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Optical activities as computing resources for space–time symmetries
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It is known that optical activities can perform rotations. It is shown that the rotation, if modulated by
attenuations, can perform symmetry operations of Wigner’s little group which dictates the internal space–time
symmetries of elementary particles.
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1. Introduction

Polarization optics serves as analog computers for the
geometry of ellipsometry [1] and the Poincaré sphere
[2]. They also can perform algebras of two-by-two and
four-by-four matrices known as Jones and Mueller
matrices, respectively [1,3]. It was established recently
that these matrices correspond to the two-by-two and
four-by-four representations of the Lorentz group
which serves as the mathematical framework for
Einstein’s special relativity [4–6].

Optical activities are known to speak the language
of rotations. In the real world, all optical rays go
through attenuations. If the attenuation is axially
symmetric, it does not raise additional mathematical
problems.

In this paper, let us assume that the optical ray
propagates along the z direction, and that the
polarization rotates on the xy plane. If the attenuation
along the x direction is different from that along the
y direction, the combined effect of this asymmetric
attenuation and the rotation around the z axis can
perform an interesting mathematical operation.

It is a simple matter to construct a rotation matrix
for a given value of propagation distance Z. So is the
matrix for the asymmetric attenuation. However, the
problem becomes nontrivial when these two effects are
combined at a microscopic scale with a small value of
z, and this combined effect is repeated to make up the
finite value of z.

It is shown in this paper that the resulting
mathematics not only allows one to make analytical
calculations of the optical activities with asymmetric
attenuation effects, but also provides a computational

instrument for Wigner’s little group which dictates the

internal space–time symmetries of elementary particles.
In 1939, Wigner noted a particle can have internal

variables in addition to its energy and momentum [7].

For instance, an electron can have its spin degrees of

freedom, in addition to its momentum and energy.

Photons can have helicity and gauge degrees of

freedom. Wigner formulated this symmetry problem

by introducing a three-parameter subgroup of the

Lorentz group which preserves the four-momentum of

a given particle. This subgroup is called Wigner’s little

group in the literature.
For a massive particle, the little group is a Lorentz-

boosted rotation group. For a massless particle, it is

like (locally isomorphic to) the two-dimensional

Euclidean group. For a tachyon with a space-like

four-momentum, the little group is a Lorentz-boosted

boost matrix, where the two boosts are made along

perpendicular directions [7,8].
It is now possible to understand optical activities in

terms of Wigner’s little group. Conversely, the optical

activity can serve as an analog computer for internal

space–time symmetries of elementary particles.
In Section 2, we formulate the problem in terms

of two-by-two matrices applicable to the Jones vector.

It is not difficult to write matrices performing rotations

and attenuations separately. In Section 3, we compute

the transformation matrix if those two operations are

performed at a microscopic scale, and are accumulated

to a macroscopic scale. In Section 4, it is shown that

the transformation matrices correspond to those of

Wigner’s little group which dictates internal space–

time symmetries of elementary particles.
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2. Formulation of the problem

Let us start with a light wave taking the form

Ex

Ey

� �
¼

A exp iðkz� !tþ �1Þ
� �

B exp iðkz� !tþ �2Þ
� �

 !
: ð1Þ

This ray can go through rotations around the z axis.
It can also go through xy asymmetric phase shifts and
attenuations. The mathematics of these aspects is
known as the Jones matrix formalism. If there are
decoherence effects between the x and y components,
the mathematics can be extended to the four-by-four
Mueller matrix formalism [2].

It has been recently established that the Jones and
Muller formalisms constitute the two-by-two and four-
by-four representations of the Lorentz group [4,5].
In the two-by-two case, the transformation matrix is
generated by three Pauli matrices

�1¼
0 1

1 0

� �
, �2¼

0 �i

i 0

� �
, �3¼

1 0

0 �1

� �
, ð2Þ

plus three squeeze generators

�1 ¼ i�1 ¼
0 i

i 0

� �
, �2 ¼ i�2 ¼

0 1

�1 0

� �
,

�3 ¼ i�3 ¼
i 0

0 �i

� �
: ð3Þ

There are therefore six generators. They form a closed
set of commutation relations. In mathematical terms,
they form the Lie algebra for the SL(2, c) group which
is locally isomorphic to the six-parameter Lorentz
group.

The three matrices of Equation (2) generate the
rotation subgroup of the Lorentz group. For possible
computer applications, we are interested in the
subgroup which produces real transformation
matrices. Imaginary numbers are not convenient for
computer mathematics.

Among the above six generators given in Equations
(2) and (3), �2, �3, and �1 are pure imaginary and can
generate real transformation matrices. They satisfy the
following closed set of commutation relations.

�2,�3½ � ¼ 2i�1 , �3,�1½ � ¼�2i�2 , �1,�2½ � ¼ 2i�3: ð4Þ

This group generated by these three matrices is called
the Sp(2) group and is applicable to many optical
instruments and optical processes, either directly or
indirectly through its isomorphism with the S(1, 1)
group for squeezed states.

Within this framework, we are dealing with
rotation matrices of the form

Rð�Þ ¼
cos� � sin �

sin� cos�

� �
, ð5Þ

and squeeze matrices of the form

Sð�Þ ¼
expð�Þ 0

0 expð��Þ

� �
, ð6Þ

and their multiplications. All the matrices in this

representation are real.
Indeed, optical activities can be described by these

real matrices. The polarization goes through the

rotation

Rð�zÞ ¼
cosð�zÞ � sinð�zÞ

sinð�zÞ cosð�zÞ

� �
, ð7Þ

as the ray propagates along the z direction. This matrix

is applicable to the x and y components of the

polarization, and the rotation angle increases as z

increases.
The optical ray is expected to be attenuated due to

absorption by the medium. The attenuation coefficient

in one transverse direction could be different from the

coefficient along the other direction. Thus, if the rate

of attenuation along the x direction is different from

that along the y axis, this asymmetric attenuation can

be described by

exp �	1zð Þ 0

0 exp �	2zð Þ

� �

¼ expð�
zÞ
expð	zÞ 0

0 expð�	zÞ

� �
, ð8Þ

with


 ¼
	2 þ 	1

2
,

	 ¼
	2 � 	1

2
: ð9Þ

The exponential factor exp(�
z) is for the overall

attenuation, and the matrix

expð	zÞ 0

0 expð�	zÞ

� �
, ð10Þ

performs a squeeze transformation. This matrix

expands the x component of the polarization, while

contracting the y component. We shall call this the

squeeze along the x direction.
The squeeze does not have to be along the x

direction. It can be in the direction which makes an

angle � with the x axis. The squeeze matrix then

becomes

Sð�,	zÞ ¼
cos � � sin �

sin � cos �

� �
expð	zÞ 0

0 expð�	zÞ

� �
cos � sin �

� sin � cos �

� �
, ð11Þ
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which can be compressed to one matrix

coshð	zÞþ sinð2�Þsinhð	zÞ sinð2�Þsinhð	zÞ

sinð2�Þsinhð	zÞ coshð	zÞ� sinð2�Þsinhð	zÞ

� �
:

ð12Þ

If �¼ 45�, this matrix becomes

Sðp=4,	zÞ ¼
coshð	zÞ sinhð	zÞ

sinhð	zÞ coshð	zÞ

� �
: ð13Þ

We shall work with this form of squeeze matrix in the
following discussion, and use the notation S(	z)
without angle for the above expression. Thus, if the
squeeze is made along the x axis, the squeeze matrix is

Sð0,	zÞ ¼ Rð�p=4,	zÞSð	zÞRðp=4,	zÞ: ð14Þ

If this squeeze is followed for the rotation of Equa-
tion (7), the net effect is

e�
z
cosð�zÞ � sinð�zÞ

sinð�zÞ cosð�zÞ

� �
coshð	zÞ sinhð	zÞ

sinhð	zÞ coshð	zÞ

� �
,

ð15Þ

where z is in a macroscopic scale, perhaps measured in
centimeters. However, this is not an accurate descrip-
tion of the optical process.

This happens in a microscopic scale of z/N, and
becomes accumulated into the macroscopic scale of z
after N repetitions, where N is a very large number. We
are thus led to the transformation matrix of the form

Mð�,	, zÞ ¼ expð�
z=N ÞSð	z=N ÞRð�z=N Þ½ �
N: ð16Þ

In the limit of large N, this quantity becomes

expð�
zÞ
1 	z=N

	z=N 0

� �
1 ��z=N

�z=N 1

� �� �N
:

ð17Þ

Since �z/N and 	z/N are very small,

Mð�,	,zÞ¼ expð�
zÞ

�
1 0

0 1

� �
þ

0 �ð��	Þ

ð�þ	Þ 0

� �
z

N

� �N
:

ð18Þ

For large N, we can write this matrix as

Mð�,	, zÞ ¼ expð�
zÞ exp Gzð Þ, ð19Þ

with

G ¼
0 �ð� � 	Þ

ð� þ 	Þ 0

� �
: ð20Þ

The remaining problem is to calculate the expo-
nential form exp(Gz) by making a Taylor expansion.
We thus need to compute GN. This is a trivial problem

if G is diagonal or can be diagonalized by a similarity

transformation of a diagonal matrix. The problem

arises because this is not always the case.

3. Computation of the transformation matrix

We are interested in computing the exponential form of

Equation (18). If � in Equation (20) is greater than 	,
the off-diagonal elements have opposite signs, and we

can write G as

G ¼ k
0 � expð2�Þ

expð�2�Þ 0

� �
, ð21Þ

with

k ¼ ð�2 � 	2Þ
1=2 ,

expð2�Þ ¼
� þ 	

� � 	

� �1=2

,
ð22Þ

or conversely

� ¼ k coshð2�Þ , 	 ¼ k sinhð2�Þ: ð23Þ

If 	 is greater than �, the off-diagonal elements

have the same sign. We can then write G as

G ¼ k
0 expð2�Þ

expð�2�Þ 0

� �
, ð24Þ

with

k ¼ ð	2 � �2Þ1=2 ,

expð2�Þ ¼
	þ �

	� �

� �1=2

,
ð25Þ

or

� ¼ k sinhð2�Þ , 	 ¼ k coshð2�Þ: ð26Þ

If �¼	, the upper-right element of the G matrix

has to vanish, and it becomes

0 0

2� 0

� �
: ð27Þ

As 	 becomes larger from 	5 � to 	4 �, the G

matrix has to go through this triangular form.
We are now ready to compute the exponential form

exp zGð Þ: ð28Þ

The problem is whether it is possible to obtain an

analytical expression of the above quantity. The usual

procedure is to write a Taylor expansion. For this

purpose, we need to calculate GN. We can manage

this calculation when N¼ 2. However, for an

arbitrary large integer N, it is not a trivial problem.
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This is exactly the problem we would like to address in
this section.

If � is greater than 	, we write G of Equation (21) as

G¼ k
expð�Þ 0

0 expð��Þ

� �
0 �1

1 0

� �
expð��Þ 0

0 expð�Þ

� �
,

ð29Þ

with � being given in Equation (22). This is a similarity
transformation of

0 �1

1 0

� �
, ð30Þ

with respect to a squeeze matrix

Bð�Þ ¼
expð�Þ 0

0 expð��Þ

� �
: ð31Þ

The role of this squeeze matrix is quite different from
that of Equation (13). It does not depend on z.

Let us go back to the G matrix. We can write GN as

kN
expð�Þ 0

0 expð��Þ

� �
0 �1

1 0

� �N expð��Þ 0

0 expð�Þ

� �
,

ð32Þ

and

exp k
0 �1

1 0

� �� �
¼

cosðkzÞ � sinðkzÞ

sinðkzÞ cosðkzÞ

� �
: ð33Þ

Thus, the exponential form exp(Gz) of Equation (28)
becomes

expð�Þ 0

0 expð��Þ

� �
cosðkzÞ �sinðkzÞ

sinðkzÞ cosðkzÞ

� �
expð��Þ 0

0 expð�Þ

� �
,

ð34Þ

and the transformation matrix of Equation (16) takes
the form

Mð�,	, zÞ ¼ expð�
zÞ

�
cosðkzÞ � expð2�Þ sinðkzÞ

expð�2�Þ sinðkzÞ cosðkzÞ

� �
,

ð35Þ

with k and � being given in Equation (22).
If 	 is greater than �, the off-diagonal elements of

Equation (20) have the same sign, but we can go
through a similar calculation. The result is

Mð�,	, zÞ ¼ expð�
zÞ

�
coshðkzÞ expð2�Þ sinhðkzÞ

expð�2�Þ sinhðkzÞ coshðkzÞ

� �
,

ð36Þ

with k and � being given in Equation (25).

If � and 	 are equal, the G matrix becomes

G ¼
0 0

2� 0

� �
, ð37Þ

with the property

G2 ¼
0 0

2� 0

� �2

¼ 0 , ð38Þ

and the transformation matrix becomes

1 0

2�z 1

� �
: ð39Þ

Let us go back to the case with �4	. We can then
gradually increase the parameter 	 to a value greater

than �, which means from Equation (22) to Equation
(25). This involves a singularity in the expression of

exp(2�) in these equations. This is a complicated
mathematical issue [9], but we can avoid the problem

using the variables 	 and �.

4. Space–time symmetries spoken by optical

activities

As mentioned in Section 1, the Lorentz group provides
the basic mathematical framework for polarization

optics. The Lorentz group was used earlier by Einstein
to formulate his special theory of relativity. In 1905,
Einstein considered only point particles. After the

formulation of quantum mechanics in 1927, it was
found that particles can have internal space–time

structures.
If a given particle has internal space–time symme-

tries, such as electron spin and quark distribution

inside a hadron, we have to rely on Wigner’s little
groups [7]. If the particle is massive, there is a Lorentz

frame in which the particle is at rest. In this frame, the
four-momentum remains invariant under rotations.

However, its spin can change its orientation. Wigner’s
little group in this case is like (locally isomorphic to)

the three-dimensional rotation group. We call this the
O(3)-like little group for massive particles.

We do not observe particles with space-like

momentum or moving faster than light, but they play
important roles in physical theories. We need those

space-like particles in Feynman diagrams. For
a particle of this type, there is the Lorentz frame
where the momentum does not have its time-like

component. It has its space component along a given
direction. This four-momentum is invariant under

Lorentz boots along the two perpendicular directions.
The subgroup in this case is the Lorentz group

applicable to two space coordinates and one time
variable. We call this the O(2, 1)-like subgroup.
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If the particle is massless, like photons, there are

no Lorentz frames in which it is at rest or with a zero

time-like component. For this case, Wigner in 1939

observed that there is a three-parameter subgroup of

the Lorentz group which leaves the four-momentum

invariant, and that its algebraic property is the same as

that of the two-dimensional Euclidean group. We call

this the E(2)-like little group for massless particles.
Let us now translate the two-by-two matrices given

in Sections 2 and 3 into the language of four-by-four

Lorentz transformation matrices applicable to the

Minkowski space of (z, y, z, t). In this convention,

the momentum-energy four-vector is ( px, py, pz,E).

If the particle moves along the z direction, this four-

vector becomes

0, 0, p, ð p2 þm2Þ
1=2

� 	
, ð40Þ

in the unit system where c¼ 1, where m is the particle

mass. We can obtain this four-vector by boosting

a particle at rest with the four-momentum

ð0, 0, 0,mÞ, ð41Þ

with the boost matrix

Bð�Þ ¼

1 0 0 0

0 1 0 0

0 0 coshð2�Þ sinhð2�Þ

0 0 sinhð2�Þ coshð2�Þ

0
BBB@

1
CCCA, ð42Þ

where

tanhð2�Þ ¼
p

ð p2 þm2Þ
1=2
: ð43Þ

It is known that this boost matrix corresponds to the

squeeze matrix B(�) of Equation (31) [5].
Now the four-momentum of Equation (41) is

invariant under the rotation matrix

Rð�zÞ ¼

cosð2�zÞ 0 sinð2�zÞ 0

0 1 0 0

� sinð2�zÞ 0 cosð2�zÞ 0

0 0 0 1

0
BBB@

1
CCCA: ð44Þ

Thus, the matrix

Bð�ÞRð�zÞBð��Þ ð45Þ

leaves the four-momentum of Equation (40) invariant.

While this matrix performs a rotation around the y axis

in the particle’s rest frame, we can also rotate this four-

momentum around the z axis without changing it. This

is what Wigner’s little group is about for the particle

with mass m.
Although the matrix of Equation (45) does not

change the momentum, it rotates the spin direction of

the particle in its rest frame. This is why the little group

is not a trivial mathematical device.
It is known that the rotation matrix of

Equation (44) corresponds to the rotation matrix of

Equation (7) [5]. Thus, the two-by-two rotation matrix

of Equation (7), together with the squeeze matrix of

Equation (31), generates the little group for particles

with non-zero mass.
If the particle has a space-like momentum, we can

start with the four-momentum

ð0, 0, p,EÞ , ð46Þ

where E is smaller than p, which can be brought to the

Lorentz frame where the four-vector becomes

ð0, 0, p, 0Þ: ð47Þ

The boost matrix takes the same form as

Equation (42), with

tanhð2�Þ ¼
E

p
: ð48Þ

The four-momentum of Equation (47) is invariant

under the boost

Sð	zÞ ¼

coshð2	zÞ 0 0 sinhð2	zÞ

0 1 0 0

0 0 1 0

sinhð2	zÞ 0 0 coshð2	zÞ

0
BBB@

1
CCCA ð49Þ

along the x direction. Here again the four-momentum

of Equation (47) is invariant under rotations around

the z axis.
The above four-by-four matrix corresponds to the

two-by-two squeeze matrix of Equation (13) applicable

to optical activities [5]. Thus, this squeeze matrix,

together with the squeeze matrix of Equation (31),

generate the little group for particles with space-like

momentum.
Let us finally consider a massless particle with it

four-momentum

ð0, 0, p, pÞ: ð50Þ

It is invariant under the rotation around the z axis.

In addition, it is invariant under the transformation

1 0 �2� 2�

0 1 0 0

2� 0 1� 2�2 2�2

2� 0 �2�2 1þ 2�2

0
BBB@

1
CCCA: ð51Þ

This four-by-four matrix has a stormy history [8,10],

but the bottom line is that it corresponds to the

triangular matrix of Equation (37), and the variable

� performs gauge transformations.

Journal of Modern Optics 5



It is interesting to note that optical activities can act
as computational devices for the internal space–time
symmetries of elementary particles.

5. Concluding remarks

Each human being has ten fingers. This is the origin of
our decimal system. Vacuum tubes can do binary logic,
and this is how the electronic computer was developed.
Quantum two-level systems can do more than the
vacuum tube can. This is why we are interested in
quantum computers these days. Indeed, computers are
based on the mathematical language spoken by nature.

Traditionally, polarization optics is known to
produce the geometry of ellipse and that of the
Poincaré sphere. It also produces the algebra of two-
by-two and four-by-four matrices. In this paper, we
started with rotations combined with asymmetric
attenuations in optical activities. It was shown in this
paper that the optical activity speaks the mathematical
language of Wigner’s little group dictating internal
space–time symmetries of elementary particles.

We have used in this paper some mathematical
methods not commonly seen in the conventional
literature. In calculating the exponential form of
a matrix, the usual procedure is to diagonalize the
matrix by a unitary transformation. Then it is possible
to write a Taylor expansion of the diagonal matrix.

What should we do if the matrix cannot be
diagonalized by a unitary transformation? Let us go
back to the G matrix of Equation (20). If �4	, it was
possible to bring the G the form

k
0 �1

1 0

� �
, ð52Þ

where the similarity transformation matrix of Equation
(31) is not unitary. It is a symmetric squeeze matrix.
In addition, we used the property

0 �1

1 0

� �2

¼
1 0

0 1

� �
,

0 �1

1 0

� �3

¼
0 �1

1 0

� �
,

ð53Þ

to deal with the Taylor expansion. For 	4 �, we used

0 1

1 0

� �2

¼
1 0

0 1

� �
,

0 1

1 0

� �3

¼
0 1

1 0

� �
, ð54Þ

If 	¼ �, the G matrix becomes triangular, and

0 0

2� 0

� �2

¼ 0: ð55Þ

The Taylor expansion truncates.
Using these properties of two-by-two matrices, we

were able to deal with the problem even though not
all of them can be diagonalized. The triangular
matrix of Equation (55) is triangular and cannot be
diagonalized. The matrix of Equation (54) can be
diagonalized with the diagonal elements of 1 and �1.
The two-by-two matrix of Equation (52) can also be
diagonalized, but the eigenvalues are the imaginary
numbers i and �i. However, the imaginary numbers
are not too convenient for computer mathematics.
Thus, we had to resort to the method presented in this
paper.
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