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Abstract. – The massive and massless representations of four-vectors and Maxwell-type ten-
sors are constructed as bilinear combinations of SL(2, C)-spinors and are evaluated on a unified
description upon adopting the group contraction procedure of O(3)-like little group to E(2)-like
little group. Contraction of massive particle representations leads to gauge-dependent vectors as
well as the gauge-independent “state vectors” constructed by Weinberg. It is shown that gauge
degrees of freedom associated with the translation-like transformations of the E(2)-like little
group can be traced to the spinors that undergo spin flips in the infinite-momentum/zero-mass
limit.

One of the beauties of Einstein’s special relativity is the unified description of the energy-
momentum relation for massive and massless particles through E = [(Pc)2 + (Mc2)2]1/2. In
addition to mass, energy and momentum, relativistic particles have internal degrees of freedom,
whose symmetries for massive and massless particles are dictated by O(3)-like and E(2)-like
little groups, respectively [1]. It was shown by Inönü and Wigner that the rotation group O(3)
can be contracted to E(2) [2]. The unified description of internal symmetries for both massive
and massless particles can be obtained through the contraction procedure, identical to that of
Inönü and Wigner, which in essence is taking the infinite-momentum/zero-mass limits of their
massive counterparts [3].

In this article we are interested in constructing four-vectors and Maxwell-type tensors from
spinors, in a unified scheme both for massive and massless particles, through adopting an
analogous approach as that of the contraction procedure of the O(3)-like little group into E(2)-
like little group. We will work within the framework of Wigner’ s little groups, which leave the
four-momentum of a given particle invariant. In this context, we will conclude that the E(2)-
like group transformations on the four-potential are equivalent to gauge transformations. It will
also be shown that unlike the four-potential, which comprises both the parameter-dependent
and -independent spinors, the electromagnetic-field tensor comprises only the parameter-
independent spinors. The SL(2, C) regime will prove to be appropriate for our purposes.
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The group of Lorentz transformations is generated by three rotation generators Ji and three
boost generators Ki. They satisfy the commutation relations of the SL(2, C) Lie algebra:

[Ji, Jj ] = iεijkJk, [Ji,Kj] = iεijkKk, [Ki,Kj] = −iεijkJk. (1)

The first solution of this set of commutation relations consists of Ji = 1
2σi, Ki = i

2σi, and the

second set consists of Ji = 1
2σi, K̇i = − i

2σi. We call these two representations “undotted” and
“dotted” representations, respectively. In addition to the usual normalized Pauli spinors α and
β, for spin in the positive and negative z-directions respectively, there is another independent
set of spinors α̇ and β̇ associated with the dotted representation. These two sets of spinors
have quite different Lorentz-boost properties.

The rotation matrix R(θ) = exp [−iθJ3] is the same for both representations. The boost
matrix in the undotted representation is

B(η) = exp [−iηK3] =

(
eη/2 0

0 e−η/2

)
, (2)

while it becomes

Ḃ(η) = exp
[
−iηK̇3

]
=

(
e−η/2 0

0 eη/2

)
(3)

for the dotted representation.

For a massive point particle there is a Lorentz frame in which the particle is at rest. In
this frame, the little group is clearly the three-dimensional rotation group O(3). The four-
momentum is not affected by this rotation, but the spin variable changes its direction. Hence,
the little group of a moving massive particle can be obtained by boosting along the direction
of the momentum. Without loss of generality, if the particle is boosted in the z-direction, the
generators of the little group can be obtained by

J ′i = B(η)JiB(η)−1. (4)

Since J3 commutes with K3 it remains invariant, while J1 and J2 assume the form

J ′1 = cosh ηJ1 + sinh ηK2, J ′2 = cosh ηJ2 − sinh ηK1, (5)

which satisfy the Lie algebra of O(3). Thus, the little group for a massive particle is a covariant
entity and remains O(3)-like in all Lorentz frames.

However, for massless particles there are no Lorentz frames in which the particle is at
rest. The approach is to consider the limiting case in which the mass of the particle becomes
vanishingly small yielding the boost parameter to become infinite. After renormalizing the
generators J ′1 and J ′2, in the infinite-η limit they reduce to

N1 = K1 − J2, N1 = K2 + J1. (6)

The operators N1, N2 and J3 satisfy the commutation relations

[J3, N1] = iN2, [J3, N2] = −iN1, [N1, N2] = 0, (7)

where J3 is like the rotation generator, while N1 and N3 are like translation generators in the
two-dimensional Euclidean plane. Hence, they are the generators of the E(2)-like little group
for massless particles.
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The little groups for the undotted and dotted spinors are to be constructed accordingly. N1

and N2 applicable to α and β become

N1 =

(
0 i
0 0

)
, N2 =

(
0 1
0 0

)
, (8)

while for α̇ and β̇ one has to employ

Ṅ1 =

(
0 0
−i 0

)
, Ṅ2 =

(
0 0
1 0

)
. (9)

The transformation matrices assume the form

D(u, v) = exp[−iuN1 − ivN2] =

(
1 u− iv
0 1

)
, (10)

and

Ḋ(u, v) = exp[−iuṄ1 − ivṄ2] =

(
1 0

−u− iv 1

)
. (11)

Two of the spinors are invariant under this transformation:

D(u, v)α = α, Ḋ(u, v)β̇ = β̇ , (12)

while the other two depend on the translation-like parameters and undergo spin flips:

D(u, v)β = β + (u− iv)α, Ḋ(u, v)α̇ = α̇− (u+ iv)β̇. (13)

In a previous paper by one of us [4], it has been shown that spinors in (12) represent polarized
neutrinos, which is a consequence of the requirement of invariance under translation-like
parameters.

A four-vector V µ = (Vx, Vy, Vz , Vt) representing a massive particle can be expressed in the

form of a two-by-two Hermitian matrix by V =
∑
σµV

µ, or equally well by V̇ = σ0Vt−
∑
σiV

i,
where σ0 is the identity matrix. Under rotations and boosts it is transformed as

V ′ = RVR† = RV R−1, V ′ = BV B† = BV B. (14)

As the notation suggests, V̇ admits Ḃ as the transformation matrices for boosts. It is possible
to shift from V to V̇ by a matrix conjugation. Let us introduce g = iσ2. Since it commutes
with σ2 but anticommutes with σ1 and σ3, it satisfies σi = −gσT

i g
−1. Therefore, we have

V̇ = gV Tg−1, (15)

which we call the “g-conjugation”. The g-conjugation of the rotation matrix results in its
Hermitian conjugate: R† = R−1 = gRTg−1. The boost along an arbitrary direction takes
the form B(η) = RB3(η)R†. The g-conjugation of the boost matrix results in its inverse or
dot-conjugation: Ḃ = B−1 = gBTg−1.

To construct a four-vector from SL(2, C)-spinors, the tensor product of one undotted and
one dotted spinor is to be taken into account. For simplicity in the notation, when no confusion
is possible α and α̇ are one if the spin is up, and are zero if the spin is down, while β and β̇
are zero and one for the spin-up and -down cases. Considering the transformation properties
of these spinors, each component of the four-vector is identified as

Vx '
1

2
(−αα̇+ ββ̇), Vz '

1

2
(αβ̇ + α̇β) ,

Vy '
i

2
(−αα̇− ββ̇), Vt '

1

2
(αβ̇ − α̇β).

(16)
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Furthermore, g converts α to β, β to −α, and similarly, α̇ to β̇ and β̇ to −α̇. Then, the matrix
V can be expressed as

V =

(
αβ̇ −αα̇
ββ̇ −βα̇

)
=

(
α
β

)
( β̇, −α̇ ) . (17)

The transformation matrix acting on (β̇, −α̇) from the right is the g-conjugation of the
transformation matrix acting on (α̇, β̇)T from the left. Therefore (17) is viable, with a
well-defined Lorentz transformation.

For the case of a massless particle let us consider a photon moving in the z-direction. The
four-vector wave function takes the form Aµ(x) = Aµ eiw(z−t), where Aµ = (Ax, Ay, Az, ϕ).
The four-momentum vector is then pµ = (0, 0, w, w). Aµ can be written in terms of SL(2, C)-
spinors by considering the massless counterpart of (16). First they are boosted in the z-
direction

V ′z '
1

2
(eηαβ̇ + e−ηα̇β), V ′t '

1

2
(eηαβ̇ − e−ηα̇β), (18)

where Vx and Vy are invariant quantities. Then, the infinite limit of the boost parameter
is taken, which in essence is an infinite-momentum/zero-mass limit. After renormalizing the
larger components, Aµ is identified as

Ax '
1

2
(−αα̇+ ββ̇), Ay '

i

2
(−αα̇− ββ̇), Az = ϕ '

1

2
αβ̇. (19)

This accounts for the fact that the consequence of the Lorenz gauge (∂µA
µ = 0) in the

four-vector representation of the potential is already inherent in its spinor representation.
We see that the gauge-dependent four-potentials consist of both parameter-dependent and
-independent spinors. Now, it is the E(2)-like little group, which is responsible for the
transformation of the two-by-two matrix A

A′ = D(u, v) A D(u, v)†. (20)

Explicitly, this is

A′ =

(
ϕ+Az + uAx + vAy Ax − iAy

Ax + iAy 0

)
. (21)

From the very construction of little groups the photon four-momentum is conserved, and
therefore it is straightforward to see that the electromagnetic-field tensor derived from the
transformed four-potentials (21) is left invariant. In view of this and (19) it can be concluded
that the translational degrees of freedom of the E(2)-like little group can now be associated
with the gauge degrees of freedom, and that the gauge dependence of Aµ originates from
the “gauge-dependent” spinors appearing in (13). The relation between Lorentz and gauge
transformations has been studied from different points of view by several authors [5]. Here we
consider them in the SL(2, C) regime and within the framework of little groups.

Consider an antisymmetric four-by-four matrix

T =


0 −gz gy fx
gz 0 −gx fy
−gy gx 0 fz
−fx −fy −fz 0

 . (22)

It is well known that f = (fx, fy, fz) and g = (gx, gy, gz) transform like three-vectors under
rotations. The four-by-four boost matrix is also well known for the above tensor. For our
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purposes, each component of the tensor T is to be identified with spinor combinations having
similar transformation properties. First note that fz and gz are invariant under boosts and
under the rotation around the z-axis. The spinor combinations which satisfy these invariance
requirements are 1√

2
(αβ + βα) and 1√

2
(α̇β̇ + β̇α̇). The remaining components of f and g can

be expressed in terms of the tensor product of two undotted and two dotted spinors:
fx
fy
gx
gy

 =
1

4


1 1 1 1
−i i −i i
−i −i i i
−1 1 1 −1



ββ
αα
β̇β̇
α̇α̇

 . (23)

To realize the massless counterpart of the tensor T , (23) is boosted in the z-direction to
become

f ′x '
1

4
[eη(αα + β̇β̇) + e−η(ββ + α̇α̇)], g′x '

i

4
[eη(−αα+ β̇β̇) + e−η(−ββ + α̇α̇)],

f ′y '
i

4
[eη(αα − β̇β̇) + e−η(−ββ + α̇α̇)], g′y '

1

4
[eη(αα + β̇β̇)− e−η(ββ + α̇α̇)].

(24)

Following the contraction procedure, f ′ and g′ now represent the electric- and magnetic-field
amplitudes, E and B, where

Ex '
1

4
(αα+ β̇β̇), Bx '

i

4
(−αα+ β̇β̇) ,

Ey '
i

4
(αα − β̇β̇), By '

1

4
(αα + β̇β̇) ,

(25)

and hence Ex = By and Ey = −Bx, which manifest the properties of electromagnetic plane
waves for a circularly polarized free photon propagating in the z-direction. This expression
is only for the field propagating along the z-direction, however it can be rotated to suit an
arbitrary direction. It is important to note that the second-rank tensor T with (24) is quite
different from the above expression of F . The tensor T is for a massive particle and forms
a representation space for the O(3)-like little group. For massless particles the only “gauge-
invariant” products are αα and β̇β̇, and, therefore, only these products are accommodated as
the components of the Maxwell tensor F .

The construction of vectors and tensors for massive particles as tensor products of
SL(2, C)-spinors are well-established in the literature [6]. In this article they are evaluated on
a unified description both for massive and massless particles. The physical interpretation of
the translational degrees of freedom of the E(2)-like group as being responsible for the gauge
degrees of freedom in electromagnetic potentials is elaborated. The four-vector representation
of this problem has been studied by one us through four-by-four realizations of little groups [7].
Here, this problem is examined by considering the two-by-two Hermitian representation of the
four-vector. Indeed, these gauge degrees of freedom emanate from the contraction of the
transverse components of the rotation generators during the contraction process of the O(3)-
like little group to the E(2)-like little group. It is also demonstrated that an antisymmetric
tensor representing a massive particle becomes the Maxwell tensor for massless particles with
spin-1 through the contraction procedure. In this context the electromagnetic theory for a
massless free photon with definite helicity can be regarded as the limit of a free-field theory of
massive spin-1 particles. This is a question of physical interest, since there are experimental
results on the upper limit of the possible photon mass [8]. The approach we adopt naturally
reveals the “state vectors” introduced by Weinberg [9] by resolving the issue in the absence of
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“gauge-dependent” spinors in the Maxwell tensor. He constructed these from gauge-invariant
spinors to represent electric and magnetic fields by imposing subsidiary invariance conditions
((2.25) in [9]).

***
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particles group in the University of Maryland where this work has been done.
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