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Abstract. Other than scattering problems where perturbation theory is applicable, there are basi-
cally two ways to solve problems in physics. One is to reduce the problem to harmonic oscillators,
and the other is to formulate the problem in terms of two-by-two matrices. If two oscillators are
coupled, the problem combines both two-by-two matrices and harmonic oscillators. This method
then becomes a powerful research tool to cover many different branches of physics. Indeed, the
concept and methodology in one branch of physics can be translated into another through the com-
mon mathematical formalism. It is noted that the present form of quantum mechanics is largely a
physics of harmonic oscillators. Special relativity is the physics of the Lorentz group which can be
represented by the group of by two-by-two matrices commonly calledSL(2,c). Thus the coupled
harmonic oscillators can therefore play the role of combining quantum mechanics with special rela-
tivity. Both Paul A. M. Dirac and Richard P. Feynman were fond of harmonic oscillators, while they
used different approaches to physical problems. Both were also keenly interested in making quan-
tum mechanics compatible with special relativity. It is shown that the coupled harmonic oscillators
can bridge these two different approaches to physics.
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INTRODUCTION

Because of its mathematical simplicity, the harmonic oscillator provides soluble mod-
els in many branches of physics. It often gives a clear illustration of abstract ideas. In
many cases, the problems are reduced to the problem of two coupled oscillators. Soluble
models in quantum field theory, such as the Lee model [1] and the Bogoliubov trans-
formation in superconductivity [2], are based on two coupled oscillators. More recently,
the coupled oscillators form the mathematical basis for squeezed states in quantum op-
tics [3].

According to our experience, the present form of quantum mechanics is largely a
physics of harmonic oscillators. Since the groupSL(2,C) forms the universal covering
group of the Lorentz group, special relativity is a physics of two-by-two matrices.
Therefore, the coupled harmonic oscillator can provide a concrete model for relativistic
quantum mechanics.

With this point in mind, Dirac and Feynman used harmonic oscillators to test their
physical ideas. In this paper, we first examine Dirac’s attempts to combine quantum me-
chanics with relativity in his own style: to construct mathematically appealing models.
We then examine how Feynman approached this problem. He was insisting on his own
style. Observe the experimental world, tell the story of the real world, and then write
down mathematical formulas as needed.
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In this paper, we use coupled harmonic oscillators to build a bridge between the two
different attempts made by Dirac and Feynman.

In section 1, we start with the classical Hamiltonian for two coupled oscillators. It is
possible to obtain a explicit solution for the Schrödinger equation in terms of the normal
coordinates.

Section 2 examines Dirac’s life-long efforts to combine quantum mechanics and spe-
cial relativity. Starting from Dirac’s work, we construct a covariant model of relativistic
extended particles by combining Dirac’s oscillators with Feynman’s phenomenological
approach to relativistic quark model. In section 3, it is shown that Feynman’s parton
model can be interpreted as a limiting case of one Lorentz-covariant bound-state model.

COUPLED OSCILLATORS

Two coupled harmonic oscillators serve many different purposes in physics. It is well
known that this oscillator problem can be formulated into a problem of a quadratic
equation in two variables. The diagonalization of the quadratic form includes a rota-
tion of the coordinate system. However, the diagonalization process requires additional
transformations involving the scales of the coordinate variables [4].

In this paper, we start with a simple problem of two oscillators with equal mass. This
contains enough physics for our present purpose. Then the Hamiltonian takes the form

H =
1
2

{
1
m

p2
1 +

1
m

p2
2 +Ax2

1 +Ax2
2 +2Cx1x2

}
. (1)

If we choose coordinate variables

y1 =
1√
2

(x1 +x2) , y2 =
1√
2

(x1−x2) , (2)

the Hamiltonian can be written as

H =
1

2m

{
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1 + p2
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}
+

K
2

{
e−2ηy2
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}
, (3)

where

K =
√

A2−C2, exp(2η) =

√
A−C
A+C

, (4)

If y1 andy2 are measured in units of(mK)1/4, the ground-state wave function of this
oscillator system is

ψη(x1,x2) =
1√
π

exp

{
−1

2
(e−ηy2

1 +eηy2
2)

}
, (5)

The wave function is separable in they1 andy2 variables. However, for the variablesx1
andx2, the story is quite different [4]. The key question is how the quantum mechanics in
the world of thex1 variable is affected by thex2 variable. If thex2 space is not observed,
it corresponds to Feynman’s rest of the universe [4].
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Let us write the wave function of Eq.(5) in terms ofx1 andx2, then

ψη(x1,x2) =
1√
π

exp

{
−1

4

[
e−η(x1 +x2)2 +eη(x1−x2)2]

}
. (6)

When the system is decoupled withη = 0, this wave function becomes

ψ0(x1,x2) =
1√
π

exp

{
−1

2
(x2

1 +x2
2)

}
. (7)

The system becomes separable and becomes decoupled.

DIRAC’S HARMONIC OSCILLATORS

Paul A. M. Dirac is known to us through the Dirac equation for spin-1/2 particles.
But his main interest was in the foundational problems. First, Dirac was never satisfied
with the probabilistic formulation of quantum mechanics. This is still one of the hotly
debated subjects in physics. Second, if we tentatively accept the present form of quantum
mechanics, Dirac was insisting that it has to be consistent with special relativity. He
wrote several important papers on this subject. Let us look at some of his papers on this
subject.

TABLE 1. Quantum qechanics and special relativity. There are quantum excitations along
the space-like longitudinal direction, but there are no excitations along the time-like direction.
The time-energy relation is a c-number uncertainty relation. As for special relativity, Dirac’s
light-cone system leads to a squeeze transformation illustrated in this table. One way to
combine quantum mechanics with special relativity is to combine these two figures.

Dirac:  Uncertainty
without  Excitations 

Heisenberg:  Uncertainty
with  Excitations 

t

z

A=4u ′ v ′

t

z

u

v

A=4uv

=2(t2–z2)

During World War II, Dirac was looking into the possibility of constructing represen-
tations of the Lorentz group using harmonic oscillator wave functions [5]. The Lorentz
group is the language of special relativity, and the present form of quantum mechan-
ics starts with harmonic oscillators. Presumably, therefore, he was interested in making
quantum mechanics Lorentz-covariant by constructing representations of the Lorentz
group using harmonic oscillators.
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In his 1945 paper [5], Dirac considers the Gaussian form

exp

{
−1

2

(
z2 + t2)

}
, (8)

wherez andt are the longitudinal and time-like variables respectively. This is a strange
expression for those who believe in Lorentz invariance. The expression

(
z2− t2

)
is

invariant, but Dirac’s Gaussian form of Eq.(8) is not. Yet, Dirac’s expression of Eq.(8)
is consistent with his earlier papers on the time-energy uncertainty relation [6]. In those
papers, Dirac observed that there is a time-energy uncertainty relation, while there are no
excitations along the time axis. He called this the “c-number time-energy uncertainty”
relation. When one of us (YSK) was talking with Dirac in 1978, he clearly mentioned
this word again. He said further that this is one of the stumbling block in combining
quantum mechanics with relativity. This situation is illustrated in Table 1.

In 1949, the Reviews of Modern Physics published a special issue to celebrate Ein-
stein’s 70th birthday. This issue contains Dirac paper entitled “Forms of Relativistic
Dynamics” [7]. In this paper, he introduced his light-cone coordinate system, in which a
Lorentz boost becomes a squeeze transformation. When the system is boosted along the
zdirection, the transformation takes the form

(
z′
t ′

)
=

(
cosh(η/2) sinh(η/2)
sinh(η/2) cosh(η/2)

)(
z
t

)
. (9)

This is not a rotation, and people still feel strange about this form of transformation.
In 1949 [7], Dirac introduced his light-cone variables defined as [7]

u = (z+ t)/
√

2, v = (z− t)/
√

2, (10)

the boost transformation of Eq.(9) takes the form

u′ = eη/2u, v′ = e−η/2v. (11)

Theu variable becomes expanded while thev variable becomes contracted, as is illus-
trated in Table 1. Their productuv remains invariant. In Dirac’s picture, the Lorentz
boost is a squeeze transformation.

If we combine the two figures in Table 1, we end up with Fig. 1. In mathematical
formulae, this transformation changes the Gaussian form of Eq.(8) into

ψη(z, t) =
(

1
π

)1/2

exp

{
−1

2

(
e−ηu2 +eηv2)

}
. (12)

Let us go back to section 1 on the coupled oscillators. The above expression is the same
as Eq.(5). Thex1 variable now became the longitudinal variablez, and thex2 variable
became the time like variablet.

We can use the coupled harmonic oscillators as the starting point of relativistic
quantum mechanics. This allows us to translate the quantum mechanics of two coupled
oscillators defined over the space ofx1 andx2 into the quantum mechanics defined over
the space time region ofz andt.
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FIGURE 1. Effect of the Lorentz boost on the space-time wave function. The circular space-time
distribution in the rest frame becomes Lorentz-squeezed to become an elliptic distribution.

This form becomes Eq.(8) whenη becomes zero. The transition from Eq.(8) to
Eq.(12) is a squeeze transformation. It is now possible to combine what Dirac observed
into a covariant formulation of harmonic oscillator system. First, we can combine his
c-number time-energy uncertainty relation described in Table 1 and his light-cone coor-
dinate system given in the same table into a picture of covariant space-time localization
illustrated in Fig. 1.

In addition, there are two more homework problems which Dirac left us to solve.
First, in defining thet variable for the Gaussian form of Eq.(8), Dirac did not specify the
physics of this variable. If it is going to be the calendar time, this form vanishes in the
remote past and remote future. We are not dealing with this kind of object in physics.
What is then the physics of this time-liket variable?

The Schrödinger quantum mechanics of the hydrogen atom deals with localized
probability distribution. Indeed, the localization condition leads to the discrete energy
spectrum. Here, the uncertainty relation is stated in terms of the spatial separation
between the proton and the electron. If we believe in Lorentz covariance, there must
also be a time-separation between the two constituent particles, and an uncertainty
relation applicable to this separation variable. Dirac did not say in his papers of 1927
and 1945, but Dirac’s “t” variable is applicable to this time-separation variable. This
time-separation variable will be discussed in detail in section 3 for the case of relativistic
extended particles.

Second, as for the time-energy uncertainty relation. Dirac’c concern was how the
c-number time-energy uncertainty relation without excitations can be combined with
uncertainties in the position space with excitations. Dira’s 1927 paper was written before
Wigner’s 1939 paper on the internal space-time symmetries of relativistic particles [8].

Both of these questions can be answered in terms of the space-time symmetry of
bound states in the Lorentz-covariant regime. In his 1939 paper, Wigner worked out
internal space-time symmetries of relativistic particles [8]. He approached the problem
by constructing the maximal subgroup of the Lorentz group whose transformations
leave the given four-momentum invariant. As a consequence, the internal symmetry of
a massive particle is like the three-dimensional rotation group.
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If we extend this concept to relativistic bound states, the space-time asymmetry
which Dirac observed in 1927 is quite consistent with Einstein’s Lorentz covariance.
The time variable can be treated separately. Furthermore, it is possible to construct
a representations of Wigner’s little group for massive particles [9]. As for the time-
separation, it is also a variable governing internal space-time symmetry which can be
linearly mixed when the system is Lorentz-boosted.

FEYNMAN’S OSCILLATORS

Quantum field theory has been quite successful in terms of Feynman diagrams based
on the S-matrix formalism, but is useful only for physical processes where a set of
free particles becomes another set of free particles after interaction. Quantum field
theory does not address the question of localized probability distributions and their
covariance under Lorentz transformations. In order to address this question, Feynman
et al. suggested harmonic oscillators to tackle the problem [10]. Their idea is indicated
in Fig. 2.

Harmonic

Feynman Diagrams

Oscillators

Feynman Diagrams

FIGURE 2. Feynman’s roadmap for combining quantum mechanics with special relativity. Feynman
diagrams work for running waves, and they provide a satisfactory resolution for scattering states in
Einstein’s world. For standing waves trapped inside an extended hadron, Feynman suggested harmonic
oscillators as the first step.

Before 1964 [11], the hydrogen atom was used for illustrating bound states. These
days, we use hadrons which are bound states of quarks. Let us use the simplest hadron
consisting of two quarks bound together with an attractive force, and consider their
space-time positionsxa andxb, and use the variables

X = (xa +xb)/2, x = (xa−xb)/2
√

2. (13)

The four-vectorX specifies where the hadron is located in space and time, while the vari-
ablex measures the space-time separation between the quarks. According to Einstein,
this space-time separation contains a time-like component which actively participates as
in Eq.(9), if the hadron is boosted along thez direction. This boost can be conveniently
described by the light-cone variables defined in Eq(10). Does this time-separation vari-
able exist when the hadron is at rest? Yes, according to Einstein. In the present form of
quantum mechanics, we pretend not to know anything about this variable. Indeed, this
variable belongs to Feynman’s rest of the universe.

What do Feynmanet al. say about this oscillator wave function? In their classic
1971 paper [10], Feynmanet al. start with the following Lorentz-invariant differential
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equation.
1
2

{
x2

µ −
∂ 2

∂x2
µ

}
ψ(x) = λψ(x). (14)

This partial differential equation has many different solutions depending on the choice of
separable variables and boundary conditions. Feynmanet al. insist on Lorentz-invariant
solutions which are not normalizable. On the other hand, if we insist on normalization,
the ground-state wave function takes the form of Eq.(8). It is then possible to construct
a representation of the Poincaré group from the solutions of the above differential
equation [9]. If the system is boosted, the wave function becomes given in Eq.(12).
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FIGURE 3. Lorentz-squeezed space-time and momentum-energy wave functions. As the hadron’s
speed approaches that of light, both wave functions become concentrated along their respective positive
light-cone axes. These light-cone concentrations lead to Feynman’s parton picture.

This wave function becomes Eq.(8) ifη becomes zero. The transition from Eq.(8) to
Eq.(12) is a squeeze transformation. The wave function of Eq.(8) is distributed within
a circular region in theuv plane, and thus in thezt plane. On the other hand, the wave
function of Eq.(12) is distributed in an elliptic region with the light-cone axes as the
major and minor axes respectively. Ifη becomes very large, the wave function becomes
concentrated along one of the light-cone axes. Indeed, the form given in Eq.(12) is a
Lorentz-squeezed wave function. This squeeze mechanism is illustrated in Fig. 1.

There are many different solutions of the Lorentz invariant differential equation of
Eq.(14). The solution given in Eq.(12) is not Lorentz invariant but is covariant. It is
normalizable in thet variable, as well as in the space-separation variablez. It is indeed
possible to construct Wigner’sO(3)-like little group for massive particles [8], and thus
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the representation of the Poincaré group [9]. Our next question is whether this formalism
has anything to do with the real world.

In 1969, Feynman observed that a fast-moving hadron can be regarded as a collection
of many “partons” whose properties appear to be quite different from those of the
quarks [12]. For example, the number of quarks inside a static proton is three, while the
number of partons in a rapidly moving proton appears to be infinite. The question then is
how the proton looking like a bound state of quarks to one observer can appear different
to an observer in a different Lorentz frame? Feynman made the following systematic
observations.

a. The picture is valid only for hadrons moving with velocity close to that of light.
b. The interaction time between the quarks becomes dilated, and partons behave as

free independent particles.
c. The momentum distribution of partons becomes widespread as the hadron moves

fast.
d. The number of partons seems to be infinite or much larger than that of quarks.

Because the hadron is believed to be a bound state of two or three quarks, each of the
above phenomena appears as a paradox, particularly b) and c) together.

In order to resolve this paradox, let us write down the momentum-energy wave
function corresponding to Eq.(12). If we let the quarks have the four-momentapa and
pb, it is possible to construct two independent four-momentum variables [10]

P = pa + pb, q =
√

2(pa− pb), (15)

whereP is the total four-momentum. It is thus the hadronic four-momentum.
The variableq measures the four-momentum separation between the quarks. Their

light-cone variables are

qu = (q0−qz)/
√

2, qv = (q0 +qz)/
√

2. (16)

The resulting momentum-energy wave function is

φη(qz,q0) =
(

1
π

)1/2

exp

{
−1

2

(
eηq2

u +e−ηq2
v

)}
. (17)

Because we are using here the harmonic oscillator, the mathematical form of the above
momentum-energy wave function is identical to that of the space-time wave function.
The Lorentz squeeze properties of these wave functions are also the same. This aspect
of the squeeze has been exhaustively discussed in the literature [9, 13, 14].

When the hadron is at rest withη = 0, both wave functions behave like those for the
static bound state of quarks. Asη increases, the wave functions become continuously
squeezed until they become concentrated along their respective positive light-cone axes.
Let us look at the z-axis projection of the space-time wave function. Indeed, the width
of the quark distribution increases as the hadronic speed approaches that of the speed of
light. The position of each quark appears widespread to the observer in the laboratory
frame, and the quarks appear like free particles.
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The momentum-energy wave function is just like the space-time wave function, as
is shown in Fig. 3. The longitudinal momentum distribution becomes wide-spread as
the hadronic speed approaches the velocity of light. This is in contradiction with our
expectation from non-relativistic quantum mechanics that the width of the momentum
distribution is inversely proportional to that of the position wave function. Our expecta-
tion is that if the quarks are free, they must have their sharply defined momenta, not a
wide-spread distribution.

However, according to our Lorentz-squeezed space-time and momentum-energy wave
functions, the space-time width and the momentum-energy width increase in the same
direction as the hadron is boosted. This is of course an effect of Lorentz covariance. This
indeed is the key to the resolution of the quark-parton paradox [9, 13].

After these qualitative arguments, we are interested in whether Lorentz-boosted
bound-state wave functions in the hadronic rest frame could lead to parton distribution
functions. It is thus possible to compare the oscillator-based parton distribution with that
observed in high-energy laboratories [15].

Feynman’s parton picture is one of the most controversial models proposed in the
20th century. The original model is valid only in Lorentz frames where the initial proton
moves with infinite momentum. It is gratifying to note that this model can be produced
as a limiting case of one covariant model which produces the quark model in the frame
where the proton is at rest.
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