, and some

attributes may never be used.



Figure 1: Extracting positive visualizations for training. The

left figure shows a dataset from the corpus. It has a set of

visualizations in the corpus where each uses a small subset

of attributes from the dataset. The right figure shows that

the extracted positive visualization decomposes into a vis.

configuration and subset of attributes used.

the model will also be flexible and that reflects how users from that

corpus source perceive as effective visualizations. For example, a vi-

sualization in a data journalism website emphasizes attractiveness

while a visualization in scientific papers need to be straightfor-

ward and scientifically meaningful. Every visualization uses a set

of attributes X(𝑘)
𝑖

from a dataset X𝑖 . We now define the space of

attribute sets𝒳𝑖 = {X1

𝑖
,. . . ,X(𝑘)

𝑖
,. . .} for an arbitrary dataset X𝑖 .

Definition 1 (Space of Attribute Combinations). Given
an arbitrary dataset matrix X𝑖 , let𝒳𝑖 denote the space of attribute
combinations of X𝑖 defined as

Σ : X𝑖 → 𝒳𝑖 , s.t. (1)

𝒳𝑖 = {X(1)
𝑖
, . . . ,X(𝑘)

𝑖
, . . .}, (2)

where Σ is an attribute combination generation function and every
X(𝑘)
𝑖

∈ 𝒳𝑖 is a different subset of attributes from X𝑖 .

Let |X𝑖| and |X𝑗| denote the number of attributes (columns) of two

arbitrary datasets |X𝑖| and |X𝑗|, respectively.

Property 1. If |X𝑖| > |X𝑗|, then |𝒳𝑖 | > |𝒳𝑗 |.

The above will be important later when characterizing the space of

possible visualizations from a given dataset.

Definition 2 (Space of Visualization Configurations).

Let 𝒞 denote the space of all visualization configurations such that a
visualization configuration C𝑖𝑘 ∈ 𝒞 defines an abstraction of a visu-
alization where for each visual design choice (x, y, marker-type, color,
size, etc.) that maps to an attribute in X𝑖 , we replace it with its type.
Therefore visualization configurations are essentially visualizations
without any attribute (data).

Property 2. Every visualization configuration C𝑖𝑘 ∈ 𝒞 is inde-
pendent of any data matrix X (by Def. 2).

The above implies that C𝑖𝑘 ∈ 𝒞 can potentially arise from any

arbitrary dataset and is therefore not tied to any specific dataset

since visualization configurations are general abstractions where

the data bindings have been replaced with their general type, e.g.,
if x/y in some visualization mapped to an attribute in X𝑖 , then it is

replaced by its type (i.e., numerical, categorical, ordinal, etc.).

A visualization configuration and the attributes selected is ev-

erything necessary to generate a visualization. See Figure 1 for an

example. The space of visualization configurations is large since it

arises from all possible combinations of design choices and their

values, e.g., mark/chart (bar, scatter, ...), x/y-type (numerical, cate-

gorical, ordinal, temporal, ..., none), x/y-aggregate (sum, mean, bin,

..., none), size (1pt, 2pt, ...), color, and so on.

Definition 3 (Space of Visualizations of X𝑖 ). Given an ar-
bitrary dataset matrix X𝑖 , we define V★𝑖 as the space of all possible
visualizations that can be generated fromX𝑖 . More formally, the space
of visualizations V★

𝑖
is defined with respect to a dataset X𝑖 and the

space of visualization configurations 𝒞,

𝒳𝑖 = Σ(X𝑖 ) = {X1

𝑖 ,. . . ,X
(𝑘)
𝑖
,. . .} (3)

𝜉 : 𝒳𝑖 × 𝒞 → V★𝑖 (4)

where 𝒳𝑖 = {X1

𝑖
,. . . ,X(𝑘)

𝑖
,. . .} is the set of all possible attribute

combinations of X𝑖 (Def. 1). More succinctly, 𝜉 : Σ(X𝑖 ) × 𝒞 → V★
𝑖
,

and therefore 𝜉 (Σ(X𝑖 ),𝒞) = V★𝑖 .

Hence, given a subset of attributes X(𝑘)
𝑖

∈ 𝒳𝑖 from dataset X𝑖
and a visualization configuration C ∈ 𝒞, then 𝜉 (X(𝑘)

𝑖
, C) is the

corresponding visualization. Define X ≠ Y =⇒ ∀𝑖, 𝑗 x𝑖 ≠ y𝑗 .

Lemma 1. ∀X𝑖 ,X𝑗 s.t.X𝑖 ≠X𝑗 , then 𝜉 (Σ(X𝑖 ),𝒞)∩𝜉 (Σ(X𝑗 ),𝒞) = ∅.

This implies that when 𝒞 is fixed, the space of visualizations

is entirely dependent on the dataset, and for any two datasets X𝑖
and X𝑗 without any shared attributes X𝑖 ≠ X𝑗 , the set of possible
visualizations that can be generated from either dataset are entirely

disjoint, that is V𝑖 = 𝜉 (Σ(X𝑖 ),𝒞) and V𝑗 = 𝜉 (Σ(X𝑗 ),𝒞) where
V𝑖 ∩ V𝑗 = ∅. Hence, |V𝑖 ∩ V𝑗 | = 0 and V𝑖 ∪ V𝑗 = |V𝑖 | + |V𝑗 |. If
|X𝑖 | > |X𝑗 |, then |𝜉 (Σ(X𝑖 ),𝒞) | > |𝜉 (Σ(X𝑗 ),𝒞) |.

Definition 4 (Positive Visualizations of X𝑖 ). Given an ar-
bitrary dataset matrix X𝑖 , we define V𝑖 as the set of positive visual-
izations (user-generated, observed) from dataset X𝑖 .

Definition 5 (Negative Visualizations of X𝑖 ). Let V★𝑖 de-
note the space of all visualizations that arise from datasetX𝑖 such that
the user-generated (positive) visualizationsV𝑖 satisfiesV𝑖 ⊆ V★𝑖 , then
the space of negative visualizations for dataset X𝑖 is V−𝑖 = V★

𝑖
\ V𝑖 .

Note. The space of negative visualizations between different datasets
is also obviously completely disjoint.

Definition 6 (Sampling Negative Visualizations of X𝑖 ).
Given dataset X𝑖 , we sample negative (non-relevant) visualizations
from V−

𝑖
= V★

𝑖
\ V𝑖 (Def. 5) as follows:

𝑘 ∼ UniformDiscrete{1, 2, . . . , |V−𝑖 |}, for 𝑗 = 1, 2, . . . (5)

V̂−𝑖 = V̂−𝑖 ∪V−
𝑖𝑘

(6)

where V̂−
𝑖
⊆ V−

𝑖
. Hence,V−

𝑖𝑘
denotes the 𝑗th negative visualization

for dataset X𝑖 sampled from V−
𝑖
.

The negative visualization space is large and therefore sampling

this vast space is required to ensure efficient training and inference.

3.1 Learning Vis. Rec. Model

Now we formulate the problem of training a visualization recom-

mendation model ℳ from a large training corpus of datasets and

sets of visualizations associated to each dataset.



Definition 7 (Learning Vis. Rec. Model). Given the set of
training datasets and relevant visualizations 𝒟 = {X𝑖 ,V𝑖 }𝑁𝑖=1, the
goal is to learn a visualization recommendation model M by opti-
mizing the following general objective function,

argmin

M

𝑁∑
𝑖=1

∑
(X(𝑘 )

𝑖
,C𝑖𝑘 ) ∈V−

𝑖
∪V𝑖

L
(
𝑌𝑖𝑘

��Ψ(X(𝑘)
𝑖

), 𝑓 (C𝑖𝑘 ),M
)

(7)

where L is the loss function, 𝑌𝑖𝑘 = {0, 1} is the ground-truth label
of the 𝑘th visualization V𝑖𝑘 = (X(𝑘)

𝑖
, C𝑖𝑘 ) ∈ V−

𝑖
∪ V𝑖 for dataset

X𝑖 . Further, X
(𝑘)
𝑖

⊆ X𝑖 is the combination of attributes used in the
visualization. In Eq. 7, Ψ and 𝑓 are general functions over the attribute
combination X(𝑘)

𝑖
⊆ X𝑖 and the visualization configuration C𝑖𝑘 of

the visualization V𝑖𝑘 = (X(𝑘)
𝑖
, C𝑖𝑘 ) ∈ V−𝑖 ∪ V𝑖 , respectively.4

For computational tractability, we replace V−
𝑖
in Eq. 7 with the

set V̂−
𝑖
of sampled negative visualizations for the 𝑖th dataset X𝑖 .

The generic learning framework for visualization recommendation

shown in Eq. 7 can naturally be used to recover many different

types of visualization recommendation models.

Definition 8 (Meta-Feature Function). Let Ψ denote the
meta-feature learning function that maps an attribute x of any di-
mensionality (from any dataset X) to a shared 𝐾-dimensional meta-
feature space that captures important characteristics of x. More for-
mally, Ψ : x → R𝐾 where x can be of an arbitrary attribute-type
(e.g., numerical, categorical, etc.) and size.

3.2 Recommending Visualizations via Model

Once we have learned the visualization recommendation model

M (Eq. 7) using the training visualization corpus 𝒟, we can use

M to score and recommend the top most important and insightful

visualizations generated from any new dataset Xtest ∉ 𝒟.

Definition 9 (ml-basedVisualizationRecommendation).

Given M along with a new dataset Xtest ∉ {X𝑖 }𝑁𝑖=1 of interest, then
M : 𝒳test × 𝒞 → R (8)

where 𝒳test = {. . . ,X(𝑘)
test
, . . .} is the space of attribute combinations

fromXtest and 𝒞 is the space of visualization configuration. Given the
set of generated visualizations Vtest = {V1,V2, . . . ,V𝑄 }, we derive
a ranking of the visualizations Vtest from Xtest as follows:

𝜌
(
{V1,V2, . . . ,𝑉Q }

)
= arg sort

V𝑡 ∈Vtest

M(V𝑡 ) (9)

where𝑄 = |Vtest |. Hence, given an arbitrary visualization,M outputs
a score describing the effectiveness or importance of the visualization.

Informally, given a new dataset Xtest to recommend visualiza-

tions for via the trained model M (Eq. 7), then M(𝜉 (Σ(Xtest),𝒞))
where 𝒞 is the space of relevant visualization configurations. No-

tice thatM(Vtest) = M(𝜉 (Σ(Xtest),𝒞)). Furthermore, given a new

dataset of interest, the space of visualizations to search over is com-

pletely different from the space of visualizations that arises from

any other (non-identical) dataset. More formally, let V★
𝑖
and V★

𝑗

denote the space of all possible visualizations that arise fromX𝑖 and

4
Note Ψ and 𝑓 can also be learned along with the model M or learned/defined prior

to learning the model M.

Figure 2: For an arbitrary dataset X𝑖 (either a new unseen

dataset or one from the training corpus), we generate the

space of visualizations V★
𝑖
for X𝑖 . The visualizations then

feed our wide-and-deep network model M one-by-one. For

each visualization, the network takes as input the attribute

combination X(𝑘)
𝑖

and a configuration C𝑖𝑘 , and outputs a

score 𝑌𝑖𝑘 as the predicted effectiveness of this visualization.

X𝑗 held-out datasets, then ∀𝑟, 𝑠 ,V𝑟 ∈ V★𝑖 ≠ V𝑠 ∈ V★𝑗 holds, since
a visualization consists of a subset of attributes (data) and design

choices. This demonstrates the difficulty of the visualization rec-

ommendation learning problem, in the sense that, the model must

recommend relevant visualizations from a space of visualizations

never seen by the learning algorithm.

4 WIDE & DEEP VIS. RECOMMENDATION

Following the general ML-based visualization recommendation

formulation proposed in Sec. 3, we now describe our wide-and-

deep approach for solving it.

4.1 Wide-and-Deep Approach Overview

We first give a brief overview of the approach.

• EncodingVisualizations andTheirAttributes (Sec. 4.2):The

network first encodes the visualizationV𝑖𝑘 from one arbitrary

dataset X𝑖 ∈ 𝒟 by its attribute combination X(𝑘)
𝑖

and the visual-

ization configuration C𝑖𝑘 into dense and sparse features (Sec. 4.2),
denoted as d𝑥 , d𝑐 , s𝑥 and s𝑐 .

• Wide Vis. Rec. Model (Sec. 4.3): The wide model takes as input

the sparse features s𝑥 and s𝑐 ofX
(𝑘)
𝑖

and C𝑖𝑘 , then outputs a wide
score 𝑓𝑤𝑖𝑑𝑒 (s𝑐 , s𝑥 |Θ𝑠 ). The wide model uses a linear model over

cross-product feature transformations to capture any occurrence

of feature-pairs that commonly leads to effective visualizations.

• Deep Vis. Rec. Model (Sec. 4.4): The deep model takes as input

the dense features d𝑥 and d𝑐 ofX
(𝑘)
𝑖

and C𝑖𝑘 , then outputs a deep
score 𝑓𝑑𝑒𝑒𝑝 (d𝑐 , d𝑥 |Θ𝑑 ). The deep model uses dense features and

non-linear transformations to generalize to unseen feature pairs

not in the training set yet may lead to effective visualizations.

• Training (Sec. 4.5): We describe the end-to-end training of the

wide-and-deep network modelM. The model and its parameters



are learned using gradient-based optimization over a sample of

training visualizations from the corpus𝒟 = {X𝑖 ,V𝑖 }𝑁𝑖=1.
• Scoring & Recommending Visualizations via M (Sec. 4.6):

Given an entirely new unseen dataset Xtest, we then describe

the inference procedure that uses M to score and recommend

visualizations for the new dataset Xtest of interest.

Figure 2 illustrates how M operates at the granular level during

both training (Sec. 4.5) and inference (Sec. 4.6): it predicts a numer-

ical score 𝑌𝑖𝑘 for each visualization V𝑖𝑘 = (X(𝑘)
𝑖
, C𝑖𝑘 ) of a specific

dataset X𝑖 5. The score 𝑌𝑖𝑘 is given by

𝑌𝑖𝑘 = M(V𝑖𝑘 ) = 𝑓 (X
(𝑘)
𝑖
, C𝑖𝑘 |Θ) ∈ [0, 1] (10)

4.2 Encoding the Input

Every visualization can naturally be decomposed into the subset of

attributes from the dataset X𝑖 and the visualization configuration,

i.e., V𝑖𝑘 = (X(𝑘)
𝑖
, C𝑖𝑘 ). Since both V𝑖𝑘 and X(𝑘)

𝑖
are specific to an

arbitrary dataset X𝑖 , the first step is to encode the input X(𝑘)
𝑖

and

C𝑖𝑘 into features in some shared space for the network.

4.2.1 Encoding attributes intometa-features. Attributes from datasets

in the training corpus {X𝑖 }𝑁𝑖=1 are naturally from different domains

and have fundamentally different characteristics such as their types,

sizes, meanings, and so on. This makes it important to encode every

attribute from any dataset in the corpus in a shared 𝐾-dimensional

space where we can naturally characterize similarity between the

attributes. For this purpose, we leverage the meta-feature func-

tion Ψ from Def. 8. Since Ψ represents an attribute x in a shared

𝐾-dimensional space, we apply Ψ ∀x ∈ X𝑖 .
We propose the meta-feature learning framework, as an in-

stance of Ψ for the network. The framework has several com-

ponents including a set of nested meta-feature functions Ψ, at-
tribute representation functions, and partitioning functions Π. The
framework is summarized in Table 1. For the meta-feature func-

tions used in this work, see Table 3. We first compute the meta-

feature functions over different representations of the attribute,

𝜓 (x),𝜓 (𝑝 (x)),𝜓 (𝑔(x)), . . . where𝜓 (x) are the meta-features from

x directly,𝜓 (𝑝 (x)) are the meta-features from the probability dis-

tribution of x, and so on. Next, given a partitioning (or clustering,

binning) function Π that divides a vector x (or 𝑝 (x), 𝑔(x)) of values
into 𝑘 partitions, we can derive meta-features for each partition as

follows: 𝜓 (Π1 (x)), . . . ,𝜓 (Π𝑘 (x)), 𝜓 (Π1 (𝑝 (x))), . . . ,𝜓 (Π𝑘 (𝑝 (x))),
𝜓 (Π1 (𝑔(x))), . . . ,𝜓 (Π𝑘 (𝑔(x))) where Π𝑘 denotes the 𝑘th partition

of values from the partitioning function Π. In this work, we lever-

age multiple partitioning functions. All the meta-features are then

concatenated into a single vector of meta-features describing the

characteristics of the attribute x [29]. More formally, the meta-

feature function Ψ : x → R𝐾 is defined as

Ψ(x)=
[
𝜓 (x),𝜓 (𝑝 (x)),𝜓 (𝑔(x)),...,𝜓 (Π1 (x)),...,𝜓 (Π𝑘 (x)),..., (11)

𝜓 (Π1 (𝑝 (x))),...,𝜓 (Π𝑘 (𝑝 (x))),...,𝜓 (Π1 (𝑔(x))),...,𝜓 (Π𝑘 (𝑔(x)))
]

The resulting d𝑥 = Ψ(x) is a dense meta-feature vector of the

attribute x. Without loss generality, we also normalize each meta-

feature in d𝑥 via min-max scaling. Our approach is agnostic to the

5X𝑖 can be either a new unseen dataset Xtest , or a dataset from the training corpus

𝒟 = {X𝑖 ,V𝑖 }𝑁𝑖=1

Table 1: Meta-feature framework for an attribute x.

Framework Components Examples

1. Attribute representations x, 𝑝 (x) , 𝑔 (x) , ℓ𝑏(x) , ...
2. Partitioning values Π Clustering, binning, quartiles, ...

3. Meta-feature functions𝜓 Statistical, info theoretic, ...

precise meta-feature functions used, and is flexible for use with any

alternative set of meta-feature functions (Table 3 in the Appendix).

We obtain Ψ(x) as the meta-features for each attribute x. An
attribute combination X(𝑘)

𝑖
usually has more than one attributes,

whose meta-features need to be combined to get an overall dense

feature d𝑥 . We concatenate all of the meta-features d𝑥𝑖 𝑗 from each

attribute x𝑖 𝑗 ∈ X(𝑘)
𝑖

to get the overall dense feature d𝑥 , written as

d𝑥 = 𝜙1 (. . . d𝑥𝑖 𝑗 . . .) =
[
· · · d𝑥𝑖 𝑗 · · ·

]𝑇
(12)

See Figure 2 for an example. It has two attributes selected, i.e.,
X(𝑘)
𝑖

= [ x𝑟 x𝑠 ], which results in two dense vectors d𝑥𝑟 and d𝑥𝑠 .
The overall dense feature d𝑥 therefore is d𝑥 = 𝜙1 (d𝑥𝑟 , d𝑥𝑠 ).

4.2.2 Visualization configuration embedding. The space of all pos-
sible configurations 𝒞 = {. . . , C𝑖𝑘 , . . .} is shared among all visu-

alizations from any dataset. Let C𝑖𝑘 denote one configuration in

the space. Like all other configurations, although we denote C𝑖𝑘
as the configuration of the visualization of our interest, where

V𝑖𝑘 = (X(𝑘)
𝑖
, C𝑖𝑘 ), this configuration is independent from any

dataset or visualization (Property 2). It is possible to learn embed-

dings for all configurations in 𝒞 and use them to encode C𝑖𝑘 .

Definition 10 (ConfigurationEmbeddingFunction). Let
H denote a configuration embedding function that maps a configura-
tion C𝑖𝑘 to a shared𝐾-dimensional embedding space such that the em-
bedding H(C) captures the important characteristics of C𝑖𝑘 and can
be learned along with the modelM. More formally,H : C𝑖𝑘 → R𝐾 .
Further, given the space of all visualization configurations 𝒞 of size
𝑀 = |𝒞 |, then we obtain a 𝐾-dimensional embedding matrix for all
visualization configurations asH(𝒞) whereH : 𝒞 → R𝐾×𝑀 .

For convenience, we denote d𝑐 = H(C𝑖𝑘 ) as the dense feature d𝑐
of the configuration C𝑖𝑘 . Suppose we are scoring visualizations for

an arbitrary dataset, one visualization isV𝑖𝑘 = (X(𝑘)
𝑖
, C𝑖𝑘 ). We first

abstract the configuration C𝑖𝑘 fromV𝑖𝑘 , and look up the positional

identity of C𝑖𝑘 in 𝒞. Then, we one-hot encode the identity C𝑖𝑘
and apply the configuration embedding function H . This gives,

d𝑐 = H(𝑜𝑛𝑒_ℎ𝑜𝑡 (C𝑖𝑘 )) whereH is learnable with the model M.

4.2.3 Complementing dense features with sparse features. Thus far,
both the configuration embedding vector d𝑐 and attribute meta-

features d𝑥 are dense feature vectors. On the other hand, we want

our approach to capture feature patterns about the attribute com-

bination X(𝑘)
𝑖

and the configuration C𝑖𝑘 that commonly lead to

effective visualizations. The feature patterns can be best expressed

through sparse features, i.e., whether this visualization has the fea-
ture(s) X or not. For example, scatterplot is generally more effective

to visualize attributes that have many rows, than line charts and

bar charts. If a visualizationV (𝑘)
𝑖

= (X(𝑘)
𝑖
, C𝑖𝑘 ) has sparse features

indicating that the number of rows in one attribute of X(𝑘)
𝑖

is larger

than 50 and the configuration C𝑖𝑘 is about scatterplot, our model



M should be able to assign a high score to this visualization and

consider it as effective. Therefore, we create the set of sparse fea-

tures s𝑥 and s𝑐 to complement the dense features d𝑥 and d𝑐 , which
will also be used as the input toM.

There are many ways to derive sparse feature vectors s𝑥 and s𝑐 .
In this work, we compute the sparse feature vector s𝑥 for attribute

combination X(𝑘)
𝑖

by binning the dense meta-feature vector d𝑥
using a fixed number of 𝑛-bins within the range of [0, 1] where
each bin has an equal width of

1

𝑛 . Another option is to cluster the

dense meta-feature matrix and then one-hot encode the cluster

identity of d𝑥 . Our wide-and-deep network is agnostic to the actual
option and the precise meta-features that are being used in d𝑥 . In
this work, we used the first option. To get the sparse feature s𝑐 from
a configuration embedding vector d𝑐 , we use the original one-hot
sparse vector as its sparse feature. Another option is to one-hot

encode each pair of field and value that appears in the configuration

C𝑖𝑘 . For example, we can assign a value of 1 to one dimension of s𝑐
for a configuration C𝑖𝑘 , if the configuration C𝑖𝑘 satisfies a specific

pair of field and value, such as “marker.symbol = circle”.

4.3 The Wide Model

The wide model is a linear model over the set of sparse features

s𝑐 and s𝑥 . The goal of leveraging sparse features is to capture

any occurrence of feature-pairs that commonly lead to effective

visualizations in the training corpus. First, we concatenate s𝑐 and s𝑥
into a single sparse vector s where 𝜙1 is a concatenation operator.

s = 𝜙1 (s𝑐 , s𝑥 ) =
[
s𝑐
s𝑥

]
(13)

Next, we augment s with cross-product features s′ derived from s.
Cross-product features s′ capture co-occurrences of some specific

features in the original s. Formally, it is computed as the concatena-

tion of values from a set of cross-product transformation functions,

s′ = {. . . , 𝜙𝑘 (s), . . .} (14)

where 𝜙𝑘 (s) is the 𝑘-th cross-product transformation function,

𝜙𝑘 (s) =
|s |∏
𝑖=1

s𝑡𝑘𝑖
𝑖
, 𝑡𝑘𝑖 ∈ {0, 1} (15)

where 𝑡𝑘𝑖 is a boolean value indicating whether or not the 𝑘-th

cross-product transformation function 𝜙𝑘 (s) “cares” about the 𝑖-th
feature of s. For example, suppose 𝜙𝑘 (·) checks whether a visual-
ization satisfies (1) the entropy of its first attribute is in the range

of [0.2, 0.4) and (2) its configuration is configuration #3. The cross-

product feature 𝜙𝑘 (s) is 1 if and only if s has feature dimensions of

entropy-1st-var-bucket=2 and config-bucket=3 both as 1.

Finally, the sparse feature s and the cross-product transformed

feature s′ are concatenated into [s, s′], then go through a linear

transformation, to get the wide score 𝑓𝑤𝑖𝑑𝑒 (s𝑐 , s𝑥 |Θ𝑠 ) ∈ R. More

formally,

𝑓𝑤𝑖𝑑𝑒 (s𝑐 , s𝑥 |Θ𝑠 ) = W𝑇
𝑠 [s, s′] + b𝑠 (16)

where W𝑇
𝑠 and b denote the weight matrix and bias vector for

the wide model. Further, Θ𝑠 = {W𝑇
𝑠 , b} denotes the entire set of

parameters in the wide model.

4.4 The Deep Model

The deep model uses dense features and non-linear transformations

to generalize to feature pairs that do not frequently appear in the

training corpus 𝒟 = {X𝑖 ,V𝑖 }𝑁𝑖=1 yet may lead to effective visu-

alizations. The deep model works by first concatenating the two

dense features d𝑐 and d𝑥 into an intermediate vector d = 𝜙1 (d𝑐 , d𝑥 ),
such that it incorporates the information from both the configu-

ration and the attribute combination. Next, d is fed into a total of

𝐿 hidden layers (standard MLP layers). At the 𝑘-th layer, an inter-

mediate vector d𝑘−1 from the previous layer (𝑘 − 1) go through

non-linear transformations with the model parameter W𝑑𝑘 and

the activation function 𝑎𝑘 . The activation function 𝑎𝑘 could either

be the rectified linear unit (ReLU) or the sigmoid function. This

design offers greater flexibility to model feature interaction. The

last layer gives the output from the deep model, as the deep score

𝑓𝑑𝑒𝑒𝑝 (d𝑐 , d𝑥 |Θ𝑑 ) ∈ R. More formally,

d0 = d (17)

d1 = 𝑎1 (W𝑇
𝑑1
d0 + b𝑑1), (18)

...... (19)

d𝐿−1 = 𝑎𝐿−1 (W𝑇
𝑑 (𝐿−1)d𝐿−2 + b𝑑 (𝐿−1) ), (20)

𝑓𝑑𝑒𝑒𝑝 (d𝑐 , d𝑥 |Θ𝑑 ) = 𝑎𝐿 (W𝑇
𝑑𝐿

d𝐿−1 + b𝑑𝐿), (21)

where {W𝑑1, . . . ,W𝑑𝐿} and {b𝑑1, . . . , b𝑑𝐿} denote the weight ma-

trices and the bias vectors for the deepmodel, andΘ𝑑 = {W𝑑1,...,W𝑑𝐿,

b𝑑1,...,b𝑑𝐿} denotes the entire set of parameters in the deep model.

4.5 Training the Network

Now we discuss learning the wide-and-deep network parameters Θ.
The training corpus 𝒟 = {X𝑖 ,V𝑖 }𝑁𝑖=1 has a set of datasets {X𝑖 }

𝑁
𝑖=1

.

Each dataset X𝑖 has a set of positive visualizations V𝑖 and we also

include a sampled set of negative visualizations V̂−
𝑖
(as in Def. 6).

The set of training visualizations for X𝑖 is then V𝑖 ∪ V̂−𝑖 . During
training, each visualization V𝑖𝑘 comes from an arbitrary dataset

X𝑖 and has a binary ground-truth label 𝑌𝑖𝑘 ∈ {0, 1}. Our goal is to
have the model score 𝑌𝑖𝑘 ∈ [0, 1] of each training visualizationV𝑖𝑘
as close as possible to its ground-truth label 𝑌𝑖𝑘 . We train the model

by optimizing the likelihood of model scores for all visualizations

in the entire corpus 𝒟 consisting of 𝑁 datasets {X𝑖 }𝑁𝑖=1. Eq. 22
shows the likelihood: for each dataset X𝑖 we have the set V𝑖 ∪
V̂−
𝑖
= {. . . , (X(𝑘)

𝑖
,C𝑖𝑘 ), . . .} of training visualizations where each

visualization (X(𝑘)
𝑖
, C𝑖𝑘 ) ∈ V𝑖 ∪ V̂−𝑖 consists of a configuration

C𝑖𝑘 ∈ 𝒞 and a subset of attributes X(𝑘)
𝑖

from dataset X𝑖 .

𝑝 (V̂−𝑖 ,V𝑖 |Θ) =
∏

(X(𝑘 )
𝑖
,C𝑖𝑘 ) ∈V𝑖

𝑌𝑖𝑘

∏
(X(𝑘 )

𝑖
,C𝑖𝑘 ) ∈V̂−

𝑖

(
1−𝑌𝑖𝑘

)
, for 𝑖 = 1, . . . , 𝑁

(22)

The closer that𝑌𝑖𝑘 is to the ground-truth label𝑌𝑖𝑘 , the better. Taking

the negative log of the likelihood in Eq. 22 and summing over all



datasets {X𝑖 }𝑁𝑖=1 give us the loss 𝐿.

𝐿 =

𝑁∑
𝑖=1

(
−

∑
(X(𝑘 )

𝑖
,C𝑖𝑘 ) ∈V𝑖

log𝑌𝑖𝑘 −
∑

(X(𝑘 )
𝑖
,C𝑖𝑘 ) ∈V̂−

𝑖

log(1 − 𝑌𝑖𝑘 )
)

= −
𝑁∑
𝑖=1

∑
(X(𝑘 )

𝑖
,C𝑖𝑘 ) ∈V𝑖∪V̂−

𝑖

𝑌𝑖𝑘 log𝑌𝑖𝑘 + (1 − 𝑌𝑖𝑘 ) log(1 − 𝑌𝑖𝑘 )

(23)

We minimize the objective function through gradient-based opti-

mization to update the model parameters Θ inM.

4.6 Inference

Given the trained wide-and-deep visualization recommendation

modelM from Sec. 4.5, we now describe the inference procedure

for scoring and recommending visualizations for an arbitrary new

dataset of interest. As illustrated in the lower part of Figure 2, given

an arbitrary dataset Xtest selected or uploaded by an arbitrary user,

we generate the space of visualizations V★
test

= {. . . ,V (𝑘)
test

, . . .}
through Def. 3 process, where each visualizationV (𝑘)

test
consists of a

subset of attributes X(𝑘)
test

from the dataset Xtest and a configuration

C ∈ 𝒞, i.e.,V (𝑘)
test

= (X(𝑘)
test
, C).

Each visualizationV (𝑘)
test

is fed intoM for scoring. First, we en-

code the configuration C into the sparse feature s𝑐 and the dense

feature (configuration embedding) d𝑐 . Given the attribute com-

bination X(𝑘)
test

, we derive the meta-feature d𝑥𝑖 for each attribute

x𝑖 ∈ X(𝑘)
test

. Depending on the attributes used in the visualizations,

the meta-features get concatenated to get an overall dense feature

vector d𝑥 . To obtain the sparse feature vector s𝑥 for the selected

attributes, we bin d𝑥 . The features go through the network where

the wide model in Sec. 4.3 and the deep model in Sec. 4.4 transform

them into a wide score and a deep score, denoted as 𝑓𝑤𝑖𝑑𝑒 (s𝑐 , s𝑥 |Θ𝑠 )
and 𝑓𝑑𝑒𝑒𝑝 (d𝑐 , d𝑥 |Θ𝑑 ) respectively. We then weight them by𝑤𝑤𝑖𝑑𝑒

and𝑤𝑑𝑒𝑒𝑝 to get a final score 𝑌𝑡𝑒𝑠𝑡,𝑘 ∈ [0, 1] as follows,

𝑌𝑡𝑒𝑠𝑡,𝑘 = 𝑓 (X(𝑘)
test
, C|Θ) (24)

= 𝜎 (𝑤𝑤𝑖𝑑𝑒 𝑓𝑤𝑖𝑑𝑒 (s𝑐 , s𝑥 |Θ𝑠 ) +𝑤𝑑𝑒𝑒𝑝 𝑓𝑑𝑒𝑒𝑝 (d𝑐 , d𝑥 |Θ𝑑 ))

We repeat the above to score all possible visualizations in V★
test

,

and then recommend the top visualizations based on the predicted

scores. This process is consistent with Def. 9. We expand more

details about the evaluation of this process in Sec. A.3.

5 EXPERIMENTS

We conduct experiments to answer the following questions:

• RQ1: Can our model recover previously known “top” visualiza-

tions for unseen user-selected datasets, and do this better than

reasonable baselines (Sec. 5.1)?

• RQ2: Do human experts prefer our ML-based visualization rec-

ommendations to a state-of-the-art rule-based system (Sec. 5.2)?

• RQ3: How do our recommendations differ from a rule-based

baseline in qualitative terms (Sec. 5.3)?

Table 2: Quantitative Results for Visualization Recommen-

dation. See text for discussion.

nDCG
′
(Eq. 25)

Model @1 @2 @5 @10 @20 Rank

Random 0.207 0.206 0.253 0.311 0.457 5

ConfigPop 0.366 0.532 0.671 0.691 0.693 4

Ours-MLP (deep-only) 0.804 0.807 0.851 0.866 0.887 2

Ours-GMF (wide-only) 0.721 0.714 0.768 0.801 0.839 3

Ours 0.827 0.827 0.867 0.882 0.897 1

5.1 Quantitative Results

We answer RQ1 by quantitatively evaluating the ranking of visual-

izations from our ML-based visualization recommendation model

using the evaluation framework from Sec. A. For training ML-based

models, we create a training corpus randomly sampled from the

Plot.ly community feed.
6
The training corpus consisted of 𝑁 = 925

datasets,

∑𝑁
𝑖=1 |X𝑖 | = 11, 778 attributes, and

∑𝑁
𝑖=1 |V𝑖 | = 4, 865 pos-

itive (relevant) visualizations across all 𝑁 datasets. Further, each

dataset had an average of

∑𝑁
𝑖=1 |X𝑖 |/𝑁 = 12.73 attributes and 5.25 pos-

itive visualizations. The held-out test corpus consisted of 232 posi-

tive (previously known “top”) visualizations across 46 test datasets

(sampled uniformly at random), which had 299 attributes. Results

are averaged over 10 trials.

We compare our approach against two common-sense baselines

along with two stronger baselines, which are simpler variants of the

proposed ML-based model. The first baseline, random, recommends

the top-𝑘 visualizations chosen uniformly at random from the set of

positive and sampled negative visualizations for a specific dataset.

The second baseline, ConfigPop, scores visualizations based on the

popularity of a visualization configuration. We also include two

stronger baselines, including an MLP baseline that uses only the

deep component of our model, along with the generalized matrix

factorization (GMF) baseline that uses only the wide component.

To evaluate the effectiveness of the top recommended visual-

izations, we use the modified normalized Discounted Cumulative

Gain (nDCG) proposed in Eq. 25 at 𝑘 ∈ {1, 2, 5, 10, 20} for the dif-
ferent top-𝑘 visualization recommendations (nDCG@𝑘). Results

are reported in Table 2. Strikingly, our wide-and-deep learning-

based model performs the best, achieving a high nDCG across all

𝑘 = 1, ..., 20, as shown in Table 2. Hence, this confirms that our

ML-based visualization recommendation model accurately learns

to recommend the top visualizations that are most important to

the user, despite that the model has never seen the dataset nor the

visualizations created by that user before (RQ1). Furthermore, our

approach with both the wide and deep components, has the highest

nDCG scores across all 𝑘 ∈ {1, 2, 5, 10, 20} compared to the two

common-sense baselines, and our two ablation model variants that

use only the wide or deep components of our model, as shown in

Table 2 (RQ1). Note that results at smaller 𝑘 are more important, and

these are exactly the situations where our models and the variants

perform extremely well compared to the others. As an example, at

nDCG@1, our wide-and-deep learning visualization recommenda-

tion model achieves 0.827 at 𝑘 = 1, whereas the best baseline is

only able to achieve an nDCG of 0.366. This is an improvement in

nDCG of 124% over the best baseline at 𝑘 = 1. This result clearly

6
Our dataset is available at https://github.com/xeniaqian94/kdd21-MLVis.

https://github.com/xeniaqian94/kdd21-Learning-to-Recommend-Visualizations
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Figure 3: Averaged human experts’ ratings on top 5 visualizations from rule-based (Voyager2 using CompassQL) and our ML-

based system. Nearly all visualizations from the ML-based system received higher ratings. Strikingly, the top-4 visualizations

receiving the highest rating by human experts are those from the ML-based system.

demonstrates the effectiveness of our end-to-end ML-based visual-

ization recommendation model as it is able to effectively recover

the held-out ground-truth visualizations that were generated by an

actual user. These findings confirm that our model learns to rec-

ommend high quality visualizations that a user finds most relevant

from arbitrary unseen datasets.

5.2 User Study

In this section, we perform a user study to compare our end-to-

end ML-based visualization recommender system to an existing

state-of-the-art rule-based system (Voyager2 with CompassQL).

5.2.1 Methods. We recruited 20 participants (12 males and 8 fe-

males, aged 20–40) by sending out an email to a mailing list of

visualization experts within an industry research division and a

public research university. Participants rated top 5 visualization

recommendations from both our ML-based approach and the rule-

based approach (10 visualizations in total) in a within-subjects

experiment design. The top 5 recommendations for each approach

were computed from the standard cars dataset, which consists of

398 observations (rows, cars) along with 10 attributes (columns)

including three categorical, six numerical, and one temporal at-

tribute. The 10 visualizations were presented in a shuffled order

that was consistent across participants, with no information about

the recommendation source. Participants were asked to rate the

quality of each visualization using a 7-point Likert scale (1 = Very

Poor, 4 = Fair, 7 = Very Good).

5.2.2 Results. Participants judged the ML-recommended visual-

izations (𝑀 = 5.92, 𝑆𝐷 = 1.09, 𝑀𝐸𝐷 = 6) to be of significantly

higher quality compared to the rule-recommended visualizations

(𝑀 = 3.45, 𝑆𝐷 = 2.07, 𝑀𝐸𝐷 = 4). Strikingly, the top ranked visu-

alization (top-1) is exactly the top ranked visualization from our

ML-based system. Furthermore, among the 10 visualizations, the

top 4 visualizations with the highest score come from our ML-based

visualization recommendation system, and not from the rule-based

system. As shown in Figure 3, the variance of the ML-based recom-

mendations are nearly always less than the rule-based system.

5.3 Qualitative Analysis

To investigate why our ML-based approach might be more effective

than a rule-based approach, including whether it can automatically

learn general rules that are preferred by experts (RQ3), we con-

ducted a qualitative case study. We specified a number of queries for

visualizations from the cars dataset, using a simple user-interface

with our recommendation system (Figure 7).

Figure 4: Top visualizations from rule-based (left) vs. our

ML-based approach (right). The ML-based approach learns

to recommend a horizontal layout and penalizes the verti-

cal charts, which is consistent with domain experts.

5.3.1 Learning to place attributes like an expert. Using a query

for visualizations containing two nominal attributes, we see that

both approaches recommend visualizations with the attribute car

model name in their top visualizations as shown in Figure 4. How-

ever, the rule-based system incorrectly recommends a visualization

with a vertical layout whereas the ML-based approach learns to

recommend a horizontal layout and penalizes the vertical charts. In-

terestingly, the ML-based model is able to learn the fact that domain

experts prefer to do these types of charts horizontally, as opposed

to vertically, and therefore our model penalizes the vertical charts

to ensure they are not recommended to the user.

5.3.2 Scoring and ranking issues of rule-based systems. The over-
simplified scoring used by existing rule-based systems results in

many visualizations having exactly the same score, and therefore,

no way to actually rank them. In Figure 5, we show one such case

where the top visualizations from the rule-based are all assigned

the same score of 0. As an aside, there are even more visualizations

down the list with a score of 0. Because of this lack of resolution,

the rule-based system may rank low quality visualizations higher

than some visualizations that are clearly better. In comparison, our

ML-based approach infers more meaningful scores to appropriately

rank the visualizations by relevance.

6 CONCLUSION

In this work, we proposed the first end-to-end ML-based visual-

ization recommendation system. We first formalized the problem

and described a generic learning framework for solving it. Next, we

proposed a wide-and-deep learning approach that combines a wide

component with a deep learning component. Each visualization is

scored with the input of two parts, an attribute combination and a



(a) Top 3 Rule-based Vis. Rec. (CompassQL/Voyager2)

(b) Top 3 ML-based Vis. Rec. (Ours)

Figure 5: Rule-based scoring and ranking issues vs. our ML-

based approach that infers more meaningful scores to ap-

propriately rank the visualizations by relevance.

visualization configuration, using our wide-and-deep learning visu-

alization recommendation model. Given a new unseen dataset from

an arbitrary user, the learned model is used to automatically gener-

ate, score, and output a list of recommended visualizations for that

specific dataset. We demonstrate the effectiveness of our ML-based

visualization recommendation system through comprehensive ex-

periments, namely, a quantitative evaluation of the visualization

recommendations using known ground-truth, a user study with

20 human experts that show a clear preference for visualizations

recommended by the ML-based model.
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Appendix

Table 3: Summary ofmeta-feature functions for an attribute.

The functions are called from the learning framework in Table 1. Let x denote an arbitrary
attribute vector and 𝜋 (x) is the sorted vector of x.
Name Equation

Num. values in attribute |x |
Num./frac. missing values 𝑠 , ( |x|−𝑠 )/|x|
Num. nonzeros, density nnz(x) , nnz(x)/|x|
Num. unique values card(x)
𝑄1 ,𝑄3 median of |x | /2 smallest (largest) values

IQR 𝑄3 −𝑄1

Outlier LB 𝛼 ∈ {1.5, 3} ∑
𝑖 I(𝑥𝑖 < 𝑄1 − 𝛼𝐼𝑄𝑅)

Outlier UB 𝛼 ∈ {1.5, 3} ∑
𝑖 I(𝑥𝑖 > 𝑄3 + 𝛼𝐼𝑄𝑅)

Total outliers 𝛼 ∈ {1.5, 3} ∑
𝑖I(𝑥𝑖<𝑄1−𝛼𝐼𝑄𝑅) +

∑
𝑖I(𝑥𝑖>𝑄3+𝛼𝐼𝑄𝑅)

(𝛼std) outliers 𝛼 ∈ {2, 3} 𝜇x ± 𝛼𝜎x
Spearman (𝜌 , p-val) spearman(x, 𝜋 (x))
Kendall (𝜏 , p-val) kendall(x, 𝜋 (x))
Pearson (𝑟 , p-val) pearson(x, 𝜋 (x))
Min, max, range, median min(x) , max(x) , max(x)−min(x) ,med(x)
Geometric Mean |x |−1 ∏𝑖 𝑥𝑖
Harmonic Mean |x | /∑𝑖

1

𝑥𝑖

Mean, Stdev, Variance 𝜇x , 𝜎x , 𝜎
2

x
Skewness, Kurtosis E(x−𝜇x )3/𝜎3

x , E(x−𝜇x )
4/𝜎4

x
HyperSkewness E(x−𝜇x )5/𝜎5

x
Moments[6–10], k-stat.[3–4] −

Quartile Dispersion Coeff.

𝑄
3
−𝑄

1

𝑄
3
+𝑄

1

Median Absolute Deviation med( |x −med(x) |)
Avg. Absolute Deviation

1

|x| e
𝑇 |x − 𝜇x |

Coeff. of Variation 𝜎x/𝜇x
Efficiency ratio 𝜎2

x/𝜇2x
Variance-to-mean ratio 𝜎2

x/𝜇x
Signal-to-noise ratio (SNR) 𝜇2x/𝜎2

x
Entropy, Norm. entropy 𝐻 (x) = −∑

𝑖 𝑥𝑖 log𝑥𝑖 , 𝐻 (x)/log
2
|x|

Gini coefficient −
Quartile max gap max(𝑄𝑖+1 −𝑄𝑖 )
Centroid max gap max𝑖 𝑗 |𝑐𝑖 − 𝑐 𝑗 |

Histogram prob. dist. pℎ = h
h𝑇 e

(with fixed # of bins)

A EVALUATION FRAMEWORK

Herewe describe a supporting evaluation framework for end-to-end

ML-based visualization recommendation (Sec. 3). Four differences

between our problem and traditional item-based recommendation

prevent us from leveraging commonly used evaluation techniques:

• Visualization complexity (Sec. A.1): While traditional recom-

mender systems score simple objects such as an item, ML-based

visualization recommendation models must learn from visualiza-

tions that are more complex objects (Def. 3).

• No shared recommendation space (Sec. A.1): Visualizations

recommended for one dataset cannot be recommended for an-

other dataset. Hence, there is no shared space of visualizations

for learning better recommender models.

• Generate on-the-fly (Sec. A.2–A.3): Set of visualizations to

recommend are generated on-the-fly for a specific unseen dataset

of interest, as opposed to already existing and being common to

all users as is the case for traditional recommender systems.

• Dynamic&dataset dependent vis. space (Sec. A.2–A.4): Space

of visualizations to score and recommend is dynamic, completely

dependent on the individual dataset of interest, and exponential

in the number of attributes and possible design choices.

Our proposed framework—comprising specifications of the corpus

of datasets and visualizations, construction of training and testing

sets, and evaluation metrics—is designed to overcome challenges

from these differences, and serves as a fundamental basis for system-

atically evaluating ML-based visualization recommender systems,

including our own model and those that arise in the future.

A.1 Corpus: Datasets and Visualizations

In traditional recommender systems that recommend items to

users [1], there is a single shared set of items (e.g., movies [3], prod-

ucts [22], etc.). However, in visualization recommendation, there is

no shared set of visualizations to recommend to users, as it depends

entirely on the dataset of interest. Hence, if we have 𝑁 datasets,

then there are 𝑁 completely disjoint sets of visualizations that can

be recommended. Each dataset has a set of relevant visualizations

that are exclusive to the dataset. Moreover, each visualization only

uses a small subset of attributes from the dataset, and some at-

tributes in the dataset may never be used in a visualization. Thus,

the goal is to learn a model to score and ultimately recommend

visualizations generated from any unseen dataset in the future. Ev-

ery new dataset gives rise to an exponential amount of possible

visualizations that one must search. This makes this recommenda-

tion problem extremely challenging. In addition, the visualization

search space is also completely disjoint from the search space of

another arbitrary dataset as shown in Lemma 1.

A.2 Training from the Corpus

The next step is to create a training set from the corpus of datasets

and visualizations. For example, the wide-and-deep network ap-

proach addresses the issue of the dynamic space of visualizations by

creating visualizations that come from a combination of attributes

and a visualization configuration. However, the framework would

generalize to other approaches of visualization recommendation

that may have a different way extracting a visualization instance.

Given a single dataset from the corpus that has a set of relevant

visualizations, we construct positive (relevant) visualizations and

complement with negative (or non-relevant) visualizations. While

it is intuitive to think that non-relevant visualizations in our prob-

lem are visualizations that users do not create, such non-relevant

instances do not naturally exist in the corpus. The corpus only con-

tains visualizations that users do create. Our framework needs to

compute non-relevant visualizations on-the-fly from the dynamic

space of visualizations that depends on each dataset. In other words,

every dataset has a unique set of non-relevant visualizations, since

the underlying data in the actual visualizations is different. Our

framework follows Def. 5 to achieve that. Moreover, the space of

non-relevant visualizations is typically exponential with a size that

easily exceeds several thousands. It is difficult to train with a large

number of non-relevant visualizations along with a much smaller

set of relevant visualizations. Our framework follows Def. 6 to uni-

formly sample a fixed number of non-relevant visualizations from

the same dataset. However, other ways of sampling non-relevant

visualizations can also be used.

A.3 Testing and Deployment

Now,we discuss how a trained visualization recommendationmodel

M can be used for testing and deployment. Given a new or selected



(a) Top 5 Rule-based Vis Rec.

(b) Top 5 ML-based Vis. Rec. (Ours)

Figure 6: Comparing the top-5 visualization recommendations from the existing end-to-end rule-based system (Voyager2 using

CompassQL) to our end-to-end ML-based visualization recommendation system. See text for discussion.

Figure 7: Screenshot of our end-to-end ML-based visualiza-

tion recommender system.

held-out dataset Xtest, the model outputs a list of recommended

visualizations for the specific dataset. Different from traditional

recommender systems where the space of items are shared for all

users (including new users) [1, 3, 22], our framework generates a

ranking of visualizations to recommend with on-the-fly, which are

dependent on the new unseen dataset. When experimenting with

different models, we did negative sampling of non-relevant visual-

izations, which allows us to efficiently report an average result from

more datasets. We describe the evaluation metric for our visualiza-

tion recommendation problem in Sec. A.4. When the model gets

deployed and tested on a real-world new dataset, the recommended

visualizations are selected from the entire space of visualizations

for that dataset (as in Def. 3).

A.4 Evaluation Metrics

Evaluating the quality of the ranking of visualizations (recommen-

dations) given by the learned model has unique challenges. As

mentioned earlier, in visualization recommendation, the set of visu-

alizations to be recommended is generated on-the-fly based on the

dataset of interest. Since each dataset gives rise to a new set of visu-

alizations that can be recommended, we must evaluate the quality

of ranking for each individual dataset and explicitly account for the

different space of visualizations being ranked for every different

dataset X𝑖 . Thus, standard ranking metrics that assume a fixed

space of objects to rank over such as nDCG [16] cannot be used di-

rectly for visualization recommendation. Furthermore, the number

of possible visualizations the ranking is computed over depends

entirely on the dataset and number of attributes in it. Therefore, the

difficulty of the visualization ranking problem varies based on the

dataset, and more specifically, the number of attributes in it. Taking

a randommodel for instance, it is easy to obtain a high nDCG when

a dataset has only two attributes as opposed to hundreds.

The nuances drive us to further specify nDCG for evaluating

ML-based visualization recommendation models. As an aside, other

evaluation metrics can also be corrected in a similar fashion. Given

𝑁 test datasets along with 𝑁 sets of held-out positive visualizations

{V𝑖 }𝑁𝑖=1, the corrected nDCG is defined as,

𝑛𝐷𝐶𝐺@𝐾 =
1

𝑁

𝑁∑
𝑖=1

1

𝑍𝐾
𝑖

𝐾∑
𝑗=1

2
𝑌𝑖 𝑗 − 1

𝑙𝑜𝑔2 ( 𝑗 + 1) (25)

𝑍𝐾𝑖 =

min(𝐾, |V𝑖 |)∑
𝑗=1

1

𝑙𝑜𝑔2 ( 𝑗 + 1) (26)

where 𝑗 is the rank, 𝑌𝑖 𝑗 ∈ {0, 1} is the ground-truth label (rele-

vant/irrelevant) of the visualization at position 𝑗 in the ranking

of visualizations for dataset X𝑖 , and 𝑍𝐾𝑖 is the dataset-dependent

normalization factor that ensures a perfect visualization ranking

for dataset X𝑖 receives a perfect score of 1. This is required since

each dataset X𝑖 almost surely has a different number of positive

visualizations |V𝑖 |, that is, for any arbitrary two datasets X𝑖 and X𝑗 ,
|V𝑖 | ≠ |V𝑗 |. The perfect ranking recommends all (but no more than

𝐾) positive visualizations at the top. Our modified nDCG empha-

sizes the quality of the visualization ranking at the top of the list of

recommended visualizations for each datasetX𝑖 since 1/log 2( 𝑗 +2)
decreases quickly and then asymptotes to a constant as 𝑗 increases.

A.5 Implementation and Model Configuration

For training, each positive (relevant) visualizations is complemented

with four negative visualizations, sampled uniformly at random.

Each test dataset has 99 negative visualizations. The wide-and-deep

approach is implemented in PyTorch v.1.3.0. A dense meta-feature

vector of an attribute is 1,006-dim. Configuration embeddings are

128-dim. Deriving sparse feature vectors s𝑥 uses a bin size of five.

The deep model uses a 3-layer MLP (with ReLu activation). Opti-

mization uses the BCE loss, the Adam optimizer (lr = 1𝑒−3) and a

batch size of four. Training ends after three epoches.
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