Publications

2025

  1. Stellarator divertor design by optimizing coils for surfaces with sharp corners
    Todd Elder, Matt Landreman, Chris Smiet, and Robert Davies
    Submitted (2025)
  2. Efficient calculation of magnetic fields from ferromagnetic materials near strong electromagnets, and application to stellarator coil optimization
    Matt Landreman, Humberto Torreblanca, and Antoine Cerfon
    Submitted (2025)
  3. On the curvature-driven ion-temperature-gradient instability and its available energy
    Ralf Mackenbach, Per Helander, Matt Landreman, Stephan Brunner, and Josephine Proll
    J. Plasma Phys. 91, E144 (2025)
  4. Exponential Spectral Scaling: Robust and Efficient Stellarator Boundary Optimization via Mode-Dependent Scaling
    Byoungchan Jang, Rory Conlin, and Matt Landreman
    Submitted 91, E144 (2025)
  5. Surface Current Optimization and Coil-Cutting Algorithms for Stage-Two Stellarator Optimization
    D Panici, R Conlin, R Gaur, D W Dudt, Y G Elmacioglu, M Landreman, T Elder, N Snir, I Gissis, Y Nikulshin, and E Kolemen
    Submitted 91, E144 (2025)
  6. Omnigenous umbilic stellarators
    R Gaur, D Panici, T M Elder, M Landreman, K E Unalmis, Y Elmacioglu, D Dudt, R Conlin, and E Kolemen
    Submitted 91, E144 (2025)
  7. Machine-learning Closure for Vlasov-Poisson Dynamics in Fourier-Hermite Space
    N Barbour, W Dorland, I Abel, and M Landreman
    J. Plasma Phys. 91, E140 (2025)
  8. How does ion temperature gradient turbulence depend on magnetic geometry? Insights from data and machine learning
    M Landreman, J Y Choi, C Alves, P Balaprakash, R M Churchill, R Conlin, and G Roberg-Clark
    J. Plasma Phys. 91, e120 (2025)
  9. Optimization of passive superconductors for shaping stellarator magnetic fields
    A A Kaptanoglu, M Landreman, and M C Zarnstorff
    Phys. Rev. E 111, 065202 (2025)
  10. Reactor-scale stellarators with force and torque minimized dipole coils
    A A Kaptanoglu, A Wiedman, S Hurwitz, M Landreman, J Halpern, and E J Paul
    Nucl. Fusion 65, 046029 (2025)
  11. Electromagnetic coil optimization for reduced Lorentz forces
    S Hurwitz, M Landreman, P Huslage, and A Kaptanoglu
    Nucl. Fusion 65, 056044 (2025)
  12. A family of quasi-axisymmetric stellarators with varied rotational transform
    S Buller, M Landreman, J Kappel, and R Gaur
    J. Plasma Phys. 91, E18 (2025)
  13. Efficient calculation of self magnetic field, self-force, and self-inductance for electromagnetic coils. II. Rectangular cross-section
    M Landreman, S Hurwitz, and T M Antonsen Jr
    Nucl. Fusion 65, 036008 (2025)

2024

  1. Stellarator equilibrium axis-expansion to all orders in distance from the axis for arbitrary plasma beta
    W Sengupta, E Rodriguez, R Jorge, M Landreman, and A Bhattacharjee
    J. Plasma Phys. 90, 905900407 (2024)
  2. MONKES: a fast neoclassical code for the evaluation of monoenergetic transport coefficients
    F J Escoto, J L Velasco, I Calvo, M Landreman, and F I Parra
    Nucl. Fusion 64, 076030 (2024)
  3. Coil Optimization for Quasi-helically Symmetric Stellarator Configurations
    A Wiedman, S Buller, and M Landreman
    J. Plasma Phys. 90, 905900307 (2024)
  4. Grad-Shafranov equilibria via data-free physics informed neural networks
    B Jang, A A Kaptanoglu, R Gaur, S Pan, M Landreman, and W Dorland
    Phys. Plasmas 31, 032510 (2024)
  5. Optimization of Nonlinear Turbulence in Stellarators
    P Kim, S Buller, R Conlin, W Dorland, D W Dudt, R Gaur, R Jorge, E Kolemen, M Landreman, N R Mandell, and D Panici
    J. Plasma Phys. 90, 905900210 (2024)
  6. Efficient calculation of the self magnetic field, self-force, and self-inductance for electromagnetic coils
    S Hurwitz, M Landreman, and T M Antonsen Jr
    IEEE Transactions on Magnetics 60, 1 (2024)
  7. Direct Microstability Optimization of Stellarator Devices
    R Jorge, W Dorland, P Kim, M Landreman, N R Mandell, G Merlo, and T Qian
    Physical Review E 110, 035201 (2024)

2023

  1. The Magnetic Gradient Scale Length Explains Why Certain Plasmas Require Close External Magnetic Coils
    J Kappel, M Landreman, and D Malhotra
    Plasma Phys. Controlled Fusion 66, 025018 (2023)
  2. Topology optimization for inverse magnetostatics as sparse regression: application to electromagnetic coils for stellarators
    A A Kaptanoglu, G P Langlois, and M Landreman
    Computer Methods in Applied Mechanics and Engineering 418A, 115504 (2023)
  3. Understanding Trade-offs in Stellarator Design with Multi-objective Optimization
    D Bindel, M Landreman, and M Padidar
    J. Plasma Phys. 89, 905890503 (2023)
  4. Sparse regression for plasma physics
    A A Kaptanoglu, C Hansen, J D Lore, M Landreman, and S L Brunton
    Phys. Plasmas 30, 033906 (2023)
  5. Single-Stage Stellarator Optimization: Combining Coils with Fixed Boundary Equilibria
    R Jorge, A Goodman, M Landreman, J Rodrigues, and F Wechsung
    Plasma Phys. Controlled Fusion 65, 074003 (2023)
  6. Direct Optimization of Fast-Ion Confinement in Stellarators
    D Bindel, M Landreman, and M Padidar
    Plasma Phys. Controlled Fusion 65, 065012 (2023)
  7. An adjoint-based method for optimizing MHD equilibria against the infinite-n, ideal ballooning mode
    R Gaur, S Buller, M E Ruth, M Landreman, I G Abel, and W D Dorland
    J. Plasma Phys. 89, 905890518 (2023)
  8. Neoclassical transport in strong gradient regions of large aspect ratio tokamaks
    S Trinczek, F I Parra, P J Catto, I Calvo, and M Landreman
    J. Plasma Phys. 89, 905890304 (2023)
  9. Constructing precisely quasi-isodynamic magnetic fields
    A Goodman, K Camacho Mata, S A Henneberg, R Jorge, M Landreman, G Plunk, H Smith, R Mackenbach, C D Beidler, and P Helander
    J. Plasma Phys. 89, 905890504 (2023)

2022

  1. Direct stellarator coil optimization for nested magnetic surfaces with precise quasisymmetry
    A Giuliani, F Wechsung, A Cerfon, M Landreman, and G Stadler
    Phys. Plasmas 30, 042511 (2022)
  2. Mapping the space of quasisymmetric stellarators using optimized near-axis expansion
    M Landreman
    J. Plasma Phys. 88, 905880616 (2022)
  3. Greedy permanent magnet optimization
    A Kaptanoglu, R Conlin, and M Landreman
    Nucl. Fusion 63, 036016 (2022)
  4. Energetic particle loss mechanisms in reactor-scale equilibria close to quasisymmetry
    E J Paul, A Bhattacharjee, M Landreman, D Alex, J L Velasco, and  R Nies
    Nucl. Fusion 62, 126054 (2022)
  5. Stellarator coil optimization supporting multiple magnetic configurations
    B F Lee, E J Paul, G Stadler, and M Landreman
    Nucl. Fusion 63, 014002 (2022)
  6. Permanent magnet optimization for stellarators as sparse regression
    A Kaptanoglu, T Qian, F Wechsung, and M Landreman
    Physical Review Applied 18, 044006 (2022)
  7. A single-field-period quasi-isodynamic stellarator
    R Jorge, G G Plunk, M Drevlak, M Landreman, J-F Lobsien, K Camacho Mata, and P Helander
    J. Plasma Phys. 88, 175880504 (2022)
  8. Optimization of quasisymmetric stellarators with self-consistent bootstrap current and energetic particle confinement
    M Landreman, S Buller, and M Drevlak
    Phys. Plasmas 29, 082501 (2022)
  9. Stochastic and a-posteriori optimization to mitigate coil manufacturing errors in stellarator design
    F Wechsung, A Giuliani, M Landreman, A Cerfon, and G Stadler
    Plasma Phys. Controlled Fusion 64, 105021 (2022)
  10. Direct computation of magnetic surfaces in Boozer coordinates and coil optimization for quasi-symmetry
    A Giuliani, F Wechsung, M Landreman, G Stadler, and A Cerfon
    J. Plasma Phys. 88, 905880401 (2022)
  11. Precise stellarator quasi-symmetry can be achieved with electromagnetic coils
    F Wechsung, M Landreman, A Giuliani, A Cerfon, and G Stadler
    Proc. Nat. Acad. Sci. 119, e2202084119 (2022)
  12. Magnetic fields with precise quasisymmetry for plasma confinement
    M Landreman, and E Paul
    Phys. Rev. Lett. 128, 035001 (2022)
  13. Improving the stellarator through advances in plasma theory
    C Hegna, D Anderson, A Bader, T Bechtel, A Bhattacharjee, M Cole, M Drevlak, J Duff, B Faber, S Hudson, M Kotschenreuther, T Kruger, M Landreman, I McKinney, E Paul, M J Pueschel, J Schmitt, P Terry, A Ware, M Zarnstorff, and C Zhu
    Nucl. Fusion 62, 042012 (2022)
  14. Stellarator optimization for nested magnetic surfaces at finite β and toroidal current
    A Baillod, J Loizu, J P Graves, and M Landreman
    Phys. Plasmas 29, 042505 (2022)
  15. Single-stage gradient-based stellarator coil design: stochastic optimization
    F Wechsung, A Giuliani, M Landreman, A Cerfon, and G Stadler
    Nucl. Fusion 62, 076034 (2022)
  16. Single-stage gradient-based stellarator coil design: Optimization for near-axis quasi-symmetry
    A Giuliani, F Wechsung, A Cerfon, G Stadler, and M Landreman
    J. Comp. Phys. 459, 111147 (2022)

2021

  1. SIMSOPT: A flexible framework for stellarator optimization
    M Landreman, B Medasani, F Wechsung, A Giuliani, R Jorge, and C Zhu
    J. Open Source Software 6, 3525 (2021)
  2. Stellarator optimization for good magnetic surfaces at the same time as quasisymmetry
    M Landreman, B Medasani, and C Zhu
    Phys. Plasmas 28, 092505 (2021)
  3. Modeling of energetic particle transport in optimized stellarators
    A Bader, D Anderson, M Drevlak, B Faber, C Hegna, S Henneberg, M Landreman, J Schmitt, and A Ware
    Nucl. Fusion 61, 116060 (2021)
  4. A neoclassically optimized compact stellarator with four planar coils
    G Yu, Z Feng, P Jiang, N Pomphrey, M Landreman, and G Fu
    Phys. Plasmas 28, 092501 (2021)
  5. Ion-temperature-gradient stability near the magnetic axis of quasisymmetric stellarators
    R Jorge, and M Landreman
    Plasma Phys. Controlled Fusion 63, 074002 (2021)
  6. An adjoint method for determining the sensitivity of island size to magnetic field variations
    A Geraldini, M Landreman, and E Paul
    J. Plasma Phys. 87, 905870302 (2021)
  7. Calculation of permanent magnet arrangements for stellarators: A linear least-squares method
    M Landreman, and C Zhu
    Plasma Phys. Controlled Fusion 63, 035001 (2021)
  8. Figures of merit for stellarators near the magnetic axis
    M Landreman
    J. Plasma Phys. 87, 905870112 (2021)
  9. Gradient-based optimization of 3D MHD equilibria
    E J Paul, M Landreman, and T Antonsen
    J. Plasma Phys. 87, 905870214 (2021)
  10. Heat pulse propagation and anomalous electron heat transport measurements on the optimized stellarator W7-X
    G Weir, P Xanthopoulos, M Hirsch, U Höfel, T Stange, N Pablant, O Grulke, S Äkäslompolo, J Alcuson, S Bozhenkov, M Beurskens, A Dinklage, G Fuchert, J Geiger, M Landreman, A Langenberg, S Lazerson, N Marushchenko, E Pasch, J Schilling, E Scott, Y Turkin, and T Klinger
    Nucl. Fusion 61, 056001 (2021)
  11. The Use of Near-Axis Magnetic Fields for Stellarator Turbulence Simulations
    R Jorge, and M Landreman
    Plasma Phys. Controlled Fusion 63, 014001 (2021)

2020

  1. Magnetic well and Mercier stability of stellarators near the magnetic axis
    M Landreman, and R Jorge
    J. Plasma Phys. 86, 905860510 (2020)
  2. Advancing the physics basis for quasi-helically symmetric stellarators
    A Bader, B J Faber, J C Schmitt, D T Anderson, M Drevlak, J M Duff, H Frerichs, C C Hegna, T G Kruger, M Landreman, I J McKinney, L Singh, J M Schroeder, P W Terry, and A S Ware
    J. Plasma Phys. 86, 905860506 (2020)
  3. Construction of Quasisymmetric Stellarators Using a Direct Coordinate Approach
    R Jorge, W Sengupta, and M Landreman
    Nucl. Fusion 60, 076021 (2020)
  4. Impurity temperature screening in stellarators close to quasisymmetry
    M F Martin, and M Landreman
    J. Plasma Phys. 86, 905860317 (2020)
  5. Adjoint approach to calculating shape gradients for 3D magnetic confinement equlibria. II: Applications
    E J Paul, T M Antonsen Jr, M Landreman, and W A Cooper
    J. Plasma Phys. 86, 905860103 (2020)
  6. Near-Axis Expansion of Stellarator Equilibrium at Arbitrary Order in the Distance to the Axis
    R Jorge, W Sengupta, and M Landreman
    J. Plasma Phys. 86, 905860106 (2020)
  7. Optimization of quasi-axisymmetric stellarators with varied elongation
    Z Feng, D Gates, S Lazerson, M Landreman, N Pomphrey, and G Fu
    Phys. Plasmas 27, 022502 (2020)
  8. Investigation of the neoclassical ambipolar electric field in ion-root plasmas on W7-X
    N Pablant, A Langenberg, J A Alonso, J Baldzuhn, C Beidler, S Bozhenkov, R Burhenn, K Brunner, A Dinklage, G Fuchert, O Ford, D Gates, J Geiger, M Hirsch, U Hofel, Y Kazakov, J Knauer, M Krychowiak, H Laqua, M Landreman, S Lazerson, H Maassberg, O Marchuk, A Mollen, E Pasch A Pavonne, S Satake, T Schroder, H Smith, J Svensson, P Traverso, Y Turkin, J Velasco, A von Stechow, F Warmer, G Weir, R Wold, and D Zhang
    Nucl. Fusion 60, 036021 (2020)

2019

  1. Constructing stellarators with quasisymmetry to high order
    M Landreman, and W Sengupta
    J. Plasma Phys. 85, 815850601 (2019)
  2. Direct construction of optimized stellarator shapes. III. Omnigenity near the magnetic axis
    G G Plunk, M Landreman, and P Helander
    J. Plasma Phys. 85, 905850602 (2019)
  3. An adjoint method for neoclassical stellarator optimization
    E J Paul, I Abel, M Landreman, and W Dorland
    J. Plasma Phys. 85, 795850501 (2019)
  4. Optimized quasisymmetric stellarators are consistent with the Garren-Boozer construction
    M Landreman
    Plasma Phys. Controlled Fusion 61, 075001 (2019)
  5. Adjoint approach to calculating shape gradients for 3D magnetic confinement equilibria
    T M Antonsen Jr, E J Paul, and M Landreman
    J. Plasma Phys. 85, 905850207 (2019)
  6. Direct construction of optimized stellarator shapes. II. Numerical quasisymmetric solutions
    M Landreman, W Sengupta, and G G Plunk
    J. Plasma Phys. 85, 905850103 (2019)

2018

  1. Direct construction of optimized stellarator shapes. I. Theory in cylindrical coordinates
    M Landreman, and W Sengupta
    J. Plasma Phys. 84, 905840616 (2018)
  2. Stella: A mixed implicit-explicit, delta-f gyrokinetic code for general magnetic field configurations
    M A Barnes, F I Parra, and M Landreman
    J. Comp. Phys. 391, 365 (2018)
  3. On-surface potential and radial electric field variations in electron root stellarator plasmas
    J M Garcia-Regana, T Estrada, I Calvo, J L Velasco, J A Alonso, D Carralero, R Kleiber, M Landreman, A Mollen, E Sanchez, C Slaby,  the TJ-II team, and  the W7-X team
    Plasma Phys. Controlled Fusion 60, 104002 (2018)
  4. The Parallel Boundary Condition for Turbulence Simulations in Low Magnetic Shear Devices
    M F Martin, M Landreman, P Xanthopoulos, N R Mandell, and W Dorland
    Plasma Phys. Controlled Fusion 60, 095008 (2018)
  5. Flux-surface variations of the electrostatic potential in stellarators: impact on the radial electric field and neoclassical impurity transport
    A Mollen, M Landreman, H M Smith, J M Garcia-Regana, and M Nunami
    Plasma Phys. Controlled Fusion 60, 084001 (2018)
  6. Computing local sensitivity and tolerances for stellarator physics properties using shape gradients
    M Landreman, and E J Paul
    Nucl. Fusion 58, 076023 (2018)
  7. An adjoint method for gradient-based optimization of stellarator coil shapes
    E J Paul, M Landreman, A Bader, and W Dorland
    Nucl. Fusion 58, 076015 (2018)
  8. Optimized up-down asymmetry to drive fast intrinsic rotation in tokamaks
    J Ball, F I Parra, M Landreman, and M Barnes
    Nucl. Fusion 58, 026003 (2018)
  9. Stellarator Research Opportunities, A report of the National Stellarator Coordinating Committee
    D A Gates, D Anderson, S Anderson, M Zarnstorff, D A Spong, H Weitzner, G H Neilson, D N Ruzic, D Andruczyk, J H Harris, H Mynick, C Hegna, O Schmitz, J N Talmadge, D Curreli, D Maurer, A Boozer, S Knowlton, J P Allain, D Ennis, G Wurden, A Reiman, J D Lore, M Landreman, J Freidberg, S R Hudson, M Porkolab, D Demers, J Terry, E Edlund, S Lazerson, N Pablant, R Fonck, F Volpe, J Canik, R Granetz, A Ware, J D Hanson, S Kumar, C Deng, K Likin, A Cerfon, A Ram, A Hassam, S Prager, C Paz-Soldan, M J Pueschel, I Joseph, and A Glasser
    J. Fusion Energy 37, 51 (2018)
  10. Core Radial Electric Field and Transport in Wendelstein 7-X Plasmas
    N Pablant, A Langenberg, A Alonso, C Beidler, M Bitter, S Bozhenkov, R Burhenn, M Beurskens, L F Delgado-Aparicio, A Dinklage, G Fuchert, D Gates, J Geiger, K Hill, U Hofel, M Hirsch, J Knauer, A Kramer-Flecken, M Landreman, S Lazerson, H Maassberg, O Marchuk, S Massidda, G H Neilson, E Pasch, S Satake, J Svennson, P Traverso, Y Turkin, P Valson, J Velasco, G Weir, T Windisch, R Wolf, M Yokoyama, D Zhang, and  the W7-X Team
    Phys. Plasmas 25, 022508 (2018)
  11. Laguerre-Hermite Pseudo-Spectral Velocity Formulation of Gyrokinetics
    N R Mandell, W Dorland, and M Landreman
    J. Plasma Phys. 84, 905840108 (2018)

2017

  1. An improved current potential method for fast computation of stellarator coil shapes
    M Landreman
    Nucl. Fusion 57, 046003 (2017)
  2. Recent advances in stellarator optimization
    D Gates, A Boozer, T Brown, J Breslau, D Curreli, M Landreman, S Lazerson, J Lore, H Mynick, G H Neilson, N Promphrey, P Xanthopoulos, and A Zolfaghari
    Nucl. Fusion 57, 126064 (2017)
  3. Rotation and neoclassical ripple transport in ITER
    E J Paul, M Landreman, F M Poli, D A Spong, H M Smith, and W Dorland
    Nucl. Fusion 57, 116044 (2017)
  4. Major results from the first plasma campaign of the Wendelstein 7-X stellarator
    R C Wolf, A Ali, A Alonso, J Baldzuhn, C Beidler, M Beurskens, C Biedermann, H-S Bosch, S Bozhenkov, R Brakel, A Dinklage, Y Feng, G Fuchert, J Geiger, O Grulke, P Helander, M Hirsch, O Hofel, M Jakubowski, J Knauer, G Kocsis, R Konig, P Kornejew, A Kramer-Flecken, M Krychowiak, M Landreman, A Langenberg, H P Laqua, S Lazerson, H Maassberg, S Marsen, M Marushchenko, D Moseev, H Niemann, N Pablant, E Pasch, K Rahbarnia, G Schlisio, T Stange, T Sunn Pedersen, J Svensson, T Szepesi, H Trimino Mora, Y Turkin, T Wauters, G Weir, U Wenzel, T Windisch, G Wurden, D Zhang, and  et al
    Nucl. Fusion 59, 014018 (2017)
  5. Performance and properties of the first plasmas of Wendelstein 7-X
    T Klinger, A Alonso, S Bozhenkov, R Burhenn, A Dinklage, G Fuchert, J Geiger, O Grulke, A Langenberg, M Hirsch, G Kocsis, J Knauer, A Kramer-Flecken, H Laqua, S Lazerson, M Landreman, H Maassberg, S Marsen, M Otte, N Pablant, E Pasch, K Rahbarnia, T Stange, T Szepesi, H Thomsen, P Traverso, J L Velasco, T Wauters, G Weir, T Windisch, and  the Wendelstein 7-X Team
    Plasma Phys. Controlled Fusion 59, 014018 (2017)
  6. Electrostatic potential variation on the flux surface and its impact on impurity transport
    J Garcia-Regana, C Beidler, R Kleiber, P Helander, A Mollen, J A Alonso, M Landreman, H Maassberg, H Smith, Y Turkin, and J L Velasco
    Nucl. Fusion 57, 056004 (2017)
  7. NORSE: A solver for the relativistic non-linear Fokker-Planck equation for electrons in a homogeneous plasma
    A Stahl, M Landreman, O Embreus, and T Fulop
    Comp. Phys. Comm. 212, 269 (2017)

2016

  1. Runaway-electron formation and electron slide-away in an ITER post-disruption scenario
    A Stahl, O Embreus, M Landreman, G Papp, and T Fulop
    J. Phys. Conference Ser. 775, 012013 (2016)
  2. Efficient magnetic fields for supporting toroidal plasmas
    M Landreman, and A H Boozer
    Phys. Plasmas 23, 032506 (2016)
  3. Investigation of the core radial electric field in Wendelsetin 7-X plasmas
    N A Pablant, A Dinklage, M Landreman, A Langenberg, A Alonso, C D Beidler, M Beurskens, M Bitter, S Bozhenkov, R Burhenn, L-F Delgado-Aparicio, G Fuchert, D A Gates, J Geiger, K W Hill, U Hoefel, M Hirsch, J Knauer, A Kramer-Flecken, S Lazerson, H Maassberg, O Marchuk, N B Marushchenko, D R Mikkelsen, E Pasch, S Satake, H Smith, J Svensson, P Traverso, Y Turkin, P Valson, J L Velasco, G Weir, T Windisch, R C Wolf, M Yokoyama, D Zhang, and  the W7-X team
    43rd European Physical Society Conference on Plasma Physics, Leuven 23, 032506 (2016)
  4. Core confinement in Wendelstein 7-X limiter plasmas
    A Dinklage, A Alonso, J Baldzuhn, C D Beidler, C Biedermann, B Blackwell, S Bozhenkov, R Brakel, B Buttenschon, Y Feng, G Fuchert, J Geiger, P Helander, M Hirsch, U Hoefel, J Knauer, A Kramer-Flecken, A Langenberg, H P Laqua, M Landreman, H Maassberg, N A Pablant, E Pasch, K Rahbarnia, L Rudischhauser, T Stange, L Stephey, H Trimino-Mora, Yu Turkin, J-L Velasco, G Wurden, D Zhang, T Andreeva, M Beurskens, E Blanco, H-S Bosch, R Burhenn, A Cappa, A Czarnecka, M Dostal, P Drews, M Endler, T Estrada, T Fornal, O Grulke, D Hartmann, J H Harris, M Jakubowski, T Klinger, S Klose, G Kocsis, R Konig, P Kornejew, N Krawczyk, M Krychowiak, M Kubkowska, I Kiazek, S Lazerson, Y Liang, S Liu, O Marchuk, S Marsen, N Marushchenko, V Moncada, D Moseev, D Naujoks, H Niemann, M Otte, T S Pedersen, F Pisano, K Risse, T Rummel, O Schmitz, S Satake, H Smith, T Schroder, T Szepesi, H Thomsen, P Traverso, M Tsuchiya, P Valson, N Wang, T Wauters, G Weir, R Wolf, M Yokoyama, and  the W7-X Team
    43rd European Physical Society Conference on Plasma Physics, Leuven 23, 032506 (2016)
  5. Microturbulence-induced modifications to the alpha particle distribution
    G J Wilkie, I G Abel, M Landreman, and W Dorland
    43rd European Physical Society Conference on Plasma Physics, Leuven 23, 032506 (2016)
  6. Neoclassical transport with non-trace impurities in density pedestals
    S Buller, I Pusztai, and M Landreman
    43rd European Physical Society Conference on Plasma Physics, Leuven 23, 032506 (2016)
  7. Transport and deceleration of fusion products in microturbulence
    G Wilkie, I Abel, M Landreman, and W Dorland
    Phys. Plasmas 23, 060703 (2016)
  8. Global effects on neoclassical transport in the pedestal with impurities
    I Pusztai, S Buller, and M Landreman
    Plasma Phys. Controlled Fusion 58, 085001 (2016)
  9. Parallel impurity dynamics in the TJ-II stellarator
    J Alonso, I Calvo, T Estrada, J Fontdecaba, J Garcia-Regana, J Geiger, M Landreman, K McCarthy, F Medina, B Van Milligen, M Ochando, F Parra, and J Velasco
    Plasma Phys. Controlled Fusion 58, 074009 (2016)
  10. Kinetic modelling of runaway electrons in dynamic scenarios
    A Stahl, O Embreus, G Papp, M Landreman, and T Fulop
    Nucl. Fusion 56, 112009 (2016)

2015

  1. Impurities in a non-axisymmetric plasma: Transport and effect on bootstrap current
    A Mollen, M Landreman, H M Smith, S Braun, and P Helander
    Phys. Plasmas 22, 112508 (2015)
  2. Universal instability for wavelengths below the ion Larmor scale
    M Landreman, T M Antonsen Jr, and W Dorland
    Phys. Rev. Lett. 114, 095003 (2015)
  3. Generalized universal instability: Transient linear amplification and subcritical turbulence
    M Landreman, G G Plunk, and W Dorland
    J. Plasma Phys. 81, 905810501 (2015)
  4. Less constrained omnigeneous stellarators
    F Parra, I Calvo, P Helander, and M Landreman
    Nucl. Fusion 55, 033005 (2015)
  5. Accurate spectral numerical schemes for kinetic equations with energy diffusion
    J Wilkening, A Cerfon, and M Landreman
    J. Comp. Phys. 294, 58 (2015)
  6. Poloidal asymmetries in edge transport barriers
    R M Churchill, C Thelier, B Lipschultz, I H Hutchinson, M L Reinke, D Whyte, J W Hughes, P Catto, M Landreman, D Ernst, C S Chang, R Hager, A Hubbard, P Ennever, J R Walk, and  the Alcator C-Mod Team
    Phys. Plasmas 22, 056104 (2015)

2014

  1. On collisional impurity transport in nonaxisymmetric plasmas
    A Mollen, M Landreman, and H M Smith
    J. Phys. Conf. Ser. 561, 012012 (2014)
  2. Inboard and outboard radial electric field wells in the H- and I-mode pedestal of Alcator C-Mod and poloidal variations of impurity temperature
    C Theiler, R M Churchill, B Lipschultz, M Landreman, D R Ernst, J W Hughes, P J Catto, F I Parra, I H Hutchinson, M L Reinke, A E Hubbard, E S Marmar, J T Terry, J R Walk, and  the Alcator C-Mod Team
    Nucl. Fusion 54, 083017 (2014)
  3. Comparison of particle trajectories and collision operators for collisional transport in nonaxisymmetric plasmas
    M Landreman, H M Smith, A Mollen, and P Helander
    Phys. Plasmas 21, 042503 (2014)
  4. Radially local delta-f computation of neoclassical phenomena in a tokamak pedestal
    M Landreman, F I Parra, P J Catto, D Ernst, and I Pusztai
    Plasma Phys. Controlled Fusion 56, 045005 (2014)
  5. Radio frequency induced and neoclassical asymmetries and their effects on turbulent impurity transport in a tokamak
    I Pusztai, M Landreman, A Mollen, Y O Kazakov, and T Fulop
    Contrib. Plasma Phys. 54, 534 (2014)
  6. Compressible impurity flow in the TJ-II stellarator
    J Arevalo, J A Alonso, K J McCarthy, J L Velasco, J M García-Regana, and M Landreman
    Nucl. Fusion 54, 013008 (2014)
  7. Numerical calculation of the runaway electron distribution function and associated synchrotron emission
    M Landreman, A Stahl, and T Fulop
    Contrib. Plasma Phys. 185, 847 (2014)

2013

  1. Conservation of energy and magnetic moment in neoclassical calculations for optimized stellarators
    M Landreman, and P J Catto
    Plasma Phys. Controlled Fusion 55, 095017 (2013)
  2. Synchrotron radiation from a runaway electron distribution in tokamaks
    A Stahl, M Landreman, G Papp, E Hollmann, and T Fulop
    Phys. Plasmas 20, 093302 (2013)
  3. Ion runaway in lightning discharges
    T Fulop, and M Landreman
    Phys. Rev. Lett. 111, 015006 (2013)
  4. New velocity-space discretization for continuum kinetic calculations and Fokker-Planck collisions
    M Landreman, and D R Ernst
    J. Comp. Phys. 243, 130 (2013)
  5. Comparison of edge turbulence imaging at two different poloidal locations in the scrape-off layer of Alcator C-Mod
    S J Zweben, J L Terry, M Agostini, W M Davis, A Diallo, R A Ellis, T Golfinopoulos, O Grulke, J W Hughes, B LaBombard, M Landreman, J R Myra, D C Pace, and D P Stotler
    Phys. Plasmas 20, 072503 (2013)
  6. Kinetic effects on a tokamak pedestal ion flow, ion heat transport and bootstrap current
    P J Catto, F I Parra, G Kagan, J B Parker, I Pusztai, and M Landreman
    Plasma Phys. Controlled Fusion 55, 045009 (2013)

2012

  1. Local and global Fokker-Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal
    M Landreman, and D R Ernst
    Plasma Phys. Controlled Fusion 54, 115006 (2012)
  2. Omnigenity as generalized quasisymmetry
    M Landreman, and P J Catto
    Phys. Plasmas 19, 056103 (2012)
  3. Neoclassical Theory of Pedestal Flows and Comparison with Alcator C-Mod Measurements
    G Kagan, K D Marr, I Pusztai, M Landreman, P J Catto, and B Lipschultz
    Contrib. Plasma Phys. 52, 365 (2012)

2011

  1. Impurity flows and plateau-regime poloidal density variation in a tokamak pedestal
    M Landreman, T Fulop, and D Guszejnov
    Phys. Plasmas 18, 092507 (2011)
  2. Electric fields and transport in optimized stellarators
    M Landreman
    PhD Thesis, MIT 18, 092507 (2011)
  3. The monoenergetic approximation in stellarator neoclassical calculations
    M Landreman
    Plasma Phys. Controlled Fusion 53, 082003 (2011)
  4. A unified treatment of kinetic effects in a tokamak pedestal
    P J Catto, G Kagan, M Landreman, and I Pusztai
    Plasma Phys. Controlled Fusion 53, 054004 (2011)
  5. Neoclassical flow, current, and electric field in a quasi-isodynamic stellarator
    M Landreman, and P J Catto
    Plasma Phys. Controlled Fusion 53, 035016 (2011)
  6. Effects of the radial electric field in a quasisymmetric stellarator
    M Landreman, and P J Catto
    Plasma Phys. Controlled Fusion 53, 015004 (2011)
  7. The effect of the radial electric field on neoclassical flows in a tokamak pedestal
    G Kagan, K D Marr, P J Catto, M Landreman, B Lipschultz, and R McDermott
    Plasma Phys. Controlled Fusion 53, 025008 (2011)

2010

  1. Trajectories, orbit squeezing, and residual zonal flow in a tokamak pedestal
    M Landreman, and P J Catto
    Plasma Phys. Controlled Fusion 52, 085003 (2010)

2007

  1. Comparison of parallel and perpendicular polarized counter-propagating light for suppressing high harmonic generation
    M Landreman, K O’Keeffe, T Robinson, M Zepf, B Dromey, and S M. Hooker
    J. Opt. Soc. Am. B 24, 2421 (2007)
  2. Simple technique for generating trains of ultrashort pulses
    T Robinson, K O’Keeffe, M Landreman, S M Hooker, M Zepf, and B Dromey
    Opt. Lett. 32, 2203 (2007)
  3. Quasi-phasematching of harmonic generation via multimode beating in waveguides
    B Dromey, M Zepf, M Landreman, and S M Hooker
    Opt. Express 15, 7894 (2007)
  4. Generation of a train of ultrashort pulses from a compact birefringent crystal array
    B Dromey, M Zepf, M Landreman, K O’Keeffe, T Robinson, and S M Hooker
    App. Opt. 46, 5142 (2007)
  5. Quasi phase matching techniques for high harmonic generation
    M Landreman
    MSc Thesis, Oxford University 46, 5142 (2007)
  6. Bright quasi-phasematched soft x-ray harmonic radiation from argon ions
    M Zepf, B Dromey, M Landreman, P Foster, and S M Hooker
    Phys. Rev. Lett. 99, 143901 (2007)

2005

  1. A nontrivial manifesto
    M Landreman
    Phys. Today 58, 52 (2005)
  2. Generalized Ohm’s law in a 3-D reconnection experiment
    C D Cothran, M Landreman, M R Brown, and W H Matthaeus
    Geophys. Res. Lett. 32, L23104 (2005)
  3. Fluid and kinetic structure of magnetic merging in the Swarthmore Spheromak Experiment
    W H Matthaeus, C D Cothran, M Landreman, and M R Brown
    Geophys. Res. Lett. 32, L23104 (2005)

2003

  1. The Three-Dimensional Structure of Magnetic Reconnection on SSX
    M Landreman
    Undergraduate Thesis, Swarthmore College 32, L23104 (2003)
  2. Rapid multiplexed data acquisition: Application to three-dimensional magnetic field measurements in a turbulent laboratory plasma
    M Landreman, C D Cothran, M R Brown, M Kostora, and J Slough
    Rev. Sci. Instrum. 74, 2361 (2003)
  3. Spheromak merging and field reversed configuration formation at the Swarthmore Spheromak Experiment
    C D Cothran, A Falk, A Fefferman, M Landreman, M R Brown, and M J Schaffer
    Phys. Plasmas 10, 1748 (2003)
  4. Three dimensional structure of magnetic reconnection in a laboratory plasma
    C D Cothran, M Landreman, W H Matthaeus, and M R Brown
    Geophys. Res. Lett. 30, 1213 (2003)

2002

  1. Energetic particles from three-dimensional magnetic reconnection events in SSX
    M R Brown, C D Cothran, M Landreman, D Schlossberg, W H Matthaeus, G Qin, V S Lukin, and T Gray
    Phys. Plasmas 9, 2077 (2002)
  2. Observation of energetic ions accelerated by three-dimensional magnetic reconnection activity
    M R Brown, C D Cothran, M Landreman, D Schlossberg, and W H Matthaeus
    Astrophys. J 577, L66 (2002)